Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tamoxifen and tamoxifen ethyl bromide induce apoptosis in acutely damaged mammary epithelial cells through modulation of AKT activity

Abstract

Normal human mammary epithelial cells (HMECs), unlike estrogen receptor-positive (ER+) breast cancers, typically express low nuclear levels of ER (ER-‘poor’). We previously demonstrated that 1.0 μ M tamoxifen (Tam) induced apoptosis in ER-‘poor’ HMECs acutely transduced with human papillomavirus-16 E6 (HMEC-E6) through a rapid mitochondrial signaling pathway. Here, we show that plasma membrane-associated E2-binding sites initiate the rapid apoptotic effects of Tam in HMEC-E6 cells through modulation of AKT activity. At equimolar concentrations, Tam and tamoxifen ethyl bromide (QTam), a membrane impermeant analog of Tam, rapidly induced apoptosis in HMEC-E6 cells associated with an even more rapid decrease in phosphorylation of AKT at serine-473. Treatment of HMEC-E6 cells with 1.0 μ M QTam resulted in a 50% decrease in mitochondrial transmembrane potential, sequential activation of caspase-9 and -3, and a 90% decrease in AKT Ser-473 phosphorylation. The effects of both Tam and QTam were blocked by expression of constitutively active AKT (myristoylated AKT or AKT-Thr308Asp/Ser473Asp). These data indicate that Tam and QTam induce apoptosis in HMEC-E6 cells through a plasma membrane-activated AKT-signaling pathway that results in (1) decreased AKT phosphorylation at Ser-473, (2) mitochondrial membrane depolarization, and (3) activated caspase-9 and -3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Allen MC, Gale PA, Hunter AC, Lloyd A and Hardy SP . (2000). Biochim. Biophys. Acta, 1509, 229–236.

  • Anderson E, Clarke RB and Howell A . (1998). J. Mamm. Gland Biol. Neoplasia, 3, 23–35.

  • Aoudjet F and Vuori K . (2001). Oncogene, 20, 4995–5004.

  • Aronica SM, Kraus WL and Katzenellbogen BS . (1994). Proc. Natl. Acad. Sci. USA, 91, 8517–8521.

  • Behl C . (2002). Nat. Rev. Neurosci., 3, 433–442.

  • Boserma AWM, Nooter K, Oostrum RG and Stoter G . (1996). Cytometry, 24, 123–130.

  • Brazil DP and Hemmings BA . (2001). Trends Biochem. Sci., 26, 657–664.

  • Campbell RA, Baht-Nakshatri P, Patel NM, Constantinidou D, Ali S and Naksahtri H . (2001). J. Biol. Chem., 276, 9817–9824.

  • Chambliss KL, Yuhanna IS, Anderson RGW, Mendelsohn ME and Shaul PW . (2002). Mol. Endocrinol., 16, 938–946.

  • Demers GW, Espling E, Harry JB, Etscheid BG and Galloway DA . (1996). J. Virol., 70, 6862–6869.

  • Dick GM, Hunter AC and Sanders KM . (2002). Mol. Pharmacol., 61, 1105–1113.

  • Dietze EC, Caldwell LE, Grupin SL, Mancini M and Seewaldt VL . (2001). J. Biol. Chem., 276, 5384–5394.

  • Doolan CM and Harvey BJ . (2003). Mol. Cell. Endocrinol., 199, 87–103.

  • Fernandez A, Cantabrana B and Hildago A . (1993). Gen. Pharmacol., 24, 391–395.

  • Fisher B, Constantino JP, Wickerham CDL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L and Wolmark N . (1998). J. Natl. Cancer Inst., 90, 1371–1388.

  • Friedman ZY . (1998). Cancer Invest., 16, 391–396.

  • Ho KJ and Liao JK . (2002). Arterioscler. Thromb. Vasc. Biol., 22, 1952–1961.

  • Hutchinson J, Jin J, Cardiff RD, Woodgett JR and Muller WJ . (2001). Mol. Cell. Biol., 21, 2203–2212.

  • Improta-Brears T, Whorton AR, Codazzi F, York JD, Meyer T and McDonnell DP . (1999). Proc. Natl. Acad. Sci. USA, 96, 4686–4691.

  • Jarman M, Leung OT, LeClercq G, Devleeschouwer N, Stossel S, Coombes RC and Skilton RA . (1986). Anti-Cancer Drug Des., 1, 259–268.

  • Johnson LV, Walsh ML and Chen LB . (1980). Proc. Natl. Acad. Sci. USA, 77, 990–994.

  • Kandel ES and Hay N . (1999). Exp. Cell Res., 253, 210–229.

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D and Chambon P . (1995). Science, 270, 1491–1494.

  • Kirk J, Syed SK, Harris AL, Jarman M, Roufogalis BD, Stratford IJ and Carmichael J . (1994). Biochem. Pharmacol., 48, 277–285.

  • Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O’Brien CA, Plotkin L, Fu Q, Mancino AT, Wien Y, Vertino AM, Powers CC, Stewart SA, Ebert R, Parfitt AM, Weinstein RS, Jilka RL and Manolagas SC . (2002). Science, 298, 843–846.

  • Kozikowski AP, Sun H, Brognard J and Dennis PA . (2003). J. Am. Chem. Soc., 125, 1144–1145.

  • Levin ER . (2002). Steroids, 67, 471–475.

  • Li L, Haynes MP and Bender JR . (2003). Proc. Natl. Acad. Sci. USA, 100, 4607–4812.

  • Linford N, Wade C and Dorsa D . (2000). J. Neurocytol., 29, 367–374.

  • Marquez DC and Pietras RJ . (2001). Oncogene, 20, 5420–5430.

  • Okano J, Gaslightwala I, Birnbaum MJ, Rustgi AK and Nakagawa H . (2000). J. Biol. Chem., 275, 30934–30942.

  • O'Regan RM and Jordan VC . (2002). Lancet Oncol., 3, 207–214.

  • Pietras RJ, Nemere I and Szego CM . (2001). Endocrine, 14, 417–427.

  • Razandi M, Alton G, Pedram A, Ghonshani S, Webb P and Levin ER . (2003a). Mol. Cell. Biol., 23, 1633–1646.

  • Razandi M, Oh P, Pedram A, Schnitzer J and Levin ER . (2002). Mol. Endocrinol., 16, 100–115.

  • Razandi M, Pedram A and Levin ER . (2000). Mol. Endocrinol., 14, 1434–1447.

  • Razandi M, Pedram A, Park ST and Levin ER . (2003b). J. Biol. Chem., 278, 2701–2712.

  • Ropero AB, Soria B and Nadal A . (2002). Mol. Endocrinol., 16, 497–505.

  • Scheid MP and Woodgett JR . (2003). FEBS Lett., 546, 108–112.

  • Schlegel A, Wang C, Katzenellenbogen BS, Pestell RG and Lisanti MP . (1999). J. Biol. Chem., 274, 33551–33556.

  • Schwartfeger KL, Richert MM and Anderson SM . (2001). Mol. Endocrinol., 15, 867–881.

  • Seewaldt VL, Caldwell LE, Johnson BB, Swisshelm K and Collins SJ . (1997a). Cell Growth Diff., 8, 631–641.

  • Seewaldt VL, Caldwell LE, Johnson BS, Swisshelm K, Collins SJ and Tsai S . (1997b). Exp. Cell Res., 236, 16–28.

  • Seewaldt VL, Dietze EC, Johnson BS, Collins SJ and Parker MB . (1999a). Cell Growth Diff., 10, 49–59.

  • Seewaldt VL, Johnson BS, Parker MB, Collins SJ and Swisshelm K . (1995). Cell Growth Diff., 6, 1077–1088.

  • Seewaldt VL, Kim J-H, Parker MB, Dietze EC, Srinivasan KV and Caldwell LE . (1999b). Expt. Cell Res., 249, 70–85.

  • Seewaldt VL, Mrózek K, Dietze EC, Parker MB and Caldwell LE . (2001a). Cancer Res., 61, 616–624.

  • Seewaldt VL, Mrózek K, Sigle R, Dietze EC, Heine K, Hockenbery DM, Hobbs KB and Caldwell LE . (2001b). J. Cell Biol., 155, 471–486.

  • Segars JH and Driggers PH . (2002). Trends Endocrinol. Metab., 13, 349–354.

  • Simoncini T, Hafezi-Moghandam A, Brazil DP, Ley K, Chin WW and Liao KJ . (2000). Nature, 407, 538–541.

  • Song RX-D, Mcpherson RA, Adam L, Bao Y, Shupnik M, Kumar R and Santen RJ . (2002). Mol. Endocrinol., 16, 116–127.

  • Stampfer M . (1985). J. Tissue Cult. Method, 9, 107–121.

  • Stocia GE, Franke TF, Wellstein A, Czubayko F, List HJ, Reiter R, Morgan E, Martin MB and Stoica A . (2003a). Mol. Endocrinol., 17, 818–830.

  • Stocia GE, Franke TF, Wellstein A, Morgan E, Czubayko F, List HJ, Reiter R, Martin MB and Stocia A . (2003b). Oncogene, 22, 2073–2087.

  • Strange R, Netcalfe T, Thackeray L and Dang M . (2001). Microsc. Res. Tech., 52, 171–181.

  • Sun M, Wang G, Paciga JE, Feldman RI, Yuan ZQ, Ma XL, Shelley SA, Jove R, Tsichlis PN, Nicosia SV and Cheng JQ . (2001). Am. J. Path., 159, 431–437.

  • Testa JR and Bellacosa A . (2001). Proc. Natl. Acad. Sci. USA, 98, 10983–10985.

  • West KA, Castillo SS and Dennis PA . (2002). Drug Resist. Updates, 5, 234–248.

  • Whitehead JP, Molero JC, Clark S, Martin S, Meneily G and James DE . (2001). J. Biol. Chem., 276, 27816–27824.

  • Zhang Z, Maier B, Santen RJ and Song RX-D . (2002). Biochem. Biophys. Res. Commun., 294, 926–933.

Download references

Acknowledgements

We acknowledge the generous gifts of (1) J Woodgett for the AKT308D/S473D plasmid, (2) D Galloway for the LXSN16E6 retroviral vector containing the HPV-16 E6 coding sequence, and (3) B Katzenellenbogen for the [3H]tamoxifen aziridine. This work is supported by NIH/NCI Grants 2P30CA14236-26 (VLS, ECD), R01CA88799 (VLS), R01CA98441 (VLS), NIH/NIDDK Grant 2P30DK 35816-11 (VLS), DAMD-98-1-851 and DAMD-010919 (VLS), American Cancer Society Award CCE-99898 (VLS), a V-Foundation Award (VLS), a Susan G Komen Breast Cancer Award (VLS, ECD), and a Charlotte Geyer Award (VLS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria L Seewaldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietze, E., Troch, M., Bean, G. et al. Tamoxifen and tamoxifen ethyl bromide induce apoptosis in acutely damaged mammary epithelial cells through modulation of AKT activity. Oncogene 23, 3851–3862 (2004). https://doi.org/10.1038/sj.onc.1207480

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207480

Keywords

This article is cited by

Search

Quick links