Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apelin is a potent activator of tumour neoangiogenesis

Abstract

Our laboratory has previously shown that apelin is mitogenic for endothelial cells. We have postulated that apelin represents an angiogenic factor secreted by tumour cells in order to promote the formation of new vessels necessary for tumour growth. We first demonstrate that apelin and its receptor are not expressed by the mouse TS/A mammary carcinoma cells. We therefore established clones of this tumoral cell type stably overexpressing the apelin cDNA (TS/A-apelin clones). Comparison of the in vitro proliferation rates between TS/A-mock and TS/A-apelin cells did not reveal any difference and confirmed the lack of receptor expression by tumour cells. On the other hand, apelin overexpression clearly increased the in vivo tumour growth and this increase was associated with an earlier onset of tumour development. In tumours derived from TS/A-apelin clones, the expression of the endothelial marker CD31 was increased and revealed the formation of large intratumoral vessels lined with CD31 positive cells. These data suggest that apelin behaves as a potent activator of tumour neoangiogenesis by a paracrine effect on host vessels. The pathological relevance of this finding is demonstrated by hypoxia-induced upregulation of apelin gene and its overexpression in one-third of human tumours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Audigier Y . (2006). Apelin receptor. AfCS Nature Molecule Pages: doi: 10.1038/mp.a000304.01.

  • Breier G, Albrecht U, Sterrer S, Risau W . (1992). Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114: 521–532.

    CAS  Google Scholar 

  • Brugarolas J, Kaelin Jr WG . (2004). Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6: 7–10.

    Article  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–439.

    Article  CAS  Google Scholar 

  • Coultas L, Chawengsaksophak K, Rossant J . (2005). Endothelial cells and VEGF in vascular development. Nature 438: 937–945.

    Article  CAS  Google Scholar 

  • Cox CM, D'Agostino SL, Miller MK, Heimark RL, Krieg PA . (2006). Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296: 177–189.

    Article  CAS  Google Scholar 

  • Devic E, Paquereau L, Vernier P, Knibiehler B, Audigier Y . (1996). Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech Dev 59: 129–140.

    Article  CAS  Google Scholar 

  • Devic E, Rizzoti K, Bodin S, Knibiehler B, Audigier Y . (1999). Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev 84: 199–203.

    Article  CAS  Google Scholar 

  • Dvorak HF . (2002). Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20: 4368–4380.

    Article  CAS  Google Scholar 

  • Ferrara N . (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25: 581–611.

    Article  CAS  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS et al. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439–442.

    Article  CAS  Google Scholar 

  • Ferrara N, Kerbel RS . (2005). Angiogenesis as a therapeutic target. Nature 438: 967–974.

    Article  CAS  Google Scholar 

  • Folkman J . (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186.

    Article  CAS  Google Scholar 

  • Graeven U, Rodeck U, Karpinski S, Jost M, Philippou S, Schmiegel W . (2001). Modulation of angiogenesis and tumorigenicity of human melanocytic cells by vascular endothelial growth factor and basic fibroblast growth factor. Cancer Res 61: 7282–7290.

    CAS  PubMed  Google Scholar 

  • Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S et al. (1999). Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta 1452: 25–35.

    Article  CAS  Google Scholar 

  • Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M et al. (2002). VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99: 11393–11398.

    Article  CAS  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342.

    Article  CAS  Google Scholar 

  • Kasai A, Shintani N, Oda M, Kakuda M, Hashimoto H, Matsuda T et al. (2004). Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325: 395–400.

    Article  CAS  Google Scholar 

  • Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844.

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  • Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM et al. (2003). von Hippel–Lindau disease. Lancet 361: 2059–2067.

    Article  CAS  Google Scholar 

  • Masri B, Knibiehler B, Audigier Y . (2005). Apelin signalling: a promising pathway from cloning to pharmacology. Cell Signal 17: 415–426.

    Article  CAS  Google Scholar 

  • Masri B, Lahlou H, Mazarguil H, Knibiehler B, Audigier Y . (2002). Apelin (65–77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein. Biochem Biophys Res Commun 290: 539–545.

    Article  CAS  Google Scholar 

  • Masri B, Morin N, Cornu M, Knibiehler B, Audigier Y . (2004). Apelin (65–77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 18: 1909–1911.

    Article  CAS  Google Scholar 

  • Masri B, Morin N, Pedebernade L, Knibiehler B, Audigier Y . (2006). The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J Biol Chem 281: 18317–18326.

    Article  CAS  Google Scholar 

  • Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A . (1994). Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367: 576–579.

    Article  CAS  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W et al. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835–846.

    Article  CAS  Google Scholar 

  • Plate KH, Breier G, Millauer B, Ullrich A, Risau W . (1993). Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 53: 5822–5827.

    CAS  PubMed  Google Scholar 

  • Prewett M, Huber J, Li Y, Santiago A, O'Connor W, King K et al. (1999). Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59: 5209–5218.

    CAS  PubMed  Google Scholar 

  • Pugh CW, Ratcliffe PJ . (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9: 677–684.

    Article  CAS  Google Scholar 

  • Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T et al. (1995). Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55: 4575–4580.

    CAS  PubMed  Google Scholar 

  • Saint-Geniez M, Masri B, Malecaze F, Knibiehler B, Audigier Y . (2002). Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels. Mech Dev 110: 183–186.

    Article  CAS  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML et al. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376: 62–66.

    Article  CAS  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E . (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845.

    Article  CAS  Google Scholar 

  • Sorli SC, van den Berghe L, Masri B, Knibiehler B, Audigier Y . (2006). Therapeutic potential of interfering with apelin signalling. Drug Discov Today 11: 1100–1106.

    Article  CAS  Google Scholar 

  • Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX et al. (1998). Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251: 471–476.

    Article  CAS  Google Scholar 

  • Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J et al. (2000). PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60: 2178–2189.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank P Clerc for his advice in the quantitative analysis of tumour vasculature, V Garcia for technical assistance and Pr T Levade for the generous gift of the cancer-profiling array. We also thank Dr J Iacovoni for helpful discussions and critical reading of the manuscript. SC Sorli is the recipient of a postdoctoral fellowship from the Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Audigier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorli, S., Le Gonidec, S., Knibiehler, B. et al. Apelin is a potent activator of tumour neoangiogenesis. Oncogene 26, 7692–7699 (2007). https://doi.org/10.1038/sj.onc.1210573

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210573

Keywords

This article is cited by

Search

Quick links