Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer

Abstract

The primary purpose of this study was to evaluate the effect of CYP2C8*3 and three genetic ABCB1 variants on the elimination of paclitaxel. We studied 93 Caucasian women with ovarian cancer treated with paclitaxel and carboplatin. Using sparse sampling and nonlinear mixed effects modeling, the individual clearance of unbound paclitaxel was estimated from total plasma paclitaxel and Cremophor EL. The geometric mean of clearance was 385 l h–1 (range 176–726 l h–1). Carriers of CYP2C8*3 had 11% lower clearance than non-carriers, P=0.03. This has not been shown before in similar studies; the explanation is probably the advantage of using both unbound paclitaxel clearance and a population of patients of same gender. No significant association was found for the ABCB1 variants C1236T, G2677T/A and C3435T. Secondarily, other candidate single-nucleotide polymorphisms were explored with possible associations found for CYP2C8*4 (P=0.04) and ABCC1 g.7356253C>G (P=0.04).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Thigpen JT . Chemotherapy for advanced ovarian cancer: overview of randomized trials. Semin Oncol 2000; 27: 11–16.

    CAS  PubMed  Google Scholar 

  2. Vasey PA, Jayson GC, Gordon A, Gabra H, Coleman R, Atkinson R et al. Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as first-line chemotherapy for ovarian carcinoma. J Natl Cancer Inst 2004; 96: 1682–1691.

    Article  CAS  PubMed  Google Scholar 

  3. Harris JW, Rahman A, Kim BR, Guengerich FP, Collins JM . Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 1994; 54: 4026–4035.

    CAS  PubMed  Google Scholar 

  4. Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ, Harris JW . Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 1994; 54: 5543–5546.

    CAS  PubMed  Google Scholar 

  5. Kumar G, Ray S, Walle T, Huang Y, Willingham M, Self S et al. Comparative in vitro cytotoxic effects of taxol and its major human metabolite 6 alpha-hydroxytaxol. Cancer Chemother Pharmacol 1995; 36: 129–135.

    Article  CAS  PubMed  Google Scholar 

  6. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997; 94: 2031–2035.

    Article  CAS  PubMed  Google Scholar 

  7. Marsh S . Taxane pharmacogenetics. Personal Med 2006; 3: 33–43.

    Article  CAS  Google Scholar 

  8. Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH . MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 2005; 116: 824–829.

    Article  CAS  PubMed  Google Scholar 

  9. McFadyen MC, Cruickshank ME, Miller ID, McLeod HL, Melvin WT, Haites NE et al. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br J Cancer 2001; 85: 242–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R . Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish randomised trial in ovarian cancer. J Clin Oncol 2007; 25: 4528–4535.

    Article  CAS  PubMed  Google Scholar 

  11. Smith NF, Marsh S, Scott-Horton TJ, Hamada A, Mielke S, Mross K et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 2007; 81: 76–82.

    Article  CAS  PubMed  Google Scholar 

  12. Hopper-Borge E, Chen ZS, Shchaveleva I, Belinsky MG, Kruh GD . Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 2004; 64: 4927–4930.

    Article  CAS  PubMed  Google Scholar 

  13. McFadyen MCE, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI . Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol 2001; 62: 207–212.

    Article  CAS  PubMed  Google Scholar 

  14. Gianni L, Kearns CM, Giani A, Capri G, Vigano L, Lacatelli A et al. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 1995; 13: 180–190.

    Article  CAS  PubMed  Google Scholar 

  15. Sonnichsen DS, Hurwitz CA, Pratt CB, Shuster JJ, Relling MV . Saturable pharmacokinetics and paclitaxel pharmacodynamics in children with solid tumors. J Clin Oncol 1994; 12: 532–538.

    Article  CAS  PubMed  Google Scholar 

  16. Karlsson MO, Molnar V, Freijs A, Nygren P, Bergh J, Larsson R . Pharmacokinetic models for the saturable distribution of paclitaxel. Drug Metab Dispos 1999; 27: 1220–1223.

    CAS  PubMed  Google Scholar 

  17. Sparreboom A, van Zuylen L, Brouwer E, Loos WJ, de Bruijn P, Gelderblom H et al. Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 1999; 59: 1454–1457.

    CAS  PubMed  Google Scholar 

  18. van Zuylen L, Karlsson MO, Verweij J, Brouwer E, de Bruijn P, Nooter K et al. Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 2001; 47: 309–318.

    Article  CAS  PubMed  Google Scholar 

  19. van Tellingen O, Huizing MT, Panday VR, Schellens JH, Nooijen WJ, Beijnen JH . Cremophor EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patients. Br J Cancer 1999; 81: 330–335.

    Article  CAS  PubMed  Google Scholar 

  20. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001; 11: 597–607.

    Article  CAS  PubMed  Google Scholar 

  21. Soyama A, Saito Y, Hanioka N, Murayama N, Nakajima O, Katori N et al. Non-synonymous single nucleotide alterations found in the CYP2C8 gene result in reduced in vitro paclitaxel metabolism. Biol Pharm Bull 2001; 24: 1427–1430.

    Article  CAS  PubMed  Google Scholar 

  22. Tanabe M, Ieiri I, Nagata N, Inoue K, Ito S, Kanamori Y et al. Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 2001; 297: 1137–1143.

    CAS  PubMed  Google Scholar 

  23. Kim RB, Leake BF, Choo EF, Dresser GK, Kubba SV, Schwarz UI et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70: 189–199.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97: 3473–3478.

    Article  CAS  PubMed  Google Scholar 

  25. Alexander MS, Kiser MM, Culley T, Kern JR, Dolan JW, McChesney JD et al. Measurement of paclitaxel in biological matrices: high-throughput liquid chromatographic-tandem mass spectrometric quantification of paclitaxel and metabolites in human and dog plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 785: 253–261.

    Article  CAS  PubMed  Google Scholar 

  26. Sparreboom A, Loos WJ, Verweij J, de Vos AI, van der Burg ME, Stoter G et al. Quantitation of Cremophor EL in human plasma samples using a colorimetric dye-binding microassay. Anal Biochem 1998; 255: 171–175.

    Article  CAS  PubMed  Google Scholar 

  27. Henningsson A, Sparreboom A, Sandstrom M, Freijs A, Larsson R, Bergh J et al. Population pharmacokinetic modelling of unbound and total plasma concentrations of paclitaxel in cancer patients. Eur J Cancer 2003; 39: 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  28. Jonsson EN, Karlsson MO . Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 1999; 58: 51–64.

    Article  CAS  PubMed  Google Scholar 

  29. Lindbom L, Pihlgren P, Jonsson EN . PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 2005; 79: 241–257.

    Article  PubMed  Google Scholar 

  30. Green H, Soderkvist P, Rosenberg P, Horvath G, Peterson C . mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clin Cancer Res 2006; 12: 854–859.

    Article  CAS  PubMed  Google Scholar 

  31. Green H, Soderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EA et al. Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol 2009; 104: 130–137.

    Article  CAS  PubMed  Google Scholar 

  32. Green H, Soderkvist P, Rosenberg P, Horvath G, Peterson C . ABCB1 G1199A polymorphism and ovarian cancer response to paclitaxel. J Pharm Sci 2008; 97: 2045–2048.

    Article  CAS  PubMed  Google Scholar 

  33. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stephens M, Scheet P . Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 2005; 76: 449–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kroetz DL, Pauli-Magnus C, Hodges LM, Huang CC, Kawamoto M, Johns SJ et al. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics 2003; 13: 481–494.

    Article  CAS  PubMed  Google Scholar 

  36. Sissung TM, Baum CE, Deeken J, Price DK, Ragon-Ching J, Steinberg SM et al. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res 2008; 14: 4543–4549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johne A, Kopke K, Gerloff T, Mai I, Rietbrock S, Meisel C et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther 2002; 72: 584–594.

    Article  CAS  PubMed  Google Scholar 

  38. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV et al. A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. Science 2007; 315: 525–528.

    Article  CAS  Google Scholar 

  39. Song P, Lamba JK, Zhang L, Schuetz E, Shukla N, Meibohm B et al. G2677T and C3435T genotype and haplotype are associated with hepatic ABCB1 (MDR1) expression. J Clin Pharmacol 2006; 46: 373–379.

    Article  CAS  PubMed  Google Scholar 

  40. Servin B, Stephens M . Imputation-based analysis of association studies: candidate regions and quantitative traits. PloS Genet 2007; 3: e114.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fransson M, Gréen H . Comparison of two types of population pharmacokinetic model structures of paclitaxel. Eur J Pharm Sci 2008; 33: 128–137.

    Article  CAS  PubMed  Google Scholar 

  42. Gréen H, Soderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EA et al. Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol 2009; 104: 130–137.

    Article  PubMed  Google Scholar 

  43. Henningsson A, Marsh S, Loos WJ, Karlsson MO, Garsa A, Mross K et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res 2005; 11: 8097–8104.

    Article  CAS  PubMed  Google Scholar 

  44. Marsh S, Somlo G, Li X, Frankel P, King CR, Shannon WD et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer. Pharmacogenomics J 2007; 7: 362–365.

    Article  CAS  PubMed  Google Scholar 

  45. Joerger M, Huitema AD, van den Bongard DH, Schellens JH, Beijnen JH . Quantitative effect of gender, age, liver function, and body size on the population pharmacokinetics of paclitaxel in patients with solid tumors. Clin Cancer Res 2006; 12: 2150–2157.

    Article  CAS  PubMed  Google Scholar 

  46. Somlo G, Doroshow JH, Synold T, Longmate J, Reardon D, Chow W et al. High-dose paclitaxel in combination with doxorubicin, cyclophosphamide and peripheral blood progenitor cell rescue in patients with high-risk primary and responding metastatic breast carcinoma: toxicity profile, relationship to paclitaxel pharmacokinetics and short-term outcome. Br J Cancer 2001; 84: 1591–1598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baker SD, Verweij J, Cusatis GA, van Schaik RH, Marsh S, Orwick SJ et al. Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 2009; 85: 155–163.

    Article  CAS  PubMed  Google Scholar 

  48. Cole SP, Sparks KE, Fraser K, Loe DW, Grant CE, Wilson GM et al. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 1994; 54: 5902–5910.

    CAS  PubMed  Google Scholar 

  49. Zaman GJ, Flens MJ, van Leusden MR, de HM, Mulder HS, Lankelma J et al. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA 1994; 91: 8822–8826.

    Article  CAS  PubMed  Google Scholar 

  50. Obata H, Yahata T, Quan J, Sekine M, Tanaka K . Association between single nucleotide polymorphisms of drug resistance-associated genes and response to chemotherapy in advanced ovarian cancer. Anticancer Res 2006; 26: 2227–2232.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for Anja Henningsson in Uppsala who kindly provided the PK model. We also acknowledge the work of lab technicians Ingrid Jakobsen Falk, Karin Skoglund, Pernille Jordan, Birgitte Damby and Poula Mortensen and research nurses Yvette Sørensen, Monica Pehrsson, Grethe Christensen, Maja Hansen and Nina D Kjersgaard. The work was financially supported by grants from the European Commission (CHEMORES LSHC-CT-2007-037665), the Swedish Cancer Society, the Swedish Medical Society- Linköping branch, the County Council in Östergötland, the Danish Ministry of Interior Affairs and Health (2001-2007)(J.nr 2006-12103-276), the Danish Research Agency (J.nr 271-05-0266) and Roche Denmark, Hvidovre, Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T K Bergmann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergmann, T., Brasch-Andersen, C., Gréen, H. et al. Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J 11, 113–120 (2011). https://doi.org/10.1038/tpj.2010.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.19

Keywords

This article is cited by

Search

Quick links