Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A low-risk ZnT-8 allele (W325) for post-transplantation diabetes mellitus is protective against cyclosporin A-induced impairment of insulin secretion

Abstract

SLC30A8 encodes the β-cell-specific zinc transporter-8 (ZnT-8) expressed in insulin secretory granules. The single-nucleotide polymorphism rs13266634 of SLC30A8 is associated with susceptibility to post-transplantation diabetes mellitus (PTDM). We tested the hypothesis that the polymorphic residue at position 325 of ZnT-8 determines the susceptibility to cyclosporin A (CsA) suppression of insulin secretion. INS (insulinoma)-1E cells expressing the W325 variant showed enhanced glucose-stimulated insulin secretion (GSIS) and were less sensitive to CsA suppression of GSIS. A reduced number of insulin granule fusion events accompanied the decrease in insulin secretion in CsA-treated cells expressing ZnT-8 R325; however, ZnT-8 W325-expressing cells exhibited resistance to the dampening of insulin granule fusion by CsA, and transported zinc ions into secretory vesicles more efficiently. Both tacrolimus and rapamycin caused similar suppression of GSIS in cells expressing ZnT-8 R325. However, cells expressing ZnT-8 W325 were resistant to tacrolimus, but not to rapamycin. The Down's syndrome candidate region-1 (DSCR1), an endogenous calcineurin inhibitor, overexpression and subsequent calcineurin inhibition significantly reduced GSIS in cells expressing the R325 but not the W325 variant, suggesting that differing susceptibility to CsA may be due to different interactions with calcineurin. These data suggest that the ZnT-8 W325 variant is protective against CsA-induced suppression of insulin secretion. Tolerance of ZnT-8 W325 to calcineurin activity may account for its protective effect in PTDM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. First MR, Gerber DA, Hariharan S, Kaufman DB, Shapiro R . Posttransplant diabetes mellitus in kidney allograft recipients: incidence, risk factors, and management. Transplantation 2002; 73: 379–386.

    Article  PubMed  Google Scholar 

  2. Ducloux D, Kazory A, Chalopin JM . Posttransplant diabetes mellitus and atherosclerotic events in renal transplant recipients: a prospective study. Transplantation 2005; 79: 438–443.

    Article  PubMed  Google Scholar 

  3. Hjelmesaeth J, Hartmann A, Leivestad T, Holdaas H, Sagedal S, Olstad M et al. The impact of early-diagnosed new-onset post-transplantation diabetes mellitus on survival and major cardiac events. Kidney Int 2006; 69: 588–595.

    Article  CAS  PubMed  Google Scholar 

  4. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316: 1331–1336.

    Article  CAS  PubMed  Google Scholar 

  5. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445: 881–885.

    Article  CAS  PubMed  Google Scholar 

  6. Lyssenko V, Groop L . Genome-wide association study for type 2 diabetes: clinical applications. Curr Opin Lipidol 2009; 20: 87–91.

    Article  CAS  PubMed  Google Scholar 

  7. Chimienti F, Devergnas S, Favier A, Seve M . Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004; 53: 2330–2337.

    Article  CAS  PubMed  Google Scholar 

  8. Kang ES, Kim MS, Kim YS, Kim CH, Han SJ, Chun SW et al. A polymorphism in the zinc transporter gene SLC30A8 confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. Diabetes 2008; 57: 1043–1047.

    Article  CAS  PubMed  Google Scholar 

  9. Nam JH, Mun JI, Kim SI, Kang SW, Choi KH, Park K et al. Beta-cell dysfunction rather than insulin resistance is the main contributing factor for the development of postrenal transplantation diabetes mellitus. Transplantation 2001; 71: 1417–1423.

    Article  CAS  PubMed  Google Scholar 

  10. Hur KY, Kim MS, Kim YS, Kang ES, Nam JH, Kim SH et al. Risk factors associated with the onset and progression of posttransplantation diabetes in renal allograft recipients. Diabetes Care 2007; 30: 609–615.

    Article  PubMed  Google Scholar 

  11. Pound LD, Sarkar S, Benninger RK, Wang Y, Suwanichkul A, Shadoan MK et al. Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 2009; 421: 371–376.

    Article  CAS  PubMed  Google Scholar 

  12. Mocchegiani E, Giacconi R, Malavolta M . Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med 2008; 14: 419–428.

    Article  CAS  PubMed  Google Scholar 

  13. Chimienti F, Devergnas S, Pattou F, Schuit F, Garcia-Cuenca R, Vandewalle B et al. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 2006; 119 (Pt 20): 4199–4206.

    Article  CAS  PubMed  Google Scholar 

  14. Fu Y, Tian W, Pratt EB, Dirling LB, Shyng SL, Meshul CK et al. Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS One 2009; 4: e5679.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lawrence MC, Bhatt HS, Watterson JM, Easom RA . Regulation of insulin gene transcription by a Ca(2+)-responsive pathway involving calcineurin and nuclear factor of activated T cells. Mol Endocrinol 2001; 15: 1758–1767.

    Article  CAS  PubMed  Google Scholar 

  16. Heit JJ . Calcineurin/NFAT signaling in the beta-cell: from diabetes to new therapeutics. Bioessays 2007; 29: 1011–1021.

    Article  CAS  PubMed  Google Scholar 

  17. Doyle ME, Egan JM . Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 2003; 55: 105–131.

    Article  CAS  PubMed  Google Scholar 

  18. Donelan MJ, Morfini G, Julyan R, Sommers S, Hays L, Kajio H et al. Ca2+-dependent dephosphorylation of kinesin heavy chain on beta-granules in pancreatic beta-cells. Implications for regulated beta-granule transport and insulin exocytosis. J Biol Chem 2002; 277: 24232–24242.

    Article  CAS  PubMed  Google Scholar 

  19. Heit JJ, Apelqvist AA, Gu X, Winslow MM, Neilson JR, Crabtree GR et al. Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 2006; 443: 345–349.

    Article  CAS  PubMed  Google Scholar 

  20. Borlak J, Niehof M . HNF4alpha and HNF1alpha dysfunction as a molecular rational for cyclosporine induced posttransplantation diabetes mellitus. PLoS One 2009; 4: e4662.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Robertson RP . Cyclosporin-induced inhibition of insulin secretion in isolated rat islets and HIT cells. Diabetes 1986; 35: 1016–1019.

    Article  CAS  PubMed  Google Scholar 

  22. Teuscher AU, Seaquist ER, Robertson RP . Diminished insulin secretory reserve in diabetic pancreas transplant and nondiabetic kidney transplant recipients. Diabetes 1994; 43: 593–598.

    Article  CAS  PubMed  Google Scholar 

  23. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N et al. Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 2002; 277: 19049–19055.

    Article  CAS  PubMed  Google Scholar 

  24. Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P . Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 2004; 145: 667–678.

    Article  CAS  PubMed  Google Scholar 

  25. Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 2009; 58: 2070–2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang N, Su D, Qu S, Tse T, Bottino R, Balamurugan AN et al. Sirolimus is associated with reduced islet engraftment and impaired beta-cell function. Diabetes 2006; 55: 2429–2436.

    Article  CAS  PubMed  Google Scholar 

  27. Chan B, Greenan G, McKeon F, Ellenberger T . Identification of a peptide fragment of DSCR1 that competitively inhibits calcineurin activity in vitro and in vivo. Proc Natl Acad Sci USA 2005; 102: 13075–13080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim YS, Cho KO, Lee HJ, Kim SY, Sato Y, Cho YJ . Down syndrome candidate region 1 increases the stability of the IkappaBalpha protein: implications for its anti-inflammatory effects. J Biol Chem 2006; 281: 39051–39061.

    Article  CAS  PubMed  Google Scholar 

  29. Cosio FG, Pesavento TE, Osei K, Henry ML, Ferguson RM . Post-transplant diabetes mellitus: increasing incidence in renal allograft recipients transplanted in recent years. Kidney Int 2001; 59: 732–737.

    Article  CAS  PubMed  Google Scholar 

  30. Hjelmesaeth J, Asberg A, Muller F, Hartmann A, Jenssen T . New-onset posttransplantation diabetes mellitus: insulin resistance or insulinopenia? Impact of immunosuppressive drugs, cytomegalovirus and hepatitis C virus infection. Curr Diabetes Rev 2005; 1: 1–10.

    Article  CAS  PubMed  Google Scholar 

  31. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008; 57: 945–957.

    Article  CAS  PubMed  Google Scholar 

  32. Rodrigo E, Fernandez-Fresnedo G, Valero R, Ruiz JC, Pinera C, Palomar R et al. New-onset diabetes after kidney transplantation: risk factors. J Am Soc Nephrol 2006; 17 (12 Suppl 3): S291–S295.

    Article  PubMed  Google Scholar 

  33. Veroux M, Corona D, Giuffrida G, Gagliano M, Sorbello M, Virgilio C et al. New-onset diabetes mellitus after kidney transplantation: the role of immunosuppression. Transplant Proc 2008; 40: 1885–1887.

    Article  CAS  PubMed  Google Scholar 

  34. Shimodahira M, Fujimoto S, Mukai E, Nakamura Y, Nishi Y, Sasaki M et al. Rapamycin impairs metabolism-secretion coupling in rat pancreatic islets by suppressing carbohydrate metabolism. J Endocrinol 2010; 204: 37–46.

    Article  CAS  PubMed  Google Scholar 

  35. Sulanc E, Lane JT, Puumala SE, Groggel GC, Wrenshall LE, Stevens RB . New-onset diabetes after kidney transplantation: an application of 2003 International Guidelines. Transplantation 2005; 80: 945–952.

    Article  PubMed  Google Scholar 

  36. Kasiske BL, Snyder JJ, Gilbertson D, Matas AJ . Diabetes mellitus after kidney transplantation in the United States. Am J Transplant 2003; 3: 178–185.

    Article  PubMed  Google Scholar 

  37. International HapMap Consortium. The International HapMap Project. Nature 2003; 426: 789–796.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Fabrice Chimienti (Mellitech) for the ZnT-8-R325-EGFP construct, to Dr Claes Wollheim (University of Geneva) for the INS-1E cells and to Dr Young-Jin Cho (Catholic University, Korea) for the DSCR1-CT construct. We thank Dr Sang Sun Yoon for reading the manuscript. This study was supported by the Korea Science and Engineering Foundation (KOSEF) funded by the Korean Government (MEST) (2010-0001665) (to CH Kim), by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2009-0074746) (to CH Kim), by Korea Research Foundation Grant KRF-2008-331-E00118 (to ES Kang), funded by the Korean Government (MOEHRD Basic Research Promotion Fund) and by a grant from the Korean Diabetes Association (2007) (to ES Kang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H C Lee or C H Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, I., Kang, E., Yim, Y. et al. A low-risk ZnT-8 allele (W325) for post-transplantation diabetes mellitus is protective against cyclosporin A-induced impairment of insulin secretion. Pharmacogenomics J 11, 191–198 (2011). https://doi.org/10.1038/tpj.2010.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.22

Keywords

This article is cited by

Search

Quick links