Z Gastroenterol 2007; 45(1): 35-41
DOI: 10.1055/s-2006-927368
Übersicht

© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York

Lipid Metabolism in the Liver

Fettmetabolismus in der LeberA. Canbay1 , L. Bechmann1 , G. Gerken1
  • 1Division of Gastroenterology and Hepatology, Department of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
Further Information

Publication History

Manuskript eingetroffen: 25.10.2006

Manuskript akzeptiert: 4.12.2006

Publication Date:
19 January 2007 (online)

Zusammenfassung

Als zentrales Stoffwechselorgan nimmt die Leber eine Schlüsselrolle bei der Metabolisierung hochkalorischer, insbesondere fettreicher Ernährung ein. Im Zusammenspiel mit dem Gastrointestinaltrakt, dem Fett- und Muskelgewebe und anderen Organsystemen ist die Leber entscheidend am Fettmetabolismus beteiligt. Durch Aktivierung von Transkriptionsfaktoren wie dem „carbohydrate responsive element binding protein (ChREBP)”, „sterol response element binding protein-1c (SREBP-1c)” oder der „forkhead box 01 (Fox01)” wird die Fettsäuresynthese gesteigert. Die Translokation von freien Fettsäuren wird über bestimmte Fetttransportproteine wie dem „fatty acid transport proteins (FATP)”, der „fatty acid translocase (FAT/CD36)”, Caveolin-1 und dem „fatty acid binding protein (FABP)” vermittelt. Bei Störungen des Fettmetabolismus oder bei übermäßigem Fettangebot kommt es häufig zu Fettablagerungen in Form von Lipidtröpfchen innerhalb der Hepatozyten (nichtalkoholische Fettlebererkrankung; alkoholische Steatohepatitis, akute Schwangerschaftsfettleber, Hepatitis C). Neuere Daten belegen interessanterweise, dass die Fettablagerung in den Hepatozyten für die Leberregenration essenziell ist. Hieraus ergibt sich zunehmend die Erkenntnis, dass die Steatosis nicht ausschließlich das Resultat einer Stoffwechselstörung ist. Vielmehr scheinen bereits kleinste Veränderungen in der β-Oxidation, bei Transportproteinen und/oder den Signalwegen eine Steatosis zu bedingen und das Fortschreiten der o. a. Lebererkrankungen voranzutreiben. Durch neue experimentelle Erkenntnisse über die Mechanismen der Leberverfettung ergeben sich potenzielle neue therapeutische Optionen.

Abstract

As a key metabolic organ, the liver is central to the imbalance of high-caloric diets, and particularly dietary fat consumption, in the industrialized countries and their association with the increasing prevalence of morbid obesity. By interacting with the intestinal tract and adipose tissue, the liver plays a key role in various aspects of lipid metabolism. Increasing activation of transcription factors, such as carbohydrate responsive element binding protein (ChREBP), sterol response element binding protein-1c (SREBP-1c), or forkhead box 01 (Fox01), may contribute to fatty acid synthesis. Their translocation occurs via fatty acid transporters such as fatty acid transport proteins (FATP), fatty acid translocase (FAT/CD36), caveolin-1 and fatty acid binding protein (FABP). Eventually, the accumulation of fat in the form of lipid droplets within the hepatocytes results in hepatic steatosis which, indeed, is a hallmark of liver diseases such as non-alcoholic fatty liver disease, alcoholic fatty liver, acute fatty liver in pregnancy, and hepatitis C. In contrast, lipid accumulation within hepatocytes during liver regeneration is essential. It is thus now becoming clear that steatosis is not only a mere consequence of metabolic imbalance, but that it is also a result of discrete alterations in the β-oxidation, transport mechanisms, and signaling pathways involved in the synthesis, systemic traffic modalities, and cellular effects of fatty acids. Such a novel insight offers potential options for improved treatment.

References

  • 1 Angulo P. Non-alcoholic fatty liver disease.  N Engl J Med. 2002;  346 1221-1231
  • 2 Kopelman P G. Obesity as a medical problem.  Nature. 2000;  404 635-643
  • 3 Bray G A, Nielsen S J, Popkin B M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity.  Am J Clin Nutr. 2004;  79 537-543
  • 4 Bray G A. How do we get fat? An epidemiologic and metabolic approach.  Clin Dermatol. 2004;  22 281-288
  • 5 Clarke S D. Non-alcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription.  Am J Physiol Gastrointest Liver Physiol. 2001;  281 G865-G869
  • 6 Timlin M T, Barrows B R, Parks E J. Increased dietary substrate delivery alters hepatic fatty acid recycling in healthy men.  Diabetes. 2005;  54 2694-2701
  • 7 Reddy J K, Rao M S. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G852-G858
  • 8 Bradbury M W, Berk P D. Lipid metabolism in hepatic steatosis.  Clin Liver Dis. 2004;  8 639-671, xi
  • 9 Pohl J, Ring A, Ehehalt R. et al . New concepts of cellular fatty acid uptake: role of fatty acid transport proteins and of caveolae.  Proc Nutr Soc. 2004;  63 259-262
  • 10 Merkel M, Eckel R H, Goldberg I J. Lipoprotein lipase: genetics, lipid uptake, and regulation.  J Lipid Res. 2002;  43 1997-2006
  • 11 Heeren J, Niemeier A, Merkel M. et al . Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo.  J Mol Med. 2002;  80 576-584
  • 12 Pohl J, Ring A, Hermann T. et al . Role of FATP in parenchymal cell fatty acid uptake.  Biochim Biophys Acta. 2004;  1686 1-6
  • 13 Hubbard B, Doege H, Punreddy S. et al . Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity.  Gastroenterology. 2006;  130 1259-1269
  • 14 Begriche K, Igoudjil A, Pessayre D. et al . Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it.  Mitochondrion. 2006;  6 1-28
  • 15 Ehehalt R, Fullekrug J, Pohl J. et al . Translocation of long chain fatty acids across the plasma membrane - lipid rafts and fatty acid transport proteins.  Mol Cell Biochem. 2006;  284 135-140
  • 16 Goldberg I J, Ginsberg H N. Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease.  Gastroenterology. 2006;  130 1343-1346
  • 17 Frohnert B I, Bernlohr D A. Regulation of fatty acid transporters in mammalian cells.  Prog Lipid Res. 2000;  39 83-107
  • 18 Stahl A, Gimeno R E, Tartaglia L A. et al . Fatty acid transport proteins: a current view of a growing family.  Trends Endocrinol Metab. 2001;  12 266-273
  • 19 Tennyson G E, Sabatos C A, Higuchi K. et al . Expression of apolipoprotein B mRNAs encoding higher- and lower-molecular weight isoproteins in rat liver and intestine.  Proc Natl Acad Sci USA. 1989;  86 500-504
  • 20 Lavoie J M, Gauthier M S. Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise.  Cell Mol Life Sci. 2006;  63 1393-1409
  • 21 Bradbury M W. Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G194-G198
  • 22 Donnelly K L, Smith C I, Schwarzenberg S J. et al . Sources of fatty acids stored in liver and secreted via lipoproteins in patients with non-alcoholic fatty liver disease.  J Clin Invest. 2005;  115 1343-1351
  • 23 Miller J P. Serum triglycerides, the liver and the pancreas.  Curr Opin Lipidol. 2000;  11 377-382
  • 24 Feldstein A, Canbay A, Guicciardi M E. et al . Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice.  J Hepatol. 2003;  39 978-983
  • 25 Feldstein A E, Werneburg N W, Canbay A. et al . Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway.  Hepatology. 2004;  40 185-194
  • 26 Canbay A, Gieseler R K, Gores G J. et al . The relationship between apoptosis and non-alcoholic fatty liver disease: an evolutionary cornerstone turned pathogenic.  Z Gastroenterol. 2005;  43 211-217
  • 27 Canbay A, Chen S Y, Gieseler R K. et al . Overweight patients are more susceptible for acute liver failure.  Hepatogastroenterology. 2005;  52 1516-1520
  • 28 Ravikumar B, Carey P E, Snaar J E. et al . Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes.  Am J Physiol Endocrinol Metab. 2005;  288 E789-E797
  • 29 Harmon C M, Abumrad N A. Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids.  J Membr Biol. 1993;  133 43-49
  • 30 Bonen A, Parolin M L, Steinberg G R. et al . Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36.  Faseb J. 2004;  18 1144-1146
  • 31 Bonen A, Campbell S E, Benton C R. et al . Regulation of fatty acid transport by fatty acid translocase/CD36.  Proc Nutr Soc. 2004;  63 245-249
  • 32 Gavrilova O, Haluzik M, Matsusue K. et al . Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass.  J Biol Chem. 2003;  278 34 268-34 276
  • 33 Daniel E E, El-Yazbi A, Cho W J. Caveolae and calcium handling, a review and a hypothesis.  J Cell Mol Med. 2006;  10 444-529
  • 34 Fernandez M A, Albor C, Ingelmo-Torres M. et al . Caveolin-1 is essential for liver regeneration.  Science. 2006;  313 1628-1632
  • 35 Pol A, Martin S, Fernandez M A. et al . Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant.  Mol Biol Cell. 2004;  15 99-110
  • 36 Tamura S, Shimomura I. Contribution of adipose tissue and de novo lipogenesis to non-alcoholic fatty liver disease.  J Clin Invest. 2005;  115 1139-1142
  • 37 Fromenty B, Robin M A, Igoudjil A. et al . The ins and outs of mitochondrial dysfunction in NASH.  Diabetes Metab. 2004;  30 121-138
  • 38 Hashimoto T, Cook W S, Qi C. et al . Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting.  J Biol Chem. 2000;  275 28 918-28 928
  • 39 Ip E, Farrell G C, Robertson G. et al . Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice.  Hepatology. 2003;  38 123-132
  • 40 Savage D B, Choi C S, Samuel V T. et al . Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2.  J Clin Invest. 2006;  116 817-824
  • 41 McGarry J D, Foster D W. Effects of exogenous fatty acid concentration on glucagon-induced changes in hepatic fatty acid metabolism.  Diabetes. 1980;  29 236-240
  • 42 Dentin R, Pegorier J P, Benhamed F. et al . Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression.  J Biol Chem. 2004;  279 20 314-20 326
  • 43 Postic C, Dentin R, Girard J. Role of the liver in the control of carbohydrate and lipid homeostasis.  Diabetes Metab. 2004;  30 398-408
  • 44 Jamerson P A. The association between acute fatty liver of pregnancy and fatty acid oxidation disorders.  J Obstet Gynecol Neonatal Nurs. 2005;  34 87-92
  • 45 Okuda M, Li K, Beard M R. et al . Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein.  Gastroenterology. 2002;  122 366-375
  • 46 Yamaguchi A, Tazuma S, Nishioka T. et al . Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver.  Dig Dis Sci. 2005;  50 1361-1371
  • 47 Liao Y, Shikapwashya O N, Shteyer E. et al . Delayed hepatocellular mitotic progression and impaired liver regeneration in early growth response-1-deficient mice.  J Biol Chem. 2004;  279 43 107-43 116
  • 48 Farrell G C. Probing Prometheus: fat fueling the fire?.  Hepatology. 2004;  40 1252-1255
  • 49 Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells.  Hepatology. 2004;  39 1477-1487
  • 50 Brasaemle D L. Cell biology. A metabolic push to proliferate.  Science. 2006;  313 1581-1582
  • 51 Shteyer E, Liao Y, Muglia L J. et al . Disruption of hepatic adipogenesis is associated with impaired liver regeneration in mice.  Hepatology. 2004;  40 1322-1332
  • 52 Michalopoulos G, Cianciulli H D, Novotny A R. et al . Liver regeneration studies with rat hepatocytes in primary culture.  Cancer Res. 1982;  42 4673-4682
  • 53 Kuhajda F P, Jenner K, Wood F D. et al . Fatty acid synthesis: a potential selective target for antineoplastic therapy.  Proc Natl Acad Sci USA. 1994;  91 6379-6383

Ali Canbay, MD

Division of Gastroenterology and Hepatology, Department of Medicine, University Hospital, University of Duisburg-Essen

Hufelandstr. 55

45122 Essen

Germany

Phone: ++49/2 01/7 23 36 11

Fax: ++49/2 01/7 23 59 70

Email: ali.Canbay@uni-due.de

    >