1932

Abstract

The Janus kinase (JAK)–signal transducer of activators of transcription (STAT) pathway is now recognized as an evolutionarily conserved signaling pathway employed by diverse cytokines, interferons, growth factors, and related molecules. This pathway provides an elegant and remarkably straightforward mechanism whereby extracellular factors control gene expression. It thus serves as a fundamental paradigm for how cells sense environmental cues and interpret these signals to regulate cell growth and differentiation. Genetic mutations and polymorphisms are functionally relevant to a variety of human diseases, especially cancer and immune-related conditions. The clinical relevance of the pathway has been confirmed by the emergence of a new class of therapeutics that targets JAKs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-051113-024537
2015-01-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/med/66/1/annurev-med-051113-024537.html?itemId=/content/journals/10.1146/annurev-med-051113-024537&mimeType=html&fmt=ahah

Literature Cited

  1. O'Shea JJ, Holland SM, Staudt LM. 1.  2013. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 368:161–70 [Google Scholar]
  2. Hacein-Bey-Abina S, Le Deist F, Carlier F. 2.  et al. 2002. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med. 346:1185–93 [Google Scholar]
  3. Rivat C, Santilli G, Gaspar HB, Thrasher AJ. 3.  2012. Gene therapy for primary immunodeficiencies. Hum. Gene Ther. 23:668–75 [Google Scholar]
  4. Hacein-Bey-Abina S, von Kalle C, Schmidt M. 4.  et al. 2003. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348:255–56 [Google Scholar]
  5. Minegishi Y, Saito M, Tsuchiya S. 5.  et al. 2007. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–62 [Google Scholar]
  6. Holland SM, DeLeo FR, Elloumi HZ. 6.  et al. 2007. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357:1608–19 [Google Scholar]
  7. Casanova JL, Holland SM, Notarangelo LD. 7.  2012. Inborn errors of human JAKs and STATs. Immunity 36:515–28 [Google Scholar]
  8. Miossec P, Kolls JK. 8.  2012. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11:763–76 [Google Scholar]
  9. Durant L, Watford WT, Ramos HL. 9.  et al. 2010. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32:605–15 [Google Scholar]
  10. Ciofani M, Madar A, Galan C. 10.  et al. 2012. A validated regulatory network for Th17 cell specification. Cell 151:289–303 [Google Scholar]
  11. Sonnenberg GF, Fouser LA, Artis D. 11.  2011. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12:383–90 [Google Scholar]
  12. Mogensen TH.12.  2013. STAT3 and the hyper-IgE syndrome: clinical presentation, genetic origin, pathogenesis, novel findings and remaining uncertainties. JAKSTAT 2:e23435 [Google Scholar]
  13. Siegel AM, Heimall J, Freeman AF. 13.  et al. 2011. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35:806–18 [Google Scholar]
  14. Steward-Tharp SM, Laurence A, Kanno Y. 14.  et al. 2014. A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood 123:2978–87 [Google Scholar]
  15. Uzel G, Sampaio EP, Lawrence MG. 15.  et al. 2013. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J. Allergy Clin. Immunol. 131:1611–23 [Google Scholar]
  16. Minegishi Y, Saito M, Morio T. 16.  et al. 2006. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25:745–55 [Google Scholar]
  17. Kilic SS, Hacimustafaoglu M, Boisson-Dupuis S. 17.  et al. 2012. A patient with tyrosine kinase 2 deficiency without hyper-IgE syndrome. J. Pediatr. 160:1055–57 [Google Scholar]
  18. Hambleton S, Goodbourn S, Young DF. 18.  et al. 2013. STAT2 deficiency and susceptibility to viral illness in humans. Proc. Natl. Acad. Sci. USA 110:3053–58 [Google Scholar]
  19. Leonard WJ, O'Shea JJ. 19.  1998. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16:293–322 [Google Scholar]
  20. Cohen AC, Nadeau KC, Tu W. 20.  et al. 2006. Cutting edge: decreased accumulation and regulatory function of CD4+CD25high T cells in human STAT5b deficiency. J. Immunol. 177:2770–74 [Google Scholar]
  21. Semple JW.21.  2008. ITP three R's: regulation, routing, rituximab. Blood 112:927–28 [Google Scholar]
  22. Hand TW, Cui W, Jung YW. 22.  et al. 2010. Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proc. Natl. Acad. Sci. USA 107:16601–6 [Google Scholar]
  23. Levine RL, Gilliland DG. 23.  2008. Myeloproliferative disorders. Blood 112:2190–98 [Google Scholar]
  24. Spivak JL.24.  2010. Narrative review: thrombocytosis, polycythemia vera, and JAK2 mutations: the phenotypic mimicry of chronic myeloproliferation. Ann. Intern. Med. 152:300–6 [Google Scholar]
  25. Ungureanu D, Wu J, Pekkala T. 25.  et al. 2011. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat. Struct. Mol. Biol. 18:971–76 [Google Scholar]
  26. Bandaranayake RM, Ungureanu D, Shan Y. 26.  et al. 2012. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat. Struct. Mol. Biol. 19:754–59 [Google Scholar]
  27. Zhang Y, Kolesar JM. 27.  2011. Eltrombopag: an oral thrombopoietin receptor agonist for the treatment of idiopathic thrombocytopenic purpura. Clin. Ther. 33:1560–76 [Google Scholar]
  28. Tefferi A.28.  2008. JAK and MPL mutations in myeloid malignancies. Leuk. Lymphoma 49:388–97 [Google Scholar]
  29. Scott LM.29.  2011. The JAK2 exon 12 mutations: a comprehensive review. Am. J. Hematol. 86:668–76 [Google Scholar]
  30. Nielsen C, Birgens HS, Nordestgaard BG. 30.  et al. 2011. The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica 96:450–53 [Google Scholar]
  31. Xiang Z, Zhao Y, Mitaksov V. 31.  et al. 2008. Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Blood 111:4809–12 [Google Scholar]
  32. Sakaguchi H, Okuno Y, Muramatsu H. 32.  et al. 2013. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat. Genet. 45:937–41 [Google Scholar]
  33. Yu H, Pardoll D, Jove R. 33.  2009. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9:798–809 [Google Scholar]
  34. Song JI, Grandis JR. 34.  2000. STAT signaling in head and neck cancer. Oncogene 19:2489–95 [Google Scholar]
  35. Kryczek I, Lin Y, Nagarsheth N. 35.  et al. 2014. IL-22+CD4+ T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40772–84
  36. Lam LT, Wright G, Davis RE. 36.  et al. 2008. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-κB pathways in subtypes of diffuse large B-cell lymphoma. Blood 111:3701–13 [Google Scholar]
  37. Koskela HL, Eldfors S, Ellonen P. 37.  et al. 2012. Somatic STAT3 mutations in large granular lymphocytic leukemia. N. Engl. J. Med. 366:1905–13 [Google Scholar]
  38. Jerez A, Clemente MJ, Makishima H. 38.  et al. 2012. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 120:3048–57 [Google Scholar]
  39. Jerez A, Clemente MJ, Makishima H. 39.  et al. 2013. STAT3 mutations indicate the presence of subclinical T-cell clones in a subset of aplastic anemia and myelodysplastic syndrome patients. Blood 122:2453–59 [Google Scholar]
  40. Ishida F, Matsuda K, Sekiguchi N. 40.  et al. 2014. STAT3 gene mutations and their association with pure red cell aplasia in large granular lymphocyte leukemia. Cancer Sci. 105:342–46 [Google Scholar]
  41. Rajala HL, Eldfors S, Kuusanmaki H. 41.  et al. 2013. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood 121:4541–50 [Google Scholar]
  42. Nelson EA, Walker SR, Weisberg E. 42.  et al. 2011. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 117:3421–29 [Google Scholar]
  43. Dunn GP, Koebel CM, Schreiber RD. 43.  2006. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6:836–48 [Google Scholar]
  44. Chan SR, Rickert CG, Vermi W. 44.  et al. 2014. Dysregulated STAT1-SOCS1 control of JAK2 promotes mammary luminal progenitor cell survival and drives ERα+ tumorigenesis. Cell Death Differ. 21:234–46 [Google Scholar]
  45. Chen E, Beer PA, Godfrey AL. 45.  et al. 2010. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell 18:524–35 [Google Scholar]
  46. Butterbach K, Beckmann L, de Sanjose S. 46.  et al. 2011. Association of JAK-STAT pathway related genes with lymphoma risk: results of a European case-control study (EpiLymph). Br. J. Haematol. 153:318–33 [Google Scholar]
  47. Ellinghaus D, Ellinghaus E, Nair RP. 47.  et al. 2012. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am. J. Hum. Genet. 90:636–47 [Google Scholar]
  48. Remmers EF, Plenge RM, Lee AT. 48.  et al. 2007. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357:977–86 [Google Scholar]
  49. Duetsch G, Illig T, Loesgen S. 49.  et al. 2002. STAT6 as an asthma candidate gene: polymorphism-screening, association and haplotype analysis in a Caucasian sib-pair study. Hum. Mol. Genet. 11:613–21 [Google Scholar]
  50. Macchi P, Villa A, Giliani S. 50.  et al. 1995. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377:65–68 [Google Scholar]
  51. Russell SM, Tayebi N, Nakajima H. 51.  et al. 1995. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270:797–800 [Google Scholar]
  52. Riese RJ, Krishnaswami S, Kremer J. 52.  2010. Inhibition of JAK kinases in patients with rheumatoid arthritis: scientific rationale and clinical outcomes. Best Pract. Res. Clin. Rheumatol. 24:513–26 [Google Scholar]
  53. Clark JD, Flanagan ME, Telliez J-B. 53.  2014. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 575023–38
  54. Kudlacz E, Perry B, Sawyer P. 54.  et al. 2004. The novel JAK-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am. J. Transpl. 4:51–57 [Google Scholar]
  55. Kremer JM, Bloom BJ, Breedveld FC. 55.  et al. 2009. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum. 60:1895–905 [Google Scholar]
  56. Tanaka Y, Suzuki M, Nakamura H. 56.  et al. 2011. Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res. (Hoboken) 63:1150–58 [Google Scholar]
  57. Kremer JM, Cohen S, Wilkinson BE. 57.  et al. 2012. A phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background methotrexate in patients with active rheumatoid arthritis and an inadequate response to methotrexate alone. Arthritis Rheum. 64:970–81 [Google Scholar]
  58. Fleischmann R, Cutolo M, Genovese MC. 58.  et al. 2012. Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs. Arthritis Rheum. 64:617–29 [Google Scholar]
  59. Burmester GR, Blanco R, Charles-Schoeman C. 59.  et al. 2013. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381:451–60 [Google Scholar]
  60. van der Heijde D, Tanaka Y, Fleischmann R. 60.  et al. 2013. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum. 65:559–70 [Google Scholar]
  61. Lee EB, Fleischmann R, Hall S. 61.  et al. 2014. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370:2377–86 [Google Scholar]
  62. Vincenti F, Tedesco Silva H, Busque S. 62.  et al. 2012. Randomized phase 2b trial of tofacitinib (CP-690,550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. Am. J. Transpl. 12:2446–56 [Google Scholar]
  63. Liew SH, Nichols KK, Klamerus KJ. 63.  et al. 2012. Tofacitinib (CP-690,550), a Janus kinase inhibitor for dry eye disease: results from a phase 1/2 trial. Ophthalmology 119:1328–35 [Google Scholar]
  64. Papp KA, Menter A, Strober B. 64.  et al. 2012. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a phase 2b randomized placebo-controlled dose-ranging study. Br. J. Dermatol. 167:668–77 [Google Scholar]
  65. Strober B, Buonanno M, Clark JD. 65.  et al. 2013. Effect of tofacitinib, a Janus kinase inhibitor, on haematological parameters during 12 weeks of psoriasis treatment. Br. J. Dermatol. 169:992–99 [Google Scholar]
  66. Ports WC, Khan S, Lan S. 66.  et al. 2013. A randomized phase 2a efficacy and safety trial of the topical Janus kinase inhibitor tofacitinib in the treatment of chronic plaque psoriasis. Br. J. Dermatol. 169:137–45 [Google Scholar]
  67. Mamolo C, Harness J, Tan H, Menter A. 67.  2013. Tofacitinib (CP-690,550), an oral Janus kinase inhibitor, improves patient-reported outcomes in a phase 2b, randomized, double-blind, placebo-controlled study in patients with moderate-to-severe psoriasis. J. Eur. Acad. Dermatol. Venereol. 28:192–203 [Google Scholar]
  68. Menter A, Papp KA, Tan H. 68.  et al. 2014. Efficacy of tofacitinib, an oral Janus kinase inhibitor, on clinical signs of moderate-to-severe plaque psoriasis in different body regions. J. Drugs Dermatol. 13:252–56 [Google Scholar]
  69. Sandborn WJ, Ghosh S, Panes J. 69.  et al. 2012. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N. Engl. J. Med. 367:616–24 [Google Scholar]
  70. Sandborn WJ, Ghosh S, Panes J. 70.  et al. 2014. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn's disease. Clin. Gastroenterol. Hepatol. 12:1485–93 [Google Scholar]
  71. Craiglow BG, King BA. 71.  2014. Killing two birds with one stone: oral tofacitinib reverses alopecia universalis in a patient with plaque psoriasis. J. Invest. Dermatol. 1342988–90
  72. Xing L, Dai Z, Jabbari A. 72.  et al. 2014. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 20:1043–49 [Google Scholar]
  73. Fleischmann R, Kremer J, Cush J. 73.  et al. 2012. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367:495–507 [Google Scholar]
  74. Kremer JM, Li Z-G, Hall S. 74.  et al. 2011. Tofacitinib (CP-690,550), an oral JAK inhibitor, in combination with traditional DMARDs: phase 3 study in patients with active rheumatoid arthritis with inadequate response to DMARDs. Ann. Rheum. Dis. 70:170 [Google Scholar]
  75. van Vollenhoven RF, Fleischmann R, Cohen S. 75.  et al. 2012. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367:508–19 [Google Scholar]
  76. Lee EB, Fleischmann R, Hall S. 76.  2012. Radiographic, clinical and functional comparison of tofacitinib monotherapy versus methotrexate in methotrexate-naïve patients with rheumatoid arthritis. Arthritis Rheum. 64:S1049 [Google Scholar]
  77. He Y, Wong AY, Chan EW. 77.  et al. 2013. Efficacy and safety of tofacitinib in the treatment of rheumatoid arthritis: a systematic review and meta-analysis. BMC Musculoskelet. Disord. 14:298 [Google Scholar]
  78. Winthrop KL, Yamanaka H, Valdez H. 78.  et al. 2014. Herpes zoster and tofacitinib therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 662675–84
  79. Wollenhaupt J, Silverfield J, Lee EB. 79.  et al. 2014. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J. Rheumatol. 41:837–52 [Google Scholar]
  80. Cohen S, Radominski SC, Gomez-Reino JJ. 80.  et al. 2014. Analysis of infections and all-cause mortality in Phase II, III and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 662924–37
  81. Rao VU, Pavlov A, Klearman M. 81.  et al. 2012. Risk factors for major adverse cardiovascular events in rheumatoid arthritis patients treated with the interleukin-6 receptor inhibitor tocilizumab. J. Am. Coll. Cardiol. 59:E1648 [Google Scholar]
  82. Cosgrove SB, Wren JA, Cleaver DM. 82.  et al. 2013. A blinded, randomized, placebo-controlled trial of the efficacy and safety of the Janus kinase inhibitor oclacitinib (Apoquel®) in client-owned dogs with atopic dermatitis. Vet. Dermatol. 24:587–97, e141–42 [Google Scholar]
  83. Pardanani A, Gotlib K, Gupta V. 83.  et al. 2013. Update on the long-term efficacy and safety of momelotinib, a JAK1 and JAK2 inhibitor, for the treatment of myelofibrosis. Blood 122:108 [Google Scholar]
  84. Strand V, Suthoff E, Fleischmann R. 84.  et al. 2013. Effects of VX-509, an investigational oral selective Janus kinase 3 (JAK3) inhibitor, on patient-reported outcomes in a phase 2A study of patients with active rheumatoid arthritis. Arthritis Rheum. 65:S1004–S5 [Google Scholar]
  85. Tasset C, Harrison P, Van der Aa A. 85.  et al. 2013. The JAK1-selective inhibitor GLPG0634 is safe and rapidly reduces disease activity in patients with moderate to severe rheumatoid arthritis; results of a 4-week dose ranging study. Arthritis Rheum. 65:S1018 [Google Scholar]
  86. Vanhoutte F, Mazur M, Van der Aa A. 86.  et al. 2012. Selective JAK1 inhibition in the treatment of rheumatoid arthritis: proof of concept with GLPG0634. Arthritis Rheum. 64:S1051 [Google Scholar]
  87. Park J-S, Kwok S-K, Lim M-A. 87.  et al. 2014. STA-21, a promising STAT-3 inhibitor that reciprocally regulates Th17 and Treg cells, inhibits osteoclastogenesis in mice and humans and alleviates autoimmune inflammation in an experimental model of rheumatoid arthritis. Arthritis Rheumatol. 66:918–29 [Google Scholar]
  88. Koo MY, Park J, Lim JM. 88.  et al. 2014. Selective inhibition of the function of tyrosine-phosphorylated STAT3 with a phosphorylation site-specific intrabody. Proc. Natl. Acad. Sci. USA 111:6269–74 [Google Scholar]
/content/journals/10.1146/annurev-med-051113-024537
Loading
/content/journals/10.1146/annurev-med-051113-024537
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error