1932

Abstract

The quantity of neurotransmitter released into the synaptic cleft, the reliability with which it is released, and the response of the postsynaptic cell to that transmitter all contribute to the strength of a synaptic connection. The presynaptic nerve terminal is a major regulatory site for activity-dependent changes in synaptic function. Ionotropic receptors for the inhibitory amino acid GABA, expressed on the presynaptic terminals of crustacean motor axons and vertebrate sensory neurons, were the first well-defined mechanism for the heterosynaptic transmitter-mediated regulation of transmitter release. Recently, presynaptic ionotropic receptors for a large range of transmitters have been found to be widespread throughout the central and peripheral nervous systems. In this review, we first consider some general theoretical issues regarding whether and how presynaptic ionotropic receptors are important regulators of presynaptic function. We consider the criteria that should be met to identify a presynaptic ionotropic receptor and its regulatory function and review several examples of presynaptic receptors that meet at least some of those criteria. We summarize the classic studies of presynaptic inhibition mediated by GABA-gated Cl channels and then focus on presynaptic nicotinic ACh receptors and presynaptic glutamate receptors. Finally, we briefly discuss evidence for other types of presynaptic ionotropic receptors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.neuro.22.1.443
1999-03-01
2024-03-28
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.neuro.22.1.443
Loading
/content/journals/10.1146/annurev.neuro.22.1.443
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error