Skip to main content
Log in

Mu opioid receptor regulation and opiate responsiveness

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Opiate drugs such as morphine are well known for their ability to produce potent analgesia as well as such unwanted side effects as tolerance, physical dependence, respiratory suppression and constipation. Opiates act at opioid receptors, which belong to the family of G protein-coupled receptors. The mechanisms governing mu opioid receptor (μOR) regulation are of particular interest since morphine and other clinically important analgesics produce their pharmacological effects through this receptor. Here we review recent advances in understanding how opioid receptor regulation can impart differential agonist efficacy produced in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mansour A, Watson SJ, Akil H. Opioid receptors: Past, present and future.Trends Neurosci. 1995;18:69–70.

    Article  PubMed  CAS  Google Scholar 

  2. Kieffer BL. Opioids: First lessons from knockout mice.Trends Pharmacol Sci. 1999;20:19–26.

    Article  PubMed  CAS  Google Scholar 

  3. Kieffer BL. Gaveriaux-Ruff C. Exploring the opioid system by gene knockout.Prog Neurobiol. 2002;66:285–306.

    Article  PubMed  CAS  Google Scholar 

  4. Ferguson SS, Zhang J, Barak LS, Caron MG. Role of beta-arrestins in the intracellular trafficking of G-protein-coupled receptors.Adv Pharmacol. 1998;42:420–424.

    Article  PubMed  CAS  Google Scholar 

  5. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals.J Cell Sci. 2002;115:455–465.

    PubMed  CAS  Google Scholar 

  6. Perry SJ, Lefkowitz RJ. Arresting developments in heptahelical. receptor signaling and regulation.Trends Cell Biol. 2002;12:130–138.

    Article  PubMed  CAS  Google Scholar 

  7. Benovic JL, Kuhn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: Potential role of an analog of the retinal protein arrestin (48-kDa protein).Proc Natl Acad Sci USA. 1987;84:8879–8882.

    Article  PubMed  CAS  Google Scholar 

  8. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. Beta-Arrestin: A protein that regulates beta-adrenergic receptor. functions.Science. 1990;248:1547–1550.

    Article  PubMed  CAS  Google Scholar 

  9. Chavkin C, McLaughlin JP, Celver JP. Regulation of opioid receptor function by chronic agonist exposure: constitutive activity and desensitization.Mol Pharmacol. 2001;60:20–25.

    PubMed  CAS  Google Scholar 

  10. Connor M, Osborne PB, Christie MJ. Mu-opioid receptor desensitization: Is morphine different?.Br J Pharmacol. 2004;143:685–696.

    Article  PubMed  CAS  Google Scholar 

  11. Bohn LM, Gainetdinov RR, Caron MG. G protein-coupled receptor kinase/beta-arrestin systems and drugs of abuse: Psychostimulant and opiate studies in knockout mice.Neuromolecular Med. 2004;5:41–50.

    Article  PubMed  CAS  Google Scholar 

  12. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions.Annu Rev Neurosci. 2004;27:107–144.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang J, Ferguson SS, Barak LS, et al. Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness.Proc Natl Acad Sci USA. 1998;95:7157–7162.

    Article  PubMed  CAS  Google Scholar 

  14. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. Enhanced morphine analgesia in mice lacking beta-arrestin 2.Science. 1999;286:2495–2498.

    Article  PubMed  CAS  Google Scholar 

  15. Bohn LM, Lefkowitz RJ, Caron MG. Differential mechanisms of morphine antinociceptive tolerance revealed in beta-arrestin2 knock-out mice.J Neurosci. 2002;22:10494–10500.

    PubMed  CAS  Google Scholar 

  16. Boln LM, Gainetdinov RR, Sotnikova TD, et al. Enhanced rewarding properties of morphine, but not cocaine, in beta-arrestin2 knock-out mice.J Neurosci. 2003;23:10265–10273.

    Google Scholar 

  17. Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG. Mu-opioid receptor desensitization by beta-arrestin2 determines morphine tolerance but not dependence.Nature. 2000;408:720–723.

    Article  PubMed  CAS  Google Scholar 

  18. Noble F, Cox BM. Differential desensitization of mu- and delta-opioid receptors in selected neural pathways following chronic morphine treatment.Br J Pharmacol. 1996;117:161–169.

    PubMed  CAS  Google Scholar 

  19. Sim LJ, Selley DE, Dworkin SI, Childers SR. Effects of chronic morphine administration on mu opioid receptor-stimulated [35S]GTPgammaS autoradiography in rat brain.J Neurosci. 1996;16:2684–2692.

    PubMed  CAS  Google Scholar 

  20. Przewlock B, Sieja A, Starowicz K, Maj M, Bilecki W, Przewlocki R. Knockdown of spinal opioid receptors by antisense targeting beta-arrestin reduces morphine tolerance and allodynia in rat.Neurosci Lett. 2002;325:107–110.

    Article  Google Scholar 

  21. Raehal KM, Walker JKL, Bohn LM. Morphine side-effects in b-arrestin-2 knockout mice.J Pharmacol Exp Ther. 2005;314:1195–1201.

    Article  PubMed  CAS  Google Scholar 

  22. Luttrell LM, Ferguson SS, Daaka Y, et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes.Science. 1999;283:655–661.

    Article  PubMed  CAS  Google Scholar 

  23. Luttrell LM, Daaka Y, Lefkowitz RJ. Regulation of tyrosine kinase cascades by G-protein-coupled receptors.Curr Opin Cell Biol. 1999;11:177–183.

    Article  PubMed  CAS  Google Scholar 

  24. Ahn S, Maudsley S, Luttrell LM, Lefkowitz RJ, Daaka Y. Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling.J Biol Chem. 1999;274:1185–1188.

    Article  PubMed  CAS  Google Scholar 

  25. DeFea KA, Vaughn ZD, O’Bryan EM, Nishijima D, Dery O, Bunnett NW. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta-arrestin-dependent scaffolding complex.Proc Natl Acad Sci USA. 2000;97:11086–11091.

    Article  PubMed  CAS  Google Scholar 

  26. Miller WE, Maudsley S, Ahn S, Khan KD, Luttrell LM, Lefkowitz RJ. beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis.J Biol Chem. 2000;275:11312–11319.

    Article  PubMed  CAS  Google Scholar 

  27. Barlic J, Andrews JD, Kelvin AA, et al. Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI.Nat Immunol. 2000;1:227–233.

    Article  PubMed  CAS  Google Scholar 

  28. Imamura T, Huang J, Dalle S, et al. beta-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport.J Biol Chem. 2001;276:43663–43667.

    Article  PubMed  CAS  Google Scholar 

  29. DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW. beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2.J Cell Biol. 2000;148:1267–1281.

    Article  PubMed  CAS  Google Scholar 

  30. Luttrell LM, Roudabush FL, Choy EW, et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds.Proc Natl Acad Sci USA. 2001;98:2449–2454.

    Article  PubMed  CAS  Google Scholar 

  31. Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM. Beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation.J Biol Chem. 2002;277:9429–9436.

    Article  PubMed  CAS  Google Scholar 

  32. Tohgo A, Choy EW, Gesty-Palmer D, et al. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation.J Biol Chem. 2003;278:6258–6267.

    Article  PubMed  CAS  Google Scholar 

  33. McDonald PH, Chow CW, Miller WE, et al. Beta-arrestin2: A receptor-regulated MAPK scaffold for the activation of JNK3.Science. 2000;290:1574–1577.

    Article  PubMed  CAS  Google Scholar 

  34. Wang Q, Zhao J, Brady AE, et al. Spinophilin blocks arrestin actions in vitro and in vivo at G protein-coupled receptors.Science. 2004;304:1940–1944.

    Article  PubMed  CAS  Google Scholar 

  35. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin.Science. 2001;294:1307–1313.

    Article  PubMed  CAS  Google Scholar 

  36. Shenoy SK, Lefkowitz RJ. Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination.J Biol Chem. 2003;278:14498–14506.

    Article  PubMed  CAS  Google Scholar 

  37. Shenoy SK, Lefkowitz RJ. Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of 7TM receptor-signalosomes.J Biol Chem. 2005;280:15315–15324.

    Article  PubMed  CAS  Google Scholar 

  38. Cvejic S, Devi LA. Dimerization of the delta opioid receptor: Implication for a role in receptor internalization.J Biol Chem. 1997;272:26959–26964.

    Article  PubMed  CAS  Google Scholar 

  39. Jordan BA, Devi LA. G-protein-coupled receptor heterodimerization modulates receptor function.Nature. 1999;399:697–700.

    Article  PubMed  CAS  Google Scholar 

  40. Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia.Proc Natl Acad Sci USA. 2004;101:5135–5139.

    Article  PubMed  CAS  Google Scholar 

  41. Wang D, Sun X, Bohn LM, Sadee W. Opioid receptor homo- and hetero-dimerization in living cells by quantitative bioluminescence resonance energy transfer.Mol Pharmacol. 2005;67:2173–2184.

    Article  PubMed  CAS  Google Scholar 

  42. Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA. Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation.Proc Natl Acad Sci USA. 2001;98:343–348.

    Article  PubMed  CAS  Google Scholar 

  43. Pan YX, Bolan E, Pasternak GW. Dimerization of morphine and orphanin FQ/nociceptin receptors: Generation of a novel opioid receptor subtype.Biochem Biophys Res Commun. 2002;297:659–663.

    Article  PubMed  CAS  Google Scholar 

  44. Pfeiffer M, Koch T, Schroder H, et al. Homo- and heterodimerization of somatostatin receptor subtypes. Inactivation of sst(3) receptor function by heterodimerization with sst(2A).J Biol Chem. 2001;276:14027–14036.

    PubMed  CAS  Google Scholar 

  45. Pfeiffer M, Koch T, Schroder H, Laugsch M, Hollt V, Schulz S. Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization.J Biol Chem. 2002;277:19762–19772.

    Article  PubMed  CAS  Google Scholar 

  46. Pfeiffer M, Kirscht S, Stumm R, et al. Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization.J Biol Chem. 2003;278:51630–51637.

    Article  PubMed  CAS  Google Scholar 

  47. Yu Y, Zhang L, Yin X, Sun H, Uhl GR, Wang JB. Mu opioid receptor phosphorylation, desensitization, and ligand efficacy.J Biol Chem. 1997;272:28869–28874.

    Article  PubMed  CAS  Google Scholar 

  48. Sim-Selley LJ, Selley DE, Vogt LJ, Childers SR, Martin TJ. Chronic heroin self-administration desensitizes mu opioid receptor-activated G-proteins in specific regions of rat brain.J Neurosci. 2000;20:4555–4562.

    PubMed  CAS  Google Scholar 

  49. Yabaluri N, Medzihradsky F. Down-regulation of mu-opioid receptor by full but not partial agonists is independent of G protein coupling.Mol Pharmacol. 1997;52:896–902.

    PubMed  CAS  Google Scholar 

  50. Arden JR, Segredo V, Wang Z, Lameh J, Sadee W. Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged muopioid receptor expressed in HEK 293 cells.J Neurochem. 1995;65:1636–1645.

    Article  PubMed  CAS  Google Scholar 

  51. Keith DE, Murray SR, Zaki PA, et al. Morphine activates opioid receptors without causing their rapid internalization.J Biol Chem. 1996;271:19021–19024.

    Article  PubMed  CAS  Google Scholar 

  52. Sternini C, Spann M, Anton B, et al. Agonist-selective endocytosis of mu opioid receptor by neurons in vivo.Proc Natl Acad Sci USA. 1996;93:9241–9246.

    Article  PubMed  CAS  Google Scholar 

  53. Whistler JL, von Zastrow M. Morphine-activated opioid receptors elude desensitization by beta-arrestin.Proc Natl Acad Sci USA. 1998;95:9914–9919.

    Article  PubMed  CAS  Google Scholar 

  54. Bohn LM, Dykstra LA, Lefkowitz RJ, Caron MG, Barak LS. Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery.Mol Pharmacol. 2004;66:106–112.

    Article  PubMed  CAS  Google Scholar 

  55. Koch T, Widera A, Bartzsch K, et al. Receptor endocytosis counteracts the development of opioid tolerance.Mol Pharmacol. 2005;67:280–287.

    Article  PubMed  CAS  Google Scholar 

  56. Cheng ZJ, Yu QM, Wu YL, Ma L, Pei G. Selective interference of beta-arrestin 1 with kappa and delta but not mu opioid receptor/G protein coupling.J Biol Chem. 1998;273:24328–24333.

    Article  PubMed  CAS  Google Scholar 

  57. Gurevich EV, Benovic JL, Gurevich VV. Arrestin 2 expression selectively increases during neural differentiation.J Neurochem. 2004;91:1414–1416.

    Article  CAS  Google Scholar 

  58. Terwilliger RZ’, Ortiz J, Guitart X, Nestler EJ. Chronic morphine administration increases beta-adrenergic receptor kinase (beta ARK) levels in the rat locus coeruleus.J Neurochem. 1994;63:1983–1986.

    Article  PubMed  CAS  Google Scholar 

  59. Fan XL, Zhang JS, Zhang XQ, Yue W, Ma L. Differential regulation of beta-arrestin 1 and beta-arrestin 2 gene expression in rat brain by morphine.Neuroscience. 2003;117:383–389.

    Article  PubMed  CAS  Google Scholar 

  60. Hurle MA. Changes in the expression of G protein-coupled receptor kinases and beta-arrestin 2 in rat brain during opioid tolerance and supersensitivity.J Neurochem. 2001;77:486–492.

    Article  PubMed  CAS  Google Scholar 

  61. Diaz A, Pazos A, Florez J, Ayesta FJ, Santana V, Hurle MA. Regulation of mu-opioid receptors, G-protein-coupled receptor kinases and beta-arrestin 2 in the rat brain after chronic opioid receptor antagonism.Neuroscience. 2002;112:345–353.

    Article  PubMed  CAS  Google Scholar 

  62. Ferrer-Alcon M, La Harpe R, Garcia-Sevilla JA. Decreased immunodensities of micro-opioid receptors, receptor kinases GRK 2/6 and beta-arrestin-2 in postmortem brains of opiate addicts.Brain Res Mol Brain Res. 2004;121:114–122.

    Article  PubMed  CAS  Google Scholar 

  63. Haberstock-Debic H, Wein M, Barrot M, et al. Morphine acutely regulates opioid receptor trafficking selectively in dendrites of nucleus accumbens neurons.J Neurosci. 2003;23:4324–4332.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Bohn.

Additional information

Published: October 19, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raehal, K.M., Bohn, L.M. Mu opioid receptor regulation and opiate responsiveness. AAPS J 7, 60 (2005). https://doi.org/10.1208/aapsj070360

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070360

Keywords

Navigation