Skip to main content

Advertisement

Log in

CNS drug delivery: Opioid peptides and the blood-brain barrier

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Peptides are key regulators in cellular and intercellular physiological responses and possess enormous promise for the treatment of pathological conditions. Opioid peptide activity within the central nervous system (CNS) is of particular interest for the treatment of pain owing to the elevated potency of peptides and the centrally mediated actions of pain processes. Despite this potential, peptides have seen limited use as clinically viable drugs for the treatment of pain. Reasons for the limited use are primarily based in the physiochemical and biochemical nature of peptides. Numerous approaches have been devised in an attempt to improve peptide drug delivery to the brain, with variable results. This review describes different approaches to peptide design/modification and provides examples of the value of these strategies to CNS delivery of peptide drugs. The various modes of modification of therapeutic peptides may be amalgamated, creating more efficacious “hybrid” peptides, with synergistic delivery to the CNS. The ongoing development of these strategies provides promise that peptide drugs may be useful for the treatment of pain and other neurologically-based disease states in the future

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Crone C. The blood-brain barrier-facts and questions. In: Siesjo B, Sorensen S, eds.Ion Homeostasis of the Brain. Copenhagen: Munksgaard; 1971:52–62.

    Google Scholar 

  2. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain.J Cell Biol. 1969;40:648–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier.Annu Rev Neurosci. 1999;22:11–28.

    Article  CAS  PubMed  Google Scholar 

  4. Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier.Cell Mol Neurobiol. 2000;20:57–76.

    Article  CAS  PubMed  Google Scholar 

  5. Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier.J Pharm Sci. 2000;89:1371–1388.

    Article  CAS  PubMed  Google Scholar 

  6. Habgood MD, Begley DJ, Abbott NJ. Determinants of passive drug entry into the central nervous system.Cell Mol Neurobiol. 2000;20:231–253.

    Article  CAS  PubMed  Google Scholar 

  7. Vorbrodt AW. Ultrastructural cytochemistry of blood-brain barrier endothelia.Prog Histochem Cytochem. 1988;18:1–99.

    Article  CAS  PubMed  Google Scholar 

  8. Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in the brain and cerebral microvessels.Brain Res Brain Res Rev. 1991;16:65–82.

    Article  CAS  PubMed  Google Scholar 

  9. Brownlees J, Williams CH. Peptidases, peptides, and the mammalian blood-brain barrier.J Neurochem. 1993;60:793–803.

    Article  CAS  PubMed  Google Scholar 

  10. el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain.Cell Mol Biol. 1999;45:15–23.

    CAS  PubMed  Google Scholar 

  11. Pardridge WM.Peptide Drug Delivery to the Brain. New York: Raven Press Ltd; 1991.

    Google Scholar 

  12. Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP. Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability.Peptides. 2001;22:2329–2343.

    Article  CAS  PubMed  Google Scholar 

  13. Banks WA, Kastin AJ. Passage of peptides across the blood-brain barrier: pathophysiological perspectives.Life Sci. 1996;59:1923–1943.

    Article  CAS  PubMed  Google Scholar 

  14. Brightman MW, Hori M, Rapoport SI, Reese TS, Westergaard E. Osmotic opening of tight junctions in cerebral endothelium.J Comp Neurol. 1973;152:317–325.

    Article  CAS  PubMed  Google Scholar 

  15. Nagy Z, Szabo M, Huttner I. Blood-brain barrier im pairment by low pH buffer perfusion via the internal carotid artery in rat.Acta Neuropathol (Berl). 1985;68:160–163.

    Article  CAS  Google Scholar 

  16. Basch A, Fazekas IG. Increased permeability of the blood-brain barrier following experimental theraal injury of the skin. A fluorescent and electron microscopic study.Angiologica. 1970;7:357–364.

    CAS  PubMed  Google Scholar 

  17. Hirano A, Dembitzer HM, Becker NH, Levine S, Zimmerman HM. Fine structural alterations of the blood-brain barrier in experimental allergic encephalomyelitis.J Neuropathol Exp Neurol. 1970;29:432–440.

    Article  CAS  PubMed  Google Scholar 

  18. Muller DM, Pender MP, Greer JM. Blood-brain barrier disruption and lesion localisation in experimental autoimmune encephalomyelitis with predominant cerebellar and brainstem involvement.J Neuroimmunol. 2005;160:162–169.

    Article  CAS  PubMed  Google Scholar 

  19. Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination.J Pathol. 2003;201:319–327.

    Article  PubMed  Google Scholar 

  20. Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis.Brain Pathol. 2002;12:154–169.

    Article  PubMed  Google Scholar 

  21. Yang GY, Gong C, Qin Z, Liu XH, Lorris Betz A. Tumor necrosis factor alpha expression produces increased blood-brain barrier permeability following temporary focal cerebral ischemia in mice.Brain Res Mol Brain Res. 1999;69:135–143.

    Article  CAS  PubMed  Google Scholar 

  22. Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, Styles P. Interleukin-1 beta-induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study.J Neurosci. 2000;20:8153–8159.

    CAS  PubMed  Google Scholar 

  23. Gulati A, Dhawan KN, Shukla R, Srimal RC, Dhawan BN. Evidence for the involvement of histamine in the regulation of blood-brain barrier permeability.Pharmacol Res Commun. 1985;17:395–404.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma HS, Dey PK. Probable involvement of 5-hydroxytryptamine in increased permeability of blood-brain barrier under heat stress in young rats.Neuropharmacology. 1986;25:161–167.

    Article  CAS  PubMed  Google Scholar 

  25. Schurer L, Temesvari P, Wahl M, Unterberg A, Baethmann A. Blood-brain barrier permeability and vascular reactivity to bradykinin after pretreatment with dexamethasone.Acta Neuropathol (Berl). 1989;77:576–581.

    Article  CAS  Google Scholar 

  26. Guan JX, Sun SG, Cao XB, Chen ZB, Tong ET. Effect of thrombin on blood brain barrier permeability and its mechanism.Chim Med J (Engl). 2004;117:1677–1681.

    CAS  Google Scholar 

  27. Lee HS, Namkoong K, Kim DH, et al. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells.Microvasc Res. 2004;68:231–238.

    Article  CAS  PubMed  Google Scholar 

  28. Lo EH, Pan Y, Matsumoto K, Kowall NW. Blood-brain barrier disruption in experimental focal ischemia: comparison between in vivo MRI and immunocytochemistry.Magn Reson Imaging. 1994;12:403–411.

    Article  CAS  PubMed  Google Scholar 

  29. Fischer S, Wiesnet M, Marti HH, Renz D, Schaper W. Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived endothelial cells.J Cell Physiol. 2004;198:359–369.

    Article  CAS  PubMed  Google Scholar 

  30. Brown RC, Davis TP. Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial cells.Biochem Biophys Res Commun. 2005;327:1114–1123.

    Article  CAS  PubMed  Google Scholar 

  31. Struzynska L, Walski M, Gadamski R, Dabrowska-Bouta B, Rafalowska U. Lead-induced abnormalities in blood-brain barrier permeability in experimental chronic toxicity.Mol Chem Neuropathol. 1997;31:207–224.

    Article  CAS  PubMed  Google Scholar 

  32. Kim YS, Lee MH, Wisniewski HM. Aluminum induced reversible change in permeability of the blood-brain barrier to [14C]sucrose.Brain Res. 1986;377:286–291.

    Article  CAS  PubMed  Google Scholar 

  33. Yang CS, Chang CH, Tsai PJ, Chen WY, Tseng FG, Lo LW. Nanoparticle-based in vivo investigation on blood-brain barrier permeability following ischemia and reperfusion.Anal Chem. 2004;76:4465–4471.

    Article  CAS  PubMed  Google Scholar 

  34. Dobbin J, Crockard HA, Ross-Russell R. Transient blood-brain barrier permeability following profound temporary global ischaemia: an experimental study using 14C-AIB.J Cereb Blood Flow Metab. 1989;9:71–78.

    Article  CAS  PubMed  Google Scholar 

  35. Schirmacher A, Winters S, Fischer S, et al. Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood-brain barrier in vitro.Bioelectromagnetics. 2000;21:338–345.

    Article  CAS  PubMed  Google Scholar 

  36. Abbott NJ, Mendonca LL, Dolman DE. The blood-brain barrier in systemic lupus erythematosus.Lupus. 2003;12:908–915.

    Article  CAS  PubMed  Google Scholar 

  37. Hansson HA, Johansson BB. Induction of pinocytosis in cerebral vessels by acute hypertension and by hyperosmolar solutions.J Neurosci Res. 1980;5:183–190.

    Article  CAS  PubMed  Google Scholar 

  38. Nag S, Robertson DM, Dinsdale HB. Quantitative estimate of pinocytosis in experimental acute hypertension.Acta Neuropathol (Berl). 1979;46:107–116.

    Article  CAS  Google Scholar 

  39. Neubauer C, Phelan AM, Kues H, Lange DG. Microwave irradiation of rats at 2.45 GHz activates pinocytotic-like uptake of tracer by capillary endothelial cells of cerebral cortex.Bioelectromagnetics. 1990;11:261–268.

    Article  CAS  PubMed  Google Scholar 

  40. Petito CK. Early and late mechanisms of increased vascular permeability following experimental cerebral infarction.J Neuropathol Exp Neurol. 1979;38:222–234.

    Article  CAS  PubMed  Google Scholar 

  41. Cipolla MJ, Crete R, Vitullo L, Rix RD. Transcellular transport as a mechanism of blood-brain barrier disruption during stroke.Front Biosci. 2004;9:777–785.

    Article  CAS  PubMed  Google Scholar 

  42. Nitsch C, Goping G, Klatzo I. Pathophysiological aspects of blood-brain barrier permeability in epileptic seizures.Adv Exp Med Biol. 1986;203:175–189.

    Article  CAS  PubMed  Google Scholar 

  43. Lossinsky AS, Vorbrodt AW, Wisniewski HM. Ultracytochemical studies of vesicular and canalicular transport structures in the injured mammalian blood-brain barrier.Acta Neuropathol (Berl). 1983;61:239–245.

    Article  CAS  Google Scholar 

  44. Long DM. Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors.J Neurosurg. 1970;32:127–144.

    Article  CAS  PubMed  Google Scholar 

  45. Lossinsky AS, Vorbrodt AW, Wisniewski HM. Characterization of endothelial cell transport in the developing mouse blood-brain barrier.Dev Neurosci. 1986;8:61–75.

    Article  CAS  PubMed  Google Scholar 

  46. Engelhardt B. Development of the blood-brain barrier.Cell Tissue Res. 2003;314:119–129.

    Article  CAS  PubMed  Google Scholar 

  47. Horton JC, Hedley-Whyte ET. Protein movement across the blood-brain barrier in hypervolemia.Brain Res. 1979;169:610–614

    Article  CAS  PubMed  Google Scholar 

  48. Sharma HS, Dey PK. Impairment of blood-brain barrier (BBB) in rat by immobilization stress: role of serotonin (5-HT).Indian J Physiol Pharmacol. 1981;25:111–122.

    CAS  PubMed  Google Scholar 

  49. Wells LA. Alteration of the blood-brain barrier system by hypothermia: critical time period vs. critical temperature.Comp Biochem Physiol A. 1973;44:293–296.

    Article  CAS  PubMed  Google Scholar 

  50. Albert EN, Kerns JM. Reversible microwave effects on the blood-brain barrier.Brain Res. 1981;230:153–164.

    Article  CAS  PubMed  Google Scholar 

  51. Lanse SB, Lee JC, Jacobs EA, Brody H. Changes in the permeability of the blood-brain barrier under hyperbaric conditions.Aviat Space Environ Med. 1978;49:890–894.

    CAS  PubMed  Google Scholar 

  52. Sundstrom R, Muntzing K, Kalimo H, Sourander P. Changes in the integrity of the blood-brain barrier in suckling rats with low dose lead encephalopathy.Acta Neuropathol (Berl.) 1985;68:1–9.

    Article  CAS  Google Scholar 

  53. Kuwabara T, Yuasa T, Hidaka K, Igarashi H, Kaneko K, Miyatake T. The observation of blood-brain barrier of organic mercury poisoned rat: a Gd-DTPA enhanced magnetic resonance study.No To Shinkei. 1989;41:681–685.

    CAS  PubMed  Google Scholar 

  54. Sarmento A, Albino-Teixeira A, Azevedo I. Amitriptyline-induced morphological alterations of the rat blood-brain barrier.Eur J Pharmacol. 1990;176:69–74.

    Article  CAS  PubMed  Google Scholar 

  55. Quagliarello VJ, Long WJ, Scheld WM. Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation.J Clin Invest. 1986;77:1084–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tunkel AR, Rosser SW, Hansen EJ, Scheld WM. Blood-brain barrier alterations in bacterial meningitis: development of an in vitro model and observations on the effects of lipopolysaccharide.In Vitro Cell Dev Biol. 1991;27A:113–120.

    Article  CAS  PubMed  Google Scholar 

  57. Pozzilli C, Bernardi S, Mansi L, et al. Quantitative assessment of blood-brain barrier permeability in multiple sclerosis using 68-Ga-EDTA and positron emission tomography.J Neurol Neurosurg Psychiatry. 1988;51:1058–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wuerfel J, Bellmann-Strobl J, Brunecker P, et al. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study.Brain. 2004;127:111–119.

    Article  PubMed  Google Scholar 

  59. Joo F, Zoltan OT, Csillik B, Foldi M. Increased permeability of the blood-brain barrier in lymphostatic encephalopathy. An electron microscopic study.Angiologica. 1969;6:318–325.

    CAS  PubMed  Google Scholar 

  60. Pardridge WM, Crawford IL, Connor JD. Permeability changes in the blood-brain barrier induced by nortriptyline and chlorpromazine.Toxicol Appl Pharmacol. 1973;26:49–57.

    Article  CAS  PubMed  Google Scholar 

  61. Preston E, Foster DO. Evidence for pore-like opening of the blood-brain barrier following forebrain ischemia in rats.Brain Res. 1997;761:4–10.

    Article  CAS  PubMed  Google Scholar 

  62. Simpson IA, Appel NM, Hokari M, et al. Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited.J Neurochem. 1999;72:238–247.

    Article  CAS  PubMed  Google Scholar 

  63. Pardridge WM, Triguero D, Farrell CR. Downregulation of blood-brain barrier glucose transporter in experimental diabetes.Diabetes. 1990;39:1040–1044.

    Article  CAS  PubMed  Google Scholar 

  64. Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain.Nat Med. 2003;9:907–913.

    Article  CAS  PubMed  Google Scholar 

  65. Deane R, Wu Z, Sagare A, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms.Neuron. 2004;43:333–344.

    Article  CAS  PubMed  Google Scholar 

  66. Zlokovic BV. Neurovascular mechanisms of Alzheimer's neurodegeneration.Trends Neurosci. 2005;28:202–208.

    Article  CAS  PubMed  Google Scholar 

  67. Harata N, Iwasaki Y. The blood-brain barrier and selective vulnerability in experimental thiamine-deficiency encephalopathy in the mouse.Metab Brain Dis. 1996;11:55–69.

    Article  CAS  PubMed  Google Scholar 

  68. Gibson GE, Calingasan NY, Baker H, Gandy S, Sheu KF. Importance of vascular changes in selective neurodegeneration with thiamine deficiency.Ann N Y Acad Sci. 1997;826:516–519.

    Article  CAS  PubMed  Google Scholar 

  69. Banks WA. Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity.Curr Pharm Des. 2001;7:125–133.

    Article  CAS  PubMed  Google Scholar 

  70. Kastin AJ, Akerstrom V. Glucose and insulin increase the transport of leptin through the blood-brain barrier in normal mice but not in streptozotocin-diabetic mice.Neuroendocrinology. 2001;73: 237–242.

    Article  CAS  PubMed  Google Scholar 

  71. Pan W, Akerstrom V, Zhang J, Pejovic V, Kastin AJ. Modulation of feeding-related peptide/protein signals by the blood-brain barrier.J Neurochem. 2004;90:455–461.

    Article  CAS  PubMed  Google Scholar 

  72. Kang YS, Terasaki T, Tsuji A. Dysfunction of choline transport system through blood-brain barrier in stroke-prone spontaneously hypertensive rats.J Pharmacobiodyn. 1990;13:10–19.

    Article  CAS  PubMed  Google Scholar 

  73. Kroll RA, Neuwelt EA. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means.Neurosurgery. 1998;42:1083–1099.

    Article  CAS  PubMed  Google Scholar 

  74. Rapoport SI. Osmotic opening of the blood-brain barrier: principles. mechanism, and therapeutic applications.Cell Mol Neurobiol. 2000;20:217–230.

    Article  CAS  PubMed  Google Scholar 

  75. Alexander B, Li X, Benjamin IS, Segal MB, Sherwood R, Preston JE. A quantitative evaluation of the permeability of the blood brain barrier of portacaval shunted rats.Metab Brain Dis. 2000;15:93–103.

    Article  CAS  PubMed  Google Scholar 

  76. Emerich DF, Tracy MA, Ward KL, et al. Biocompatibility of poly (DL-lactide-co-glycolide) microspheres implanted into the brain.Cell Transplant. 1999;8:47–58.

    CAS  PubMed  Google Scholar 

  77. Benoit JP, Faisant N, Venier-Julienne MC, Menei P. Development of microspheres for neurological disorders: from basics to clinical applications.J Control Release. 2000;65:285–296.

    Article  CAS  PubMed  Google Scholar 

  78. Chikhale EG, Ng KY, Burton PS, Borchardt RT. Hydrogen bonding potential as a determinant of the in vitro and in situ blood-brain barrier permeability of peptides.Pharm Res. 1994;11:412–419.

    Article  CAS  PubMed  Google Scholar 

  79. Hansen DW Jr, Stapelfeld A, Savage MA, et al. Systemic analgesic activity and delta-opioid selectivity in [2,6- dimethyl-Tyr1, D-Pen2,D-Pen5] enkephalin.J Med Chem. 1992;35:684–687.

    Article  CAS  PubMed  Google Scholar 

  80. Witt KA, Slate CA, Egleton RD, et al. Assessment of stereoselectivity of trimethylphenylalanine analogues of delta-opioid [D-Pen(2),D-Pen(5)]-enkephalin.J Neurochem. 2000;75:424–435.

    Article  CAS  PubMed  Google Scholar 

  81. Weber SJ, Greene DL, Sharma SD, et al. Distribution and analgesia of [3H][D-Pen2,D-Pen5]enkephalin and two halogenated analogs after intravenous administration.J Pharmacol Exp Ther. 1991;259:1109–1117.

    CAS  PubMed  Google Scholar 

  82. Weber SJ, Abbruscato TJ, Brownson EA, et al. Assessment of an in vitro blood-brain barrier model using several [Met5]enkephalin opioid analogs.J Pharmacol Exp Ther. 1993;266:1649–1655.

    CAS  PubMed  Google Scholar 

  83. Gentry CL, Egleton RD, Gillespie T, et al. The effect of halogenation on blood-brain barrier permeability of a novel peptide drug.Peptides. 1999;20:1229–1238.

    Article  CAS  PubMed  Google Scholar 

  84. Abbruscato TJ, Williams SA, Misicka A, Lipkowski AW, Hruby VJ, Davis TP. Blood-to-central nervous system entry and stability of biphalin, a unique double-enkephalin analog, and its halogenated derivatives.J Pharmacol Exp Ther. 1996;276:1049–1057.

    CAS  PubMed  Google Scholar 

  85. Bradbury AF, Smyth DG. Modification of the N- and C-termini of bioactive peptides: amidation and acetylaion. In: Fricker LD, ed.Peptide Biosysthesis and Processing. Boca Raton: CRC Press; 1991:231–242.

    Google Scholar 

  86. Bak A, Gudmundsson OS, Friis GJ, Siahaan TJ, Borchardt RT. Acyloxyalkoxy-based cyclic prodrugs of opioid peptides: evaluation of the chemical and enzymatic stability as well as their transport properties across Caco-2 cell monolayers.Pharm Res. 1999;16:24–29.

    Article  CAS  PubMed  Google Scholar 

  87. Uchiyama T, Kotani A, Tatsuni H, et al. Development of novel lipophilic derivatives of DADLE (leucine enkephalin analogue): intestinal permeability characteristics of DADLE derivatives in rats.Pharm Res. 2000;17:1461–1467.

    Article  CAS  PubMed  Google Scholar 

  88. Bundgaard H, Moss J. Prodrugs of peptides. 6. Bioreversible derivatives of thyrotropin-releasing hormone (TRH) with increased lipophilicity and resistance to cleavage by the TRH-specific serum enzyme.Pharm Res. 1990;7:885–892.

    Article  CAS  PubMed  Google Scholar 

  89. Yamamoto A. Improvement of intestinal absorption of peptide and protein drugs by chemical modification with fatty acids.Nippon Rinsho. 1998;56:601–607.

    CAS  PubMed  Google Scholar 

  90. Asada H, Douen T, Waki M, et al. Absorption characteristics of chemically modified-insulin derivatives with various fatty acids in the small and large intestine.J Pharm Sci. 1995;84:682–687.

    Article  CAS  PubMed  Google Scholar 

  91. Audus KL, Chikhale PJ, Miller DW, Thompson SE, Borchardt RT. Brain uptake of drugs: The influence of chemical and biological factors.Advance in Drug Research. 1992;23:3–64.

    Google Scholar 

  92. Veber DF, Freidinger RM. The design of metabolically-stable peptide analogs.Trends Neurosci. 1985;8:392–396.

    Article  CAS  Google Scholar 

  93. Bewley TA, Li CH. Evidence for tertiary structure in aqueous solutions of human beta- endorphin as shown by difference absorption spectroscopy.Biochemistry. 1983;22:2671–2675.

    Article  CAS  PubMed  Google Scholar 

  94. Chaturvedi K, Shahrestanifar M, Howells RD. mu Opioid receptor: role for the amino terminus as a determinant of ligand binding affinity.Brain Res Mol Brain Res. 2000;76:64–72.

    Article  CAS  PubMed  Google Scholar 

  95. Roemer D, Pless J. Structure activity relationship of orally active enkephalin analogues as analgesics.Life Sci. 1979;24:621–624.

    Article  CAS  PubMed  Google Scholar 

  96. Uchiyama T, Kotani A, Kishida T, et al. Effects of various protease inhibitors on the stability and permeability of [D-Ala2,D-Leu5] enkephalin in the rat intestine: comparison with leucine enkephalin.J Pharm Sci. 1998;87:448–452.

    Article  CAS  PubMed  Google Scholar 

  97. Knipp GT, Vander Velde DG, Siahaan TJ, Borchardt RT. The effect of beta-turn structure on the passive diffusion of peptides across Caco-2 cell monolayers.Pharm Res. 1997;14:1332–1340.

    Article  CAS  PubMed  Google Scholar 

  98. Wang B, Nimkar K, Wang W, et al. Synthesis and evaluation of the physicochemical properties of esterase-sensitive cyclic prodrugs of opioid peptides using coumarinic acid and phenylpropionic acid linkers.J Pept Res. 1999;53:370–382.

    Article  CAS  PubMed  Google Scholar 

  99. Borchardt RT. Optimizing oral absorption of peptides using prodrug strategies.J Control Release. 1999;62:231–238.

    Article  CAS  PubMed  Google Scholar 

  100. Gudmundsson OS, Jois SD, Vander Velde DG, Siahaan TJ, Wang B, Borchardt RT. The effect of conformation on the membrane permeation of coumarinic acid- and phenylpropionic acid-based cyclic prodrugs of opioid peptides.J Pept Res. 1999;53:383–392.

    Article  CAS  PubMed  Google Scholar 

  101. Weber SJ, Greene DL, Hruby VJ, Yamamura HI, Porreca F, Davis TP. Whole body and brain distribution of [3H]cyclic [D-Pen2,D-Pen5] enkephalin after intraperitoneal, intravenous, oral and subcutaneous administration.J Pharmacol Exp Ther. 1992;263:1308–1316.

    CAS  PubMed  Google Scholar 

  102. Mosberg HI, Hurst R, Hruby VJ, et al. Cyclic penicillamine containing enkephalin analogs display profound delta receptor selectivities.Life Sci. 1983;33:447–450.

    Article  CAS  PubMed  Google Scholar 

  103. Knapp RJ, Sharma SD, Toth G, et al. [D-Pen2,4′-125I-Phe4,D-Pen5] enkephalin: a selective high affinity radioligand for delta opioid receptors with exceptional specific activity.J Pharmacol Exp Ther. 1991;258:1077–1083.

    CAS  PubMed  Google Scholar 

  104. Thomas SA, Abbruscato TJ, Hruby VJ, Davis TP. The entry of [D-penicillamine2,5]enkephalin into the central nervous system: saturation kinetics and specificity.J Pharmacol Exp Ther. 1997;280:1235–1240.

    CAS  PubMed  Google Scholar 

  105. Egleton RD, Davis TP. Transport of the delta-opioid receptor agonist [D-penicillamine2,5] enkephalin across the blood-brain barrier involves transcytosis1.J Pharm Sci. 1999;88:392–397.

    Article  CAS  PubMed  Google Scholar 

  106. Liao S, Alfaro-Lopez J, Shenderovich MD, et al. De novo design, synthesis, and biological activities of high-affinity and selective nonpeptide agonists of the delta-opioid receptor.J Med Chem. 1998;41:4767–4776.

    Article  CAS  PubMed  Google Scholar 

  107. Brownson EA, Abbruscato TJ, Gillespie TJ, Hruby VJ, Davis TP. Effect of peptidases at the blood brain barrier on the permeability of enkephalin.J Pharmacol Exp Ther. 1994;270:675–680.

    CAS  PubMed  Google Scholar 

  108. Lipkowski AW, Konecka AM, Sadowski B. Double enkephalins.Pol J Pharmacol Pharm. 1982;34:69–71.

    Article  CAS  PubMed  Google Scholar 

  109. Lipkowski AW, Konecka AM, Sroczynska I. Double-enkephalins-synthesis, activity on guinea-pig ileum, and analgesic effect.Peptides. 1982;3:697–700.

    Article  CAS  PubMed  Google Scholar 

  110. Romanowski M, Zhu X, Ramaswami V, et al. Interaction of a highly potent dimeric enkephalin analog, biphalin, with model membranes.Biochim Biophys Acta. 1997;1329:245–258.

    Article  CAS  PubMed  Google Scholar 

  111. Horan PJ, Mattia A, Bilsky EJ, et al. Antinociceptive profile of biphalin, a dimeric enkephalin analog.J Pharmacol Exp Ther. 1993;265:1446–1454.

    CAS  PubMed  Google Scholar 

  112. Lis H, Sharon N. Protein glycosylation. Structural and functional aspects.Eur J Biochem. 1993;218:1–27.

    Article  CAS  PubMed  Google Scholar 

  113. Poduslo JF, Curran GL. Glycation increases the permeability of proteins across the blood-nerve and blood-brain barriers.Brain Res Mol Brain Res. 1994;23:157–162.

    Article  CAS  PubMed  Google Scholar 

  114. Jakas A, Horvat S. The effect of glycation on the chemical and enzymatic stability of the endogenous opioid peptide, leucine-enkephalin, and related fragments.Bioorg Chem. 2004;32:516–526.

    Article  CAS  PubMed  Google Scholar 

  115. Egleton RD, Mitchell SA, Huber JD, et al. Improved bioavailability to the brain of glycosylated Met-enkephalin analogs.Brain Res. 2000;881:37–46.

    Article  CAS  PubMed  Google Scholar 

  116. Powell MF Jr, Stewart T Jr, Otvos L, Jr et al. Peptide stability in drug development. II. Effect of single amino acid substitution and glycosylationon peptide reactivity in human serum.Pharm Res. 1993;10:1268–1273.

    Article  CAS  PubMed  Google Scholar 

  117. Fisher JF, Harrison AW, Bundy GL, Wilkinson KF, Rush BD, Ruwart MJ. Peptide to glycopeptide: glycosylated oligopeptide renin inhibitors with attenuated in vivo clearance properties.J Med Chem. 1991;34:3140–3143.

    Article  CAS  PubMed  Google Scholar 

  118. Tomatis R, Marastoni M, Balboni G, et al. Synthesis and pharmacological activity of deltorphin and dermorphin-related glycopeptides.J Med Chem. 1997;40:2948–2952.

    Article  CAS  PubMed  Google Scholar 

  119. Negri L, Lattanzi R, Tabacco F, et al. Dermorphin and deltorphin glycosylated analogues: synthesis and antinociceptive activity after systemic administration.J Med Chem. 1999;42:400–404.

    Article  CAS  PubMed  Google Scholar 

  120. Polt R, Porreca F, Szabo LZ, et al. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier.Proc Natl Acad Sci USA. 1994;91:7114–7118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bilsky EJ, Egleton RD, Mitchell SA, et al. Enkephalin glycopeptide analogues produce analgesia with reduced dependence liability.J Med Chem. 2000;43:2586–2590.

    Article  CAS  PubMed  Google Scholar 

  122. Banks WA, Kastin AJ, Akerstrom V. HIV-1 protein gp 120 crosses the blood-brain barrier: role of adsorptive endocytosis.Life Sci. 1997;61:PL119-PL125.

    Article  CAS  PubMed  Google Scholar 

  123. Broadwell RD, Balin BJ, Salcman M. Transcytotic pathway for blood-borne protein through the blood-brain barrier.Proc Natl Acad Sci. USA. 1988;85:632–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mackic JB, Stins M, McComb JG, et al. Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer.J Clin Invest. 1998;102:734–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fillebeen C, Descamps L, Dehouck MP, et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier.J Biol Chem. 1999;274:7011–7017.

    Article  CAS  PubMed  Google Scholar 

  126. Palian MM, Boguslavsky VI, O'Brien DF, Polt R. Glycopeptide-membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media.J Am Chem Soc. 2003;125:5823–5831.

    Article  CAS  PubMed  Google Scholar 

  127. Egleton RD, Bilsky EJ, Tollin G, et al. Biousian glycopeptides penetrate the blood-brain barrier.Tetrahedron Asymmetry. 2005;16:65–75.

    Article  CAS  Google Scholar 

  128. Elmagbari NO, Egleton RD, Palian MM, et al. Antinociceptive structure-activity studies with enkephalin-based opioid glycopeptides.J Pharmacol Exp Ther. 2004;311:290–297.

    Article  CAS  PubMed  Google Scholar 

  129. Sargent DF, Schwyzer R. Membrane lipid phase as catalyst for peptide-receptor interactions.Proc Natl Acad Sci USA. 1986;83:5774–5778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Begley DJ. The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system.J Pharm Pharmacol. 1996;48:136–146.

    Article  CAS  PubMed  Google Scholar 

  131. Tsuji A, Tamai II. Carrier-mediated or specialized transport of drugs across the blood-brain barrier.Adv Drug Deliv Rev. 1999;36:277–290.

    Article  CAS  PubMed  Google Scholar 

  132. Wade LA, Katzman R. Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier.J Neurochem. 1975;25:837–842.

    Article  CAS  PubMed  Google Scholar 

  133. Silbert BS, Lipkowski AW, Cepeda MS, Szyfelbein SK, Osgood PF, Carr DB. Analgesic activity of a novel bivalent opioid peptide compared to morphine via different routes of administration.Agents Actions. 1991;33:382–387.

    Article  CAS  PubMed  Google Scholar 

  134. Abbruscato TJ, Thomas SA, Hruby VJ, Davis TP. Brain and spinal cord distribution of biphalin: correlation with opioid receptor density and mechanism of CNS entry.J Neurochem. 1997;69:1236–1245.

    Article  CAS  PubMed  Google Scholar 

  135. Ghosh MK, Mitra AK. Enhanced delivery of 5-iodo-2′-deoxyuridine to the brain parenchyma.Pharm Res. 1992;9:1173–1176.

    Article  CAS  PubMed  Google Scholar 

  136. Lambert DM, Geurts M, Scriba GK, Poupaert JH, Dumont P. Simple derivatives of amino acid neurotransmitters. Anticonvulsant evaluation of derived amides, carbamates and esters of glycine and beta-alanine.J Pharm. Belg. 1995;50:194–203.

    CAS  PubMed  Google Scholar 

  137. Greig NH, Stahle PL, Shetty HU, et al. High-performance liquid chromatographic analysis of chlorambucil tert.-butyl ester and its active metabolites chlorambucil and phenylacetic mustard in plasma and tissue.J Chromatogr. 1990;534:279–286.

    Article  CAS  PubMed  Google Scholar 

  138. Greene DL, Hau VS, Abbruscato TJ, et al. Enkephalin analog prodrugs: assessment of in vitro conversion, enzyme cleavage characterization and blood-brain barrier permeability.J Pharmacol Exp Ther. 1996;277:1366–1375.

    CAS  PubMed  Google Scholar 

  139. Bodor N, Shek E, Higuchi T. Delivery of a quaternary pyridinium salt across the blood-brain barrier by its dihydropyridine derivative.Science 1975;190:155–156.

    Article  CAS  PubMed  Google Scholar 

  140. Prokai L, Prokai-Tatrai K, Bodor N. Targeting drugs to the brain by redox chemical delivery systems.Med Res Rev. 2000;20:367–416.

    Article  CAS  PubMed  Google Scholar 

  141. Bodor N, Buchwald P. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems.Adv Drug Deliv Rev. 1999;36:229–254.

    Article  CAS  PubMed  Google Scholar 

  142. Brewster ME, Estes KS, Bodor N. Improved delivery through biological membranes. 32. Synthesis and biological activity of brain-targeted delivery systems for various estradiol derivatives.J Med Chem. 1988;31:244–249.

    Article  CAS  PubMed  Google Scholar 

  143. Prokai-Tatrai K, Prokai L, Bodor N. Brain-targeted delivery of a leucine-enkephalin analogue by retrometabolic design.J Med Chem. 1996;39:4775–4782.

    Article  CAS  PubMed  Google Scholar 

  144. Zlokovic BV. Cerebrovascular permeability to peptides: manipulations of transport systems at the blood-brain barrier.Pharm Res. 1995;12:1395–1406.

    Article  CAS  PubMed  Google Scholar 

  145. Pardridge WM, Boado RJ, Kang YS. Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo.Proc Natl Acad Sci USA. 1995;92:5592–5596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pardridge WM. Vector-mediated drug delivery to the brain.Adv Drug Deliv Rev. 1999;36:299–321.

    Article  CAS  PubMed  Google Scholar 

  147. Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier.Adv Drug Deliv Rev. 2001;46:247–279.

    Article  CAS  PubMed  Google Scholar 

  148. Bickel U, Kang YS, Pardridge WM. In vivo cleavability of a disulfide-based chimeric opioid peptide in rat brain.Bioconjug Chem. 1995;6:211–218.

    Article  CAS  PubMed  Google Scholar 

  149. Pardridge WM, Triguero D, Buciak JL. Beta-endorphin chimeric peptides: transport through the blood-brain barrier in vivo and cleavage of disulfide linkage by brain.Endocrinology. 1990;126:977–984.

    Article  CAS  PubMed  Google Scholar 

  150. Vehaskari VM, Chang CT, Stevens JK, Robson AM. The effects of polycations on vascular permeability in the rat. A proposed role for charge sites.J Clin Invest. 1984;73:1053–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hardebo JE, Kahrstrom J. Endothelial negative surface charge areas and blood-brain barrier function.Acta Physiol Scand. 1985;125:495–499.

    Article  CAS  PubMed  Google Scholar 

  152. Deguchi Y, Miyakawa Y, Sakurada S, et al. Blood-brain barrier transport of a novel micro 1-specific opioid peptide, H-Tyr-D-Arg-Phebeta-Ala-OH (TAPA).J Neurochem. 2003;84:1154–1161.

    Article  CAS  PubMed  Google Scholar 

  153. Deguchi Y, Naito Y, Ohtsuki S, et al. Blood-brain barrier permeability of novel [D-arg2]dermorphin (1–4) analogs: transport property is related to the slow onset of antinociceptive activity in the central nervous system.J Pharmacol Exp Ther. 2004;310:177–184.

    Article  CAS  PubMed  Google Scholar 

  154. Chakrabarti S, Sima AA. The presence of anionic sites in basement membranes of cerebral capillaries.Microvasc Res. 1990;39:123–127.

    Article  CAS  PubMed  Google Scholar 

  155. Terasaki T, Hirai K, Sato H, Kang YS, Tsuji A. Absorptive-mediated endocytosis of a dynorphin-like analgesic peptide, E-2078 into the blood-brain barrier.J Pharmacol Exp Ther. 1989;251: 351–357.

    CAS  PubMed  Google Scholar 

  156. Terasaki T, Takakuwa S, Saheki A, et al. Absorptive-mediated endocytosis of an adrenocorticotropic hormone (ACTH) analogue, ebiratide, into the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells.Pharm Res. 1992;9:529–534.

    Article  CAS  PubMed  Google Scholar 

  157. Shimura T, Tabata S, Terasaki T, Deguchi Y, Tsuji A. In-vivo blood-brain barrier transport of a novel adrenocorticotropic hormone analogue, ebiratide, demonstrated by brain microdialysis and capillary depletion methods.J Pharm Pharmacol. 1992;44:583–588.

    Article  CAS  PubMed  Google Scholar 

  158. Yu J, Butelman ER, Woods JH, Chait BT, Kreek MJ. Dynorphin A (1–8) analog, E-2078, crosses the blood-brain barrier in rhesus monkeys.J Pharmacol Exp Ther. 1997;282:633–638.

    CAS  PubMed  Google Scholar 

  159. Ukai M, Kobayashi T, Mori K, Shinkai N, Sasaki Y, Kameyama T. Attenuation of memory with Tyr-D-Arg-Phe-beta-Ala-NH2, a novel dermorphin analog with high affinity for mu-opioid receptors.Eur J Pharmacol. 1995;287:245–249.

    Article  CAS  PubMed  Google Scholar 

  160. Paakkari P, Paakkari I, Vonhof S, Feuerstein G, Siren AL. Dermorphin analog Tyr-D-Arg2-Phe-sarcosine-induced opioid analgesia and respiratory stimulation: the role of mu 1-receptors?J Pharmacol Exp Ther. 1993;266:544–550.

    CAS  PubMed  Google Scholar 

  161. Kumagai AK, Eisenberg JB, Pardridge WM. Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries Model system of blood-brain barrier transport.J Biol Chem. 1987;262:15214–15219.

    CAS  PubMed  Google Scholar 

  162. Boado RJ, Pardridge WM. Complete inactivation of target mRNA by biotinylated antisense oligodeoxynucleotide-avidin conjugates.Bioconjug Chem. 1994;5:406–410.

    Article  CAS  PubMed  Google Scholar 

  163. Adler SG, Wang H, Ward HJ, Cohen AH, Border WA. Electrical charge. Its role in the pathogenesis and prevention of experimental membranous nephropathy in the rabbit.J Clin Invest. 1983;71: 487–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Huang JT, Mannik M, Gleisner J. In situ formation of immune complexes in the choroid plexus of rats by sequential injection of a cationized antigen and unaltered antibodies.J Neuropathol Exp Neurol. 1984;43:489–499.

    Article  CAS  PubMed  Google Scholar 

  165. Nagy Z, Peters H, Huttner I. Charge-related alterations of the cerebral endothelium.Lab Invest. 1983;49:662–671.

    CAS  PubMed  Google Scholar 

  166. Bergmann P, Kacenelenbogen R, Vizet A. Plasma clearance, tissue distribution and catabolism of cationized albumins with increasing isoelectric points in the rat.Clin Sci. (Lond). 1984;67:35–43.

    Article  CAS  PubMed  Google Scholar 

  167. Pardridge WM, Triguero D, Buciak J. Transport of histone through the blood-brain barrier.J Pharmacol Exp Ther. 1989;251:821–826.

    CAS  PubMed  Google Scholar 

  168. Mumtaz S, Bachhawat BK. Conjugation of proteins and enzymes with hydrophilic polymers and their applications.Indian J Biochem Biophys. 1991;28:346–351.

    CAS  PubMed  Google Scholar 

  169. Francis GE, Fisher D, Delgado C, Malik F, Gardiner A, Neale D. PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques.Int J Hematol. 1998;68:1–18.

    Article  CAS  PubMed  Google Scholar 

  170. So T, Ito HO, Hirata M, Ueda T, Imoto T. Extended blood half-life of monomethoxypolyethylene glycol-conjugated hen lysozyme is a key parameter controlling immunological tolerogenicity.Cell Mol Life Sci. 1999;55:1187–1194.

    Article  CAS  PubMed  Google Scholar 

  171. Reddy KR. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.Ann Pharmacother. 2000;34:915–923.

    Article  CAS  PubMed  Google Scholar 

  172. Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I. Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity.Proc Natl Acad Sci USA. 2000;97:8548–8553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Duncan R. Drug-polymer conjugates: potential for improved chemotherapy.Anticancer Drugs. 1992;3:175–210.

    Article  CAS  PubMed  Google Scholar 

  174. Mu Y, Kamada H, Kaneda Y, et al. Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells.Biochem Biophys Res Commun. 1999;255:75–79.

    Article  CAS  PubMed  Google Scholar 

  175. Veronese FM. Peptide and protein PEGylation: a review of problems and solutions.Biomaterials. 2001;22:405–417.

    Article  CAS  PubMed  Google Scholar 

  176. Witt KA, Huber JD, Egleton RD, et al. Pharmacodynamic and pharmacokinetic characterization of poly(ethylene glycol) conjugation to met-enkephalin analog [D-Pen2, D-Pen5]-enkephalin (DPDPE).J Pharmacol Exp Ther. 2001;298:848–856.

    CAS  PubMed  Google Scholar 

  177. Chen C, Pollack GM. Altered disposition and antinociception of [D-penicillamine(2,5)] enkephalin in mdr1a-gene-deficient mice.J Pharmacol Exp Ther. 1998;287:545–552.

    CAS  PubMed  Google Scholar 

  178. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles).Brain Res. 1995;674:171–174.

    Article  CAS  PubMed  Google Scholar 

  179. Kreuter J. Nanoparticulate systems for brain delivery of drugs.Adv Drug Deliv Rev. 2001;47:65–81.

    Article  CAS  PubMed  Google Scholar 

  180. Woodcock DM, Linsenmeyer ME, Chojnowski G, et al. Reversal of multidrug resistance by surfactants.Br J Cancer. 1992;66:62–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Reddy KR. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.Ann Pharmacother. 2000;34:915–923.

    Article  CAS  PubMed  Google Scholar 

  182. Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist WF. Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies.J Pharmacol Exp Ther. 2001;296:551–557.

    CAS  PubMed  Google Scholar 

  183. Witt KA, Huber JD, Egleton RD, Davis TP. Pluronic p85 block-copolymer enhances opioid peptide analgesia.J Pharmacol Exp Ther. 2002;303:760–767.

    Article  CAS  PubMed  Google Scholar 

  184. Batrakova EV, Li S, Li Y, Alakhov VY, Kabanov AV. Effect of pluronic P85 on ATPase activity of drug efflux transporters.Pharm Res. 2004;21:2226–2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witt, K.A., Davis, T.P. CNS drug delivery: Opioid peptides and the blood-brain barrier. AAPS J 8, 9 (2006). https://doi.org/10.1208/aapsj080109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080109

Keywords

Navigation