Skip to main content
Log in

MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chronic treatments with antidepressants active on major depressive disorders influence pathways involved in cell survival and plasticity. As astrocytes seem to play a key role in the protection of brain cells, we investigated in these cells the rapid effects of the antidepressant fluoxetine (Prozac®) on signaling cascades and gene induction, which probably play a role in neuroprotection. We show here that fluoxetine alone activates the extracellular signal-regulated-protein kinase (Erk) and p38 mitogen-associated protein (MAP) kinase cascades. RT-PCR revealed that genes, modulated in brain by long-term fluoxetine treatment, are rapidly induced (detectable after 2–4 h) by fluoxetine in cultured astrocytes: brain-derived nerve factor (BDNF) and its receptors, glialderived nerve factor (GDNF) and deiodinase 3 (D3). Induction of D3 by fluoxetine is inhibited by U0126 and SB203580, suggesting that Erk and p38 MAP kinases are involved. Glial-derived nerve factor (GDNF) induction by fluoxetine is prevented by U0126, suggesting that Erk is implicated. Brain-derived nerve factor (BDNF) induction seems mediated by other signaling pathways. In conclusion, we show that fluoxetine alone rapidly activates mitogen activated protein (MAP) kinase cascades in rat astrocytes and that genes involved in neuroprotection are induced in a few hours in a MAP kinase-dependent or -independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bartholoma P., Erlandson N., Kaufman K., Rössler C. G., Baumann B., Wirth T., et al. (2002) Neuronal cell death induced by antidepressants: lack of correlation with Egr-1, NF-kappa B and extracellular signal-regulated protein kinase activation. Biochem. Pharmacol. 63, 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner A. (2000) Thyroxine and the treatment of affective disorders: an overview of the results of basic and clinical research. Int. J. Neuropsychopharmacology 3, 149–165.

    Article  CAS  Google Scholar 

  • Bayer T. A., Schramm M., Feldmann N., Knable M. B., and Falkai P. (2000) Antidepressant drug exposure is associated with mRNA levels of tyrosine receptor kinase B in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 24, 881–888.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti S. and Malhotra M. D. (2001) Thyroid hormones in treatment of mood disorders. Int. J. Med. Sci. 55, 501–507.

    CAS  Google Scholar 

  • Chen A. C., Eisch A. J., Sakai N., Takahashi M., Nestler E. J., and Duman R. S. (2001) Regulation of GFR alpha-1 and GFR alpha-2 mRNAs in rat brain by electroconvulsive seizure. Synapse 39, 42–50.

    Article  PubMed  CAS  Google Scholar 

  • Chen B., Dowlatshashi M., MacQueen G. M., Wang J. F., and Young L. T. (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265.

    Article  PubMed  CAS  Google Scholar 

  • Chen G., Huang L. D., Jiang M., and Manji H. K. (1999a) The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. 72, 1327–1330.

    Article  PubMed  CAS  Google Scholar 

  • Chen G., Masana M. I., and Manji H. K. (1999b) Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the CNS in vivo. Bipolar Disord. 2, 217–236.

    Article  Google Scholar 

  • Chen Y., Peng L., Zhang X., Stolzenburg J. U., and Hertz L. (1995) Further evidence that fluoxetine interacts with a 5-HT2c receptor in glial cells. Brain Res. Bull. 38, 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Coppen A. (1967) The biochemistry of affective disorders. Br. J. Psychiatry 113, 1237–1264.

    Article  PubMed  CAS  Google Scholar 

  • Courtin F., Chantoux F., and Francon J. (1986) Thyroid hormone metabolism by glial cells in culture. Mol. Cell. Endocrinol. 48, 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Daniel W. A., Wojcikowski J., and Palucha A. (2001) Intracellular distribution of psychotropic drugs in the grey and white matter of the brain: the role of lysosomal trapping. Br. J. Pharmacol. 134, 807–814.

    Article  PubMed  CAS  Google Scholar 

  • D’sa C. and Duman R. S. (2002) Antidepressants and neuroplasticity. Bipolar Disord. 4, 183–184.

    Article  PubMed  CAS  Google Scholar 

  • Duman R. S., Heninger G. R., and Nestler E. J. (1997) A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597–606.

    PubMed  CAS  Google Scholar 

  • Duman R. S., Malberg J., Nakagawa S., and Thome J. (2000) Neuronal plasticity and survival in mood disorders. Biol. Psychiatry 48, 732–739.

    Article  PubMed  CAS  Google Scholar 

  • Duman R. S., Malberg J., and Thome J. (1999) Neural plasticity to stress and antidepressant treatment. Biol. Psychiatry 46, 1181–1191.

    Article  PubMed  CAS  Google Scholar 

  • Duman R. S., Nakagawa S., and Malberg J. (2001) Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 25, 836–844.

    Article  PubMed  CAS  Google Scholar 

  • Einat H., Yuan P., Gould T. D., Li J., Du J. H., Zhang L., et al. (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J. Neurosci. 23, 7311–7316.

    PubMed  CAS  Google Scholar 

  • Esfandiari A., Gagelin C., Gavaret J. M., Pavelka S., Lennon A., Pierre M., and Courtin F. (1994) Induction of type III-deiodinase activity in astroglial cells by retinoids. Glia 11, 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Gavaret J. M., Matricon C., Pomerance M., Jacquemin C., Toru-Delbauffe D., and Pierre M. (1989) Activation of S6 kinase in astroglial cells by FGFa and FGFb. Dev. Brain Res. 45, 77–82.

    Article  CAS  Google Scholar 

  • Gould E., Tanapat P., McEwen B. S., Flugge G., and Fuchs E. (1998) Proliferation of granule cell precursors in the dentategyrus of adult monkeys is diminished by stress. Proc. Natl. Acad. Sci. USA 95, 3168–3171.

    Article  PubMed  CAS  Google Scholar 

  • Hindmarch I. (2001) Expanding the horizons of depression: beyond the monoamine hypothesis. Hum. Psychopharmacol. 16, 203–218.

    Article  PubMed  CAS  Google Scholar 

  • Hisaoka K., Nishida A., Koda T., Miyata M., Zensho H., Morinobu S., et al. (2001) Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 gioblastoma cells. J. Neurochem. 79, 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Jing S., Wen D., Yu Y., Holst P. L., Luo Y., Fang M., et al. (1996) GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85, 1113–1124.

    Article  PubMed  CAS  Google Scholar 

  • Klein P. S. and Melton D. A. (1996) A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8454–8459.

    Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Li W. W., Le Goascogne C., Ramaugé M., Schumacher M., Pierre M., and Courtin F. (2001) Induction of type 3 iodothyronine deiodinase by nerve injury in the rat peripheral nervous system. Endocrinology 142, 5190–5197.

    Article  PubMed  CAS  Google Scholar 

  • Luca S., Saxe M., Gross C., Surget A., Battaglia F., Dulawa S., et al. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809.

    Article  CAS  Google Scholar 

  • Manji H. K. and Lenox R. H. (1999) Protein kinase C signaling in the brain: molecular transduction of mood stabilization in the treatment of manic-depressive illness. Biol. Psychiatry 46, 1328–1335.

    Article  PubMed  CAS  Google Scholar 

  • Manji H. K., Drevets W. C., and Charney D. S. (2001) The cellular neurobiology of depression. Nat. Med. 7, 541–547.

    Article  PubMed  CAS  Google Scholar 

  • McEwen B. S. (1999) Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122.

    Article  PubMed  CAS  Google Scholar 

  • McKnight S. G. (1977) A colorimetric method for the determination of submicrogram quantities of protein. Anal. Biochem. 78, 86–92.

    Article  PubMed  CAS  Google Scholar 

  • Mercier G., Turque N., and Schumacher M. (2001) Early activation of transcription factor expression in Schwann cells by progesterone. Mol. Brain Res. 97, 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Murga C., Fukuhara S., and Gutkind J. S. (1999) Novel molecular mediators in the pathway connecting G-protein-coupled receptors to MAP kinase cascades. Trends Endocrinol. Metab. 10, 122–127.

    Article  PubMed  CAS  Google Scholar 

  • Newman M. E., Agid E., Gur E., and Lerer B. (2000) Pharmacological mechanisms of T3 augmentation of antidepressant action. Int. J. Parmacol. 3, 187–191.

    CAS  Google Scholar 

  • Nibuya M., Morinobu S., and Duman R. S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electrocon vulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547.

    PubMed  CAS  Google Scholar 

  • Nibuya M., Nestler E. J., and Duman R. S. (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365–2372.

    PubMed  CAS  Google Scholar 

  • Pallud S., Gavaret J. M., Lennon A. M., Munsch N., St-Germain D. L., Pierre M., and Courtin F. (1999) Regulation of type 3 iodothyronine deiodinase expression in cultured rat astrocytes: role of the Erk cascade. Endocrinology 140, 2917–2924.

    Article  PubMed  CAS  Google Scholar 

  • Russo-Neustadt A., Beard R. C., and Cotamn C. W. (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. A., Makino S., Kvetnansky R., and Post R. (1995). Effects of stress on neurotrophic factor expression in the rat brain. Ann. NY Acad. Sci. 771, 234–239.

    Article  PubMed  CAS  Google Scholar 

  • Tan Y., Rouse J., Zhang A., Cariati S., Cohen P., and Comb M. J. (1996) FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J. 15, 4629–4642.

    PubMed  CAS  Google Scholar 

  • Tao X., Kinkbeiner S., Arnold D. B., Shaywitz A. J., and Greenberg M. E. (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20, 709–726.

    Article  PubMed  CAS  Google Scholar 

  • Tu H. M., Legradi G., Bartha T., Salvatore D., Lechan R. M., and Larsen P. R. (1999) Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology 140, 784–790.

    Article  PubMed  CAS  Google Scholar 

  • Ullian E. M., Sapperstein S. K., Christopherson K. S., and Barres B. A. (2001) Control of synapse number by glia. Science 291, 657–660.

    Article  PubMed  CAS  Google Scholar 

  • Yuan P. X., Huang L. D., Jiang Y. M., Gutkind S., Manji K. H., and Chen G. (2001) The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol. Chem. 276, 31674–31683.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Mercier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercier, G., Lennon, A.M., Renouf, B. et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 24, 207–216 (2004). https://doi.org/10.1385/JMN:24:2:207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:2:207

Index Entries

Navigation