Skip to main content
Log in

Mesenchymal Stem Cells in Cancer: Tumor-Associated Fibroblasts and Cell-Based Delivery Vehicles

  • Progress in Hematology
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Recent evidence suggests that mesenchymal stem cells (MSC) selectively home to tumors, where they contribute to the formation of tumor-associated stroma. This effect can be opposed by genetically modifying MSC to produce high levels of anti-cancer agents that blunt tumor growth kinetics and inhibit the growth of tumors in situ. In this review article, we describe the biological properties of MSC within the tumor microenvironment and discuss the potential use of MSC and other bone marrow-derived cell populations as delivery vehicles for antitumor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kunz-Schughart LA, Knuechel R. Tumor-associated fibroblasts (part I): active stromal participants in tumor development and progression?Histol Histopathol. 2002;17:599–621.

    PubMed  CAS  Google Scholar 

  2. Kunz-Schughart LA, Knuechel R. Tumor-associated fibroblasts (part II): functional impact on tumor tissue.Histol Histopathol. 2002;17:623–637.

    PubMed  CAS  Google Scholar 

  3. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion.Cell. 2005;121:335–348.

    Article  PubMed  CAS  Google Scholar 

  4. Rowley DR. What might a stromal response mean to prostate cancer progression?Cancer Metastasis Rev. 1998;17:411–419.

    Article  PubMed  CAS  Google Scholar 

  5. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion.J Pathol. 2003;200:429–447.

    Article  PubMed  CAS  Google Scholar 

  6. Hasebe T, Mukai K, Tsuda H, Ochiai A. New prognostic histological parameter of invasive ductal carcinoma of the breast: clinicopathological significance of fibrotic focus.Pathol Int. 2000;50:263–272.

    Article  PubMed  CAS  Google Scholar 

  7. Kenny PA, Bissell MJ. Tumor reversion: correction of malignant behavior by microenvironmental cues.Int J Cancer. 2003;107:688–695.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kurosumi M, Tabei T, Inoue K, et al. Prognostic significance of scoring system based on histological heterogeneity of invasive ductal carcinoma for node-negative breast cancer patients.Oncol Rep. 2003;10:833–837.

    PubMed  Google Scholar 

  9. Radisky DC, Levy DD, Littlepage LE, et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability.Nature. 2005;436:123–127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH, Eng C. Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumourmicroenvironment interactions.Hum Mol Genet. 2001;10:1907–1913.

    Article  PubMed  CAS  Google Scholar 

  11. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis.Cancer Res. 2000;60:2562–2566.

    PubMed  CAS  Google Scholar 

  12. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals.Blood. 2003;102:3837–3844.

    Article  PubMed  CAS  Google Scholar 

  13. Jin H, Su J, Garmy-Susini B, Kleeman J, Varner J. Integrin α4β1 promotes monocyte trafficking and angiogenesis in tumors.Cancer Res. 2006;66:2146–2152.

    Article  PubMed  CAS  Google Scholar 

  14. Silzle T, Kreutz M, Dobler MA, Brockhoff G, Knuechel R, Kunz-Schughart LA. Tumor-associated fibroblasts recruit blood monocytes into tumor tissue.Eur J Immunol. 2003;33:1311–1320.

    Article  PubMed  CAS  Google Scholar 

  15. Hill R, Song Y, Cardiff RD, Van Dyke T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis.Cell. 2005;123:1001–1011.

    Article  PubMed  CAS  Google Scholar 

  16. McCullough KD, Coleman WB, Ricketts SL, Wilson JW, Smith GJ, Grisham JW. Plasticity of the neoplastic phenotype in vivo is regulated by epigenetic factors.Proc Natl Acad Sci U S A. 1998;95:15333–15338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the myofibroblasts in breast cancer: recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells.J Clin Invest. 1995;95:859–873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors.Cancer Res. 2002;62:3603–3608.

    PubMed  CAS  Google Scholar 

  19. Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents.J Natl Cancer Inst. 2004;96:1593–1603.

    Article  PubMed  CAS  Google Scholar 

  20. Direkze NC, Hodivala-Dilke K, Jeffery R, et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts.Cancer Res. 2004;64:8492–8495.

    Article  PubMed  CAS  Google Scholar 

  21. De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors.Cancer Cell. 2005;8:211–226.

    Article  PubMed  CAS  Google Scholar 

  22. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche.Nature. 2005;438:820–827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.Cancer Res. 2005;65:3307–3318.

    Article  PubMed  CAS  Google Scholar 

  24. Le Blanc K, Pittenger M. Mesenchymal stem cells: progress toward promise.Cytotherapy. 2005;7:36–45.

    Article  PubMed  Google Scholar 

  25. Garcia-Olmo D, Garcia-Arranz M, Herreros D, Pascual I, Peiro C, Rodriguez-Montes JA. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation.Dis Colon Rectum. 2005;48:1416–1423.

    Article  PubMed  Google Scholar 

  26. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients.Ann Neurol. 2005;57:874–882.

    Article  PubMed  Google Scholar 

  27. Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients.Biol Blood Marrow Transplant. 2005;11:389–398.

    Article  PubMed  Google Scholar 

  28. Kan I, Melamed E, Offen D. Integral therapeutic potential of bone marrow mesenchymal stem cells.Curr Drug Targets. 2005;6:31–41.

    Article  PubMed  CAS  Google Scholar 

  29. Gojo S, Umezawa A. Plasticity of mesenchymal stem cells: regenerative medicine for diseased hearts.Hum Cell. 2003;16:23–30.

    Article  PubMed  Google Scholar 

  30. Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction.Am J Cardiol. 2004;94:92–95.

    Article  PubMed  Google Scholar 

  31. Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta.Nat Med. 1999;5:309–313.

    Article  PubMed  CAS  Google Scholar 

  32. Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction.Semin Cancer Biol. 2004;14:433–439.

    Article  PubMed  CAS  Google Scholar 

  33. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.Lancet. 2004;363:1439–1441.

    Article  PubMed  Google Scholar 

  34. Tlsty TD, Hein PW. Know thy neighbor: stromal cells can contribute oncogenic signals.Curr Opin Genet Dev. 2001;11:54–59.

    Article  PubMed  CAS  Google Scholar 

  35. Bissell MJ, Radisky D. Putting tumours in context.Nat Rev Cancer. 2001;1:46–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Coussens LM, Werb Z. Inflammation and cancer.Nature. 2002;420:860–867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mueller MM, Fusenig NE. Friends or foes: bipolar effects of the tumour stroma in cancer.Nat Rev Cancer. 2004;4:839–849.

    Article  PubMed  CAS  Google Scholar 

  38. Folkman J. Fundamental concepts of the angiogenic process.Curr Mol Med. 2003;3:643–651.

    Article  PubMed  CAS  Google Scholar 

  39. Polverini PJ, Leibovich SJ. Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages.Lab Invest. 1984;51:635–642.

    PubMed  CAS  Google Scholar 

  40. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.Trends Immunol. 2002;23:549–555.

    Article  PubMed  CAS  Google Scholar 

  41. Silzle T, Randolph GJ, Kreutz M, Kunz-Schughart LA. The fibro-blast: sentinel cell and local immune modulator in tumor tissue.Int J Cancer. 2004;108:173–180.

    Article  PubMed  CAS  Google Scholar 

  42. Dong J, Grunstein J, Tejada M, et al. VEGF-null cells require PDGFR α signaling-mediated stromal fibroblast recruitment for tumorigenesis.EMBO J. 2004;23:2800–2810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Richter G, Kruger-Krasagakes S, Hein G, et al. Interleukin 10 transfected into Chinese hamster ovary cells prevents tumor growth and macrophage infiltration.Cancer Res. 1993;53:4134–4137.

    CAS  PubMed  Google Scholar 

  44. Kammertoens T, Schuler T, Blankenstein T. Immunotherapy: target the stroma to hit the tumor.Trends Mol Med. 2005;11:225–231.

    Article  PubMed  CAS  Google Scholar 

  45. Kiaris H, Chatzistamou I,Trimis G, Frangou-Plemmenou M, Pafiti-Kondi A, Kalofoutis A. Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis.Cancer Res. 2005;65:1627–1630.

    Article  PubMed  CAS  Google Scholar 

  46. Sivridis E, Giatromanolaki A, Koukourakis MI. Proliferating fibroblasts at the invading tumour edge of colorectal adenocarcinomas are associated with endogenous markers of hypoxia, acidity, and oxidative stress.J Clin Pathol. 2005;58:1033–1038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis.Cancer Res. 2005;65:8887–8895.

    Article  PubMed  CAS  Google Scholar 

  48. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues.Science. 1997;276:71–74.

    Article  PubMed  CAS  Google Scholar 

  49. Emura M, Ochiai A, Horino M, Arndt W, Kamino K, Hirohashi S. Development of myofibroblasts from human bone marrow mesenchymal stem cells cocultured with human colon carcinoma cells and TGF beta 1.In Vitro Cell Dev Biol Anim. 2000;36:77–80.

    Article  PubMed  CAS  Google Scholar 

  50. Ishii G, Sangai T, Oda T, et al. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction.Biochem Biophys Res Commun. 2003;309:232–240.

    Article  PubMed  CAS  Google Scholar 

  51. Direkze NC, Forbes SJ, Brittan M, et al. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice.Stem Cells. 2003;21:514–520.

    Article  PubMed  Google Scholar 

  52. Hanahan D, Weinberg RA. The hallmarks of cancer.Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  53. Ronnov-Jessen L, Petersen OW, Bissell MJ. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction.Physiol Rev. 1996;76:69–125.

    Article  PubMed  CAS  Google Scholar 

  54. Folkman J. Endogenous angiogenesis inhibitors.APMIS. 2004;112:496–507.

    Article  PubMed  CAS  Google Scholar 

  55. Haffen K, Kedinger M, Simon-Assmann P. Mesenchyme-dependent differentiation of epithelial progenitor cells in the gut.J Pediatr Gastroenterol Nutr. 1987;6:14–23.

    Article  PubMed  CAS  Google Scholar 

  56. Cunha GR, Hom YK. Role of mesenchymal-epithelial interactions in mammary gland development.J Mammary Gland Biol Neoplasia. 1996;1:21–35.

    Article  PubMed  CAS  Google Scholar 

  57. Gallego MI, Binart N, Robinson GW, et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects.Dev Biol. 2001;229:163–175.

    Article  PubMed  CAS  Google Scholar 

  58. Sakakura T, Nishizuka Y, Dawe CJ. Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland.Science. 1976;194:1439–1441.

    Article  PubMed  CAS  Google Scholar 

  59. Wiesen JF, Young P, Werb Z, Cunha GR. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development.Development. 1999;126:335–344.

    PubMed  CAS  Google Scholar 

  60. Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment?Cancer Cell. 2005;7:17–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells.Cancer Res. 2000;60:1254–1260.

    PubMed  CAS  Google Scholar 

  62. Sternlicht MD, Bissell MJ, Werb Z. The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter.Oncogene. 2000;19:1102–1113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sternlicht MD, Lochter A, Sympson CJ, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis.Cell. 1999;98:137–146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C. Frequent somatic mutations inPTEN andTP53 are mutually exclusive in the stroma of breast carcinomas.Nat Genet. 2002;32:355–357.

    Article  PubMed  CAS  Google Scholar 

  65. Mintz B, Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells.Proc Natl Acad Sci USA. 1975;72:3585–3589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Allers C, Sierralta WD, Neubauer S, Rivera F, Minguell JJ, Conget PA. Dynamic of distribution of human bone marrow-derived mesenchymalstem cells after transplantation into adult unconditioned mice.Transplantation. 2004;78:503–508.

    Article  PubMed  Google Scholar 

  67. Almeida-Porada G, Porada C, Zanjani ED. Plasticity of human stem cells in the fetal sheep model of human stem cell transplantation.Int J Hematol. 2004;79:1–6.

    Article  PubMed  Google Scholar 

  68. Ortiz LA, Gambelli F, McBride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects.Proc Natl Acad Sci USA. 2003;100:8407–8411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Erices AA, Allers CI, Conget PA, Rojas CV, Minguell JJ. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion.Cell Transplant. 2003;12:555–561.

    Article  PubMed  Google Scholar 

  70. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses.Exp Hematol. 2000;28:875–884.

    Article  PubMed  CAS  Google Scholar 

  71. Lange C, Togel F, Ittrich H, et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats.Kidney Int. 2005;68:1613–1617.

    Article  PubMed  Google Scholar 

  72. Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung.Am J Respir Cell Mol Biol. 2005;33:145–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Phinney DG, Isakova I. Plasticity and therapeutic potential of mesenchymalstem cells in the nervous system.Curr Pharm Des. 2005;11:1255–1265.

    Article  PubMed  CAS  Google Scholar 

  74. Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion.Blood. 2005;106:756–763.

    Article  PubMed  CAS  Google Scholar 

  75. Natsu K, Ochi M, Mochizuki Y, Hachisuka H, Yanada S, Yasunaga Y. Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers.Tissue Eng. 2004;10:1093–1112.

    Article  PubMed  CAS  Google Scholar 

  76. Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model.Circulation. 2005;111:150–156.

    Article  PubMed  CAS  Google Scholar 

  77. Kurozumi K, Nakamura K, Tamiya T, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model.Mol Ther. 2004;9:189–197.

    Article  PubMed  CAS  Google Scholar 

  78. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects.Circulation. 2005;112:214–223.

    Article  PubMed  Google Scholar 

  79. Mansilla E, Marin GH, Sturla F, et al. Human mesenchymal stem cells are tolerized by mice and improve skin and spinal cord injuries.Transplant Proc. 2005;37:292–294.

    Article  PubMed  CAS  Google Scholar 

  80. Satoh H, Kishi K, Tanaka T, et al. Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds.Cell Transplant. 2004;13:405–412.

    Article  PubMed  Google Scholar 

  81. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing.N Engl J Med. 1986;315:1650–1659.

    Article  PubMed  CAS  Google Scholar 

  82. Bianchi G, Muraglia A, Daga A, Corte G, Cancedda R, Quarto R. Microenvironment and stem properties of bone marrow-derived mesenchymal cells.Wound Repair Regen. 2001;9:460–466.

    Article  PubMed  CAS  Google Scholar 

  83. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells.Science. 1999;284:143–147.

    Article  PubMed  CAS  Google Scholar 

  84. Gronthos S, Zannettino AC, Hay SJ, et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow.J Cell Sci. 2003;116:1827–1835.

    Article  PubMed  CAS  Google Scholar 

  85. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.Blood. 2001;98:2615–2625.

    Article  PubMed  CAS  Google Scholar 

  86. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy.J Cell Mol Med. 2004;8:301–316.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates.Blood. 2003;101:2999–3001.

    Article  PubMed  CAS  Google Scholar 

  88. Fukuda K. Use of adult marrow mesenchymal stem cells for regeneration of cardiomyocytes.Bone Marrow Transplant. 2003;32 (suppl 1):S25-S27.

    Article  PubMed  CAS  Google Scholar 

  89. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH).Bone Marrow Transplant. 2002;30:215–222.

    Article  PubMed  CAS  Google Scholar 

  90. Ballas CB, Zielske SP, Gerson SL. Adult bone marrow stem cells for cell and gene therapies: implications for greater use.J Cell Biochem Suppl. 2002;38:20–28.

    Article  PubMed  CAS  Google Scholar 

  91. McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells.Cytotherapy. 2004;6:311–317.

    Article  PubMed  CAS  Google Scholar 

  92. Zhu W, Xu W, Jiang R, et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo.Exp Mol Pathol. 2006;80:267–274.

    Article  PubMed  CAS  Google Scholar 

  93. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells.Science. 2004;306:1568–1571.

    Article  PubMed  CAS  Google Scholar 

  94. Prindull G, Zipori D. Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm.Blood. 2004;103:2892–2899.

    Article  PubMed  CAS  Google Scholar 

  95. Hombauer H, Minguell JJ. Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells.Br J Cancer. 2000;82:1290–1296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors.Cancer Cell. 2005;8:211–226.

    Article  PubMed  CAS  Google Scholar 

  97. De Palma M, Venneri MA, Roca C, Naldini L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells.Nat Med. 2003;9:789–795.

    Article  PubMed  CAS  Google Scholar 

  98. Wright N, de Lera TL, Garcia-Moruja C, et al. Transforming growth factor-β1 down-regulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion.Blood. 2003;102:1978–1984.

    Article  PubMed  CAS  Google Scholar 

  99. Forbes SJ, Russo FP, Rey V, et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis.Gastroenterology. 2004;126:955–963.

    Article  PubMed  Google Scholar 

  100. Ishii G, Sangai T, Ito T, et al. In vivo and in vitro characterization of human fibroblasts recruited selectively into human cancer stroma.Int J Cancer. 2005;117:212–220.

    Article  PubMed  CAS  Google Scholar 

  101. Sangai T, Ishii G, Kodama K, et al. Effect of differences in cancer cells and tumor growth sites on recruiting bone marrow-derived endothelial cells and myofibroblasts in cancer-induced stroma.Int J Cancer. 2005;115:885–892.

    Article  PubMed  CAS  Google Scholar 

  102. Sugimoto T,Takiguchi Y, Kurosu K, et al. Growth factor-mediated interaction between tumor cells and stromal fibroblasts in an experimental model of human small-cell lung cancer.Oncol Rep. 2005;14:823–830.

    PubMed  CAS  Google Scholar 

  103. Roni V, Habeler W, Parenti A, et al. Recruitment of human umbilical vein endothelial cells and human primary fibroblasts into experimental tumors growing in SCID mice.Exp Cell Res. 2003;287:28–38.

    Article  PubMed  CAS  Google Scholar 

  104. Jankowski K, Kucia M, Wysoczynski M, et al. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy.Cancer Res. 2003;63:7926–7935.

    PubMed  CAS  Google Scholar 

  105. Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis.Biochem Biophys Res Commun. 2005;328:679–687.

    Article  PubMed  CAS  Google Scholar 

  106. Burns MJ, Weiss W. Targeted therapy of brain tumors utilizing neural stem and progenitor cells.Front Biosci. 2003;8:e228-e234.

    Article  PubMed  Google Scholar 

  107. Dennis JE, Cohen N, Goldberg VM, Caplan AI. Targeted delivery of progenitor cells for cartilage repair.J Orthop Res. 2004;22:735–741.

    Article  PubMed  CAS  Google Scholar 

  108. Kassem M. Mesenchymal stem cells: biological characteristics and potential clinical applications.Cloning Stem Cells. 2004;6:369–374.

    Article  PubMed  CAS  Google Scholar 

  109. Schoeberlein A, Holzgreve W, Dudler L, Hahn S, Surbek DV. Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses.Am J Obstet Gynecol. 2005;192:1044–1052.

    Article  PubMed  CAS  Google Scholar 

  110. Ye J, Yao K, Kim JC. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing.Eye. 2006;20:482–490.

    Article  PubMed  CAS  Google Scholar 

  111. Chan J, O’Donoghue K, de la Fuente J, et al. Human fetal mesenchymal stem cells as vehicles for gene delivery.Stem Cells. 2005;23:93–102.

    Article  PubMed  CAS  Google Scholar 

  112. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta.Stem Cells. 2004;22:1338–1345.

    Article  Google Scholar 

  113. Hurwitz DR, Kirchgesser M, Merrill W, et al. Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells.Hum Gene Ther. 1997;8:137–156.

    Article  PubMed  CAS  Google Scholar 

  114. Evans CH, Robbins PD, Ghivizzani SC, et al. Gene transfer to human joints: progress toward a gene therapy of arthritis.Proc Natl Acad Sci U S A. 2005;102:8698–8703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kurozumi K, Nakamura K, Tamiya T, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model.Mol Ther. 2005;11:96–104.

    Article  PubMed  CAS  Google Scholar 

  116. Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat.Exp Neurol. 2006;199:56–66.

    Article  PubMed  CAS  Google Scholar 

  117. Hamada H, Kobune M, Nakamura K, et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy.Cancer Sci. 2005;96:149–156.

    Article  PubMed  CAS  Google Scholar 

  118. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century.Trends Mol Med. 2001;7:259–264.

    Article  PubMed  CAS  Google Scholar 

  119. Feldmann RE Jr, Bieback K, Maurer MH, et al. Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood.Electrophoresis. 2005;26:2749–2758.

    Article  PubMed  CAS  Google Scholar 

  120. Parham DM. Pathologic classification of rhabdomyosarcomas and correlations with molecular studies.Mod Pathol. 2001;14:506–514.

    Article  PubMed  CAS  Google Scholar 

  121. Iacobuzio-Donahue CA, Argani P, Hempen PM, Jones J, Kern SE. The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types.Cancer Res. 2002;62:5351–5357.

    PubMed  CAS  Google Scholar 

  122. Robinson SC, Coussens LM. Soluble mediators of inflammation during tumor development.Adv Cancer Res. 2005;93:159–187.

    Article  PubMed  CAS  Google Scholar 

  123. Serakinci N, Guldberg P, Burns JS, et al. Adult human mesenchymal stem cell as a target for neoplastic transformation.Oncogene. 2004;23:5095–5098.

    Article  PubMed  CAS  Google Scholar 

  124. Rubio D, Garcia-Castro J, Martin MC, et al. Spontaneous human adult stem cell transformation.Cancer Res. 2005;65:3035–3039.

    Article  PubMed  CAS  Google Scholar 

  125. Burns JS, Abdallah BM, Guldberg P, Rygaard J, Schroder HD, Kassem M.Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells.Cancer Res. 2005;65:3126–3135.

    Article  PubMed  CAS  Google Scholar 

  126. Fierro FA, Sierralta WD, Epunan MJ, Minguell JJ. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.Clin Exp Metastasis. 2004;21:313–319.

    Article  PubMed  CAS  Google Scholar 

  127. Cunha GR, Hayward SW, Wang YZ, Ricke WA. Role of the stromal microenvironment in carcinogenesis of the prostate.Int J Cancer. 2003;107:1–10.

    Article  PubMed  CAS  Google Scholar 

  128. Chung LW, Baseman A, Assikis V, Zhau HE. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment.J Urol. 2005;173:10–20.

    Article  PubMed  Google Scholar 

  129. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix.Exp Mol Pathol. 2003;75:248–255.

    Article  PubMed  CAS  Google Scholar 

  130. Xia Z, Ye H, Choong C, et al. Macrophagic response to human mesenchymal stem cell and poly(ε-caprolactone) implantation in nonobese diabetic/severe combined immunodeficient mice.J Biomed Mater Res A. 2004;71:538–548.

    Article  PubMed  CAS  Google Scholar 

  131. De Kok IJ, Drapeau SJ, Young R, Cooper LF. Evaluation of mesenchymalstem cells following implantation in alveolar sockets: a canine safety study.Int J Oral Maxillofac Implants. 2005;20:511–518.

    PubMed  Google Scholar 

  132. Chen J, Wang C, Lu S, et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells.Cell Tissue Res. 2005;319:429–438.

    Article  PubMed  Google Scholar 

  133. Harrington K, Alvarez-Vallina L, Crittenden M, et al. Cells as vehicles for cancer gene therapy: the missing link between targeted vectors and systemic delivery?Hum Gene Ther. 2002;13:1263–1280.

    Article  PubMed  CAS  Google Scholar 

  134. Prockop DJ, Sekiya I, Colter DC. Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells.Cytotherapy. 2001;3:393–396.

    Article  PubMed  CAS  Google Scholar 

  135. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality.Stem Cells. 2002;20:530–541.

    Article  PubMed  Google Scholar 

  136. Fiedler J, Etzel N, Brenner RE. To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF.J Cell Biochem. 2004;93:990–998.

    Article  PubMed  CAS  Google Scholar 

  137. Kraitchman DL,Tatsumi M, Gilson WD, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction.Circulation. 2005;112:1451–1461.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Forte G, Minieri M, Cossa P, et al. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation.Stem Cells. 2006;24:23–33.

    Article  PubMed  CAS  Google Scholar 

  139. Jiang H, Conrad C, Fueyo J, Gomez-Manzano C, Liu TJ. Oncolytic adenoviruses for malignant glioma therapy.Front Biosci. 2003;8:d577-d588.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Marini.

About this article

Cite this article

Hall, B., Dembinski, J., Sasser, A.K. et al. Mesenchymal Stem Cells in Cancer: Tumor-Associated Fibroblasts and Cell-Based Delivery Vehicles. Int J Hematol 86, 8–16 (2007). https://doi.org/10.1532/IJH97.06230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.06230

Key words

Navigation