Skip to main content
Log in

Pharmacokinetic-Pharmacodynamic Relationships of the Anthracycline Anticancer Drugs

  • Review Articles
  • Pharmacokinetic-Pharmacodynamic Relationships
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The anthracycline glycoside antibiotics represent a group of potent anticancer agents with a wide spectrum of activity against solid tumours and haematological malignancies, and are the mainstay of a large number of clinical protocols for the treatment of adult and childhood neoplastic diseases. Their clinical activity is limited, however, by acute and chronic adverse effects. Myelosuppression, predominantly neutropenia and leucopenia, is the dose-limiting toxicity; in addition to this, mucositis, nausea, vomiting and alopecia are frequent, whereas hepatopathy, characterised by elevated bilirubin concentrations, occurs less frequently. Cardiotoxicity is a major adverse effect of the anthracycline antibiotics and can be acute or chronic; in the acute setting, electrocardiographic abnormalities may be seen, including ST-T elevations and arrhythmias, but chronic cardiotoxicity represents a serious adverse effect that may be lethal due to the development of irreversible, cumulative dose-dependent, congestive cardiomyopathy.

The occurrence of toxicity displays a marked interindividual variation, and for this reason the pharmacokinetics and pharmacodynamics of anthracyclines have been extensively investigated in order to identify integrated models that can be used in the clinical setting to prevent the development of serious toxicity, mainly leucopenia, and maximise tumour exposure. Pharmacokinetics has been recognised to influence both the toxicity and the activity of anthracyclines; in particular, there is increasing evidence that the mode of administration plays an important role for cumulative cardiotoxicity and data indicate that bolus administration, rather than continuous infusion, appears to be an important risk factor for anthracycline-induced cardiomyopathy, thus implying that this type of toxicity is maximum concentration-dependent. On the contrary, exposure to the drug, as measured by area under the curve, seems best related to the occurrence of leucopenia. Finally, the development of pharmacokinetic-pharmacodynamic models allows the simulation of drug effects and ultimately dose optimisation in order to anticipate important toxicities and prevent their occurrence by the administration of prophylactic treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Canal P, Chatelut E, Guichard S. Practical treatment guide for dose individualisation in cancer chemotherapy. Drugs 1998; 56(6): 1019–38

    Article  PubMed  CAS  Google Scholar 

  2. Hon YY, Evans WE. Making TDM work to optimize cancer chemotherapy: a multidisciplinary team approach. Clin Chem 1998; 44(2): 388–400

    PubMed  CAS  Google Scholar 

  3. Abraham R, Basser RL, Green MD. A risk-benefit assessment of anthracycline antibiotics in antineoplastic therapy. Drug Saf 1996; 15(6): 406–29

    Article  PubMed  CAS  Google Scholar 

  4. Conte PF, Baldini E, Gennari A, et al. Dose-finding study and pharmacokinetics of epirubicin and paclitaxel over 3 hours: a regimen with high activity and low cardiotoxicity in advanced breast cancer. J Clin Oncol 1997; 15(7): 2510–7

    PubMed  CAS  Google Scholar 

  5. Danesi R, Conte PF, Del Tacca M. Pharmacokinetic optimisation of treatment schedules for anthracyclines and paclitaxel in patients with cancer. Clin Pharmacokinet 1999; 37(3): 195–211

    Article  PubMed  CAS  Google Scholar 

  6. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344(11): 783–92

    Article  PubMed  CAS  Google Scholar 

  7. Hong RL, Tseng YL. Phase I and pharmacokinetic study of a stable, polyethylene-glycolated lipsomal doxorubicin in patients with solid tumors: the relation between pharmacokinetic property and toxicity. Cancer 2001; 91(9): 1826–33

    Article  PubMed  CAS  Google Scholar 

  8. Twelves CJ, Dobbs NA, Lawrence MA, et al. Iododoxorubicin in advanced breast cancer: a phase II evaluation of clinical activity, pharmacology and quality of life. Br J Cancer 1994; 69(4): 726–31

    Article  PubMed  CAS  Google Scholar 

  9. Merlini G, Anesi E, Garini P, et al. Treatment of AL amyloidosis with 4′-iodo-4′-deoxydoxorubicin: an update. Blood 1999; 93(3): 1112–3

    PubMed  CAS  Google Scholar 

  10. Sessa C, Zucchetti M, Ghielmini M, et al. Phase I clinical and pharmacological study of oral methoxymorpholinyldoxo-rubicin (PNU 152243). Cancer Chemother Pharmacol 1999; 44(5): 403–10

    Article  PubMed  CAS  Google Scholar 

  11. Canal P, Robert J, Ramon M, et al. Human pharmacokinetics of N-L-leucyl-doxorubicin, a new anthracycline derivative, and its correlation with clinical toxicities. Clin Pharmacol Ther 1992; 51(3): 249–59

    Article  PubMed  CAS  Google Scholar 

  12. Leca FR, Marchiset-Leca D, Galeani A, et al. Pharmacokinetic-pharmacodynamic relationships between pirarubicin exposure and hematotoxicity: clinical application using only one blood sample. Anticancer Drugs 1998; 9(6): 503–9

    PubMed  CAS  Google Scholar 

  13. Onrust SV, Lamb HM. Valrubicin. Drugs Aging 1999; 15(1): 69–75

    Article  PubMed  CAS  Google Scholar 

  14. Steinberg G, Bahnson R, Brosman S, et al. Efficacy and safety of valrubicin for the treatment of Bacillus Calmette-Guerin refractory carcinoma in situ of the bladder. The Valrubicin Study Group. J Urol 2000; 163(3): 761–7

    CAS  Google Scholar 

  15. Thomson AH, Vasey PA, Murray LS, et al. Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. Br J Cancer 1999; 81(1): 99–107

    Article  PubMed  CAS  Google Scholar 

  16. Harashima H, Iida S, Urakami Y, et al. Optimization of antitumor effect of liposomally encapsulated doxorubicin based on simulations by pharmacokinetic-pharmacodynamic modeling. J Control Release 1999; 61(1–2): 93–106

    Article  PubMed  CAS  Google Scholar 

  17. Wiseman LR, Spencer CM. Dexrazoxane. A review of its use as a cardioprotective agent in patients receiving anthracyclinebased chemotherapy. Drugs 1998; 56(3): 385–403

    CAS  Google Scholar 

  18. Sparreboom A, Planting AS, Jewell RC, et al. Clinical pharmacokinetics of doxorubicin in combination with GF120918, a potent inhibitor of MDR1 P-glycoprotein. Anticancer Drugs 1999; 10(8): 719–28

    Article  PubMed  CAS  Google Scholar 

  19. Rushing DA, Raber SR, Rodvold KA, et al. The effects of cyclosporine on the pharmacokinetics of doxorubicin in patients with small cell lung cancer. Cancer 1994; 74(3): 834–41

    Article  PubMed  CAS  Google Scholar 

  20. Piscitelli SC, Rodvold KA, Rushing DA, et al. Pharmacokinetics and pharmacodynamics of doxorubicin in patients with small cell lung cancer. Clin Pharmacol Ther 1993; 53(5): 555–6

    Article  PubMed  CAS  Google Scholar 

  21. Bastholt L, Dalmark M, Gjedde SB, et al. Dose-response relationship of epirubicin in the treatment of postmenopausal patients with metastatic breast cancer: a randomized study of epirubicin at four different dose levels performed by the Danish Breast Cancer Cooperative Group. J Clin Oncol 1996; 14(4): 1146–55

    PubMed  CAS  Google Scholar 

  22. Dobbs NA, Twelves CJ. What is the effect of adjusting epirubicin doses for body surface area? Br J Cancer 1998; 78(5): 662–6

    Article  PubMed  CAS  Google Scholar 

  23. Gurney HP, Ackland S, Gebski V, et al. Factors affecting epirubicin pharmacokinetics and toxicity: evidence against using body-surface area for dose calculation. J Clin Oncol 1998; 16(7): 2299–304

    PubMed  CAS  Google Scholar 

  24. Jakobsen P, Bastholt L, Dalmark M, et al. A randomized study of epirubicin at four different dose levels in advanced breast cancer. Feasibility of myelotoxicity prediction through single blood-sample measurement. Cancer Chemother Pharmacol 1991; 28(6): 465–9

    CAS  Google Scholar 

  25. Toffoli G, Sorio R, Aita P, et al. Dose-finding and pharmacologic study of chronic oral idarubicin therapy in metastatic breast cancer patients. Clin Cancer Res 2000; 6(6): 2279–87

    PubMed  CAS  Google Scholar 

  26. Bos AM, de Vries EG, Dombernovsky P, et al. Pharmacokinetics of MEN-10755, a novel anthracycline disaccharide analogue, in two phase I studies in adults with advanced solid tumours. Cancer Chemother Pharmacol 2001; 48(5): 361–9

    Article  PubMed  CAS  Google Scholar 

  27. De Jong J, Geijssen GJ, Munniksma CN, et al. Plasma pharmacokinetics and pharmacodynamics of a new prodrug N-l-leucyldoxorubicin and its metabolites in a phase I clinical trial. J Clin Oncol 1992; 10(12): 1897–906

    PubMed  Google Scholar 

  28. Lyass O, Uziely B, Ben-Yosef R, et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 2000; 89(5): 1037–47

    Article  PubMed  CAS  Google Scholar 

  29. Lipp HP, Bokemeyer C. Anthracyclines and other intercalating agents. In: Lipp HP, editor. Anticancer drug toxicity: prevention, management and clinical pharmacokinetics. Marcel Dekker, New York, 1999: 81–113

    Google Scholar 

  30. Twelves CJ, Dobbs NA, Michael Y, et al. Clinical pharmacokinetics of epirubicin: the importance of liver biochemistry tests. Br J Cancer 1992; 66(4): 765–9

    Article  PubMed  CAS  Google Scholar 

  31. Twelves CJ, Dobbs NA, Gillies HC, et al. Doxorubicin pharmacokinetics: the effect of abnormal liver biochemistry tests. Cancer Chemother Pharmacol 1998; 42(3): 229–34

    Article  PubMed  CAS  Google Scholar 

  32. Preisler HD, Gessner T, Azarnia N, et al. Relationship between plasma adriamycin levels and the outcome of remission induction therapy for acute nonlymphocytic leukemia. Cancer Chemother Pharmacol 1984; 12(2): 125–30

    Article  PubMed  CAS  Google Scholar 

  33. Berrak SG, Ewer MS, Jaffe N, et al. Doxorubicin cardiotoxicity in children: reduced incidence of cardiac dysfunction associated with continuous-infusion schedules. Oncol Rep 2001; 8(3): 611–4

    PubMed  CAS  Google Scholar 

  34. Biganzoli L, Piccart MJ. The bigger the better? Or what we know and what we still need to learn about anthracycline dose per course, dose density and cumulative dose in the treatment of breast cancer. Ann Oncol 1997; 8(12): 1177–82

    Article  PubMed  CAS  Google Scholar 

  35. Ormrod D, Holm K, Goa K, et al. Epirubicin: a review of its efficacy as adjuvant therapy and in the treatment of metastatic disease in breast cancer. Drugs Aging 1999; 15(5): 389–416

    Article  PubMed  CAS  Google Scholar 

  36. Macchiarini P, Danesi R, Mariotti R, et al. Phase II study of high-dose epirubicin in untreated patients with small-cell lung cancer. Am J Clin Oncol 1990; 13(4): 302–7

    Article  PubMed  CAS  Google Scholar 

  37. Fogli S, Danesi R, Gennari A, et al. Gemcitabine, epirubicin and paclitaxel: pharmacokinetic and pharmacodynamic interactions in advanced breast cancer. Ann Oncol 2002; 13: 919–27

    Article  PubMed  CAS  Google Scholar 

  38. Tjuljandin SA, Doig RG, Sobol MM, et al. Pharmacokinetics and toxicity of two schedules of high dose epirubicin. Cancer Res 1990; 50(16): 5095–101

    PubMed  CAS  Google Scholar 

  39. Hollingshead LM, Faulds D. Idarubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs 1991; 42(4): 690–719

    CAS  Google Scholar 

  40. Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999; 57(7): 727–41

    Article  PubMed  CAS  Google Scholar 

  41. Muller I, Niethammer D, Bruchelt G. Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity. Int J Mol Med 1998; 1(2): 491–4

    PubMed  CAS  Google Scholar 

  42. Belaud-Rotureau MA, Durrieu F, Labroille G, et al. Study of apoptosis-related responses of leukemic blast cells to in vitro anthracycline treatment. Leukemia 2000; 14(7): 1266–75

    Article  PubMed  CAS  Google Scholar 

  43. Ferraro C, Quemeneur L, Prigent AF, et al. Anthracyclines trigger apoptosis of both G0-G1 and cycling peripheral blood lymphocytes and induce massive deletion of mature T and B cells. Cancer Res 2000; 60(7): 1901–7

    PubMed  CAS  Google Scholar 

  44. Wu XX, Mizutani Y, Kakehi Y, et al. Enhancement of Fasmediated apoptosis in renal cell carcinoma cells by adriamycin. Cancer Res 2000; 60(11): 2912–8

    PubMed  CAS  Google Scholar 

  45. Sun X, Zhou Z, Kang YJ. Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res 2001; 61(8): 3382–7

    PubMed  CAS  Google Scholar 

  46. Venturini M, Michelotti A, Del Mastro L, et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol 1996; 14(12): 3112–20

    PubMed  CAS  Google Scholar 

  47. Ratain MJ, Schilsky RL, Conley BA, et al. Pharmacodynamics in cancer therapy. J Clin Oncol 1990; 8(10): 1739–53

    PubMed  CAS  Google Scholar 

  48. Mazza JJ. Hematopoiesis and hematopoietic growth factors. In: Mazza JJ, editor. Manual of clinical hematology. 2nd ed. Boston: Little Brown, 1995: 1–16

    Google Scholar 

  49. Licata S, Saponiero A, Mordente A, et al. Doxorubicin metabolism and toxicity in human myocardium: role of cytoplasmic deglycosidation and carbonyl reduction. Chem Res Toxicol 2000; 13(5): 414–20

    Article  PubMed  CAS  Google Scholar 

  50. Minotti G, Cairo G, Monti E. Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J 1999; 13(2): 199–212

    PubMed  CAS  Google Scholar 

  51. Meibohm B, Derendorf H. Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int J Clin Pharmacol Ther 1997; 35(10): 401–13

    PubMed  CAS  Google Scholar 

  52. Jusko WJ. Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. J Pharm Sci 1971; 60(6): 892–5

    Article  PubMed  CAS  Google Scholar 

  53. Katashima M, Yamada Y, Yamamoto K, et al. Analysis of antiplatelet effect of ticlopidine in humans: modeling based on irreversible inhibition of platelet precursors in bone marrow. J Pharmacokinet Biopharm 1999; 27(3): 283–96

    PubMed  CAS  Google Scholar 

  54. Johnson RD. Population toxicodynamic analysis of pemetrexed disodium (Alimta) [abstract no. 729]. Proc Am Soc Clin Oncol 2000; 19: 188a

    Google Scholar 

  55. Jakobsen P, Steiness E, Bastholt L, et al. Multiple-dose pharmacokinetics of epirubicin at four different dose levels: studies in patients with metastatic breast cancer. Cancer Chemother Pharmacol 1991; 28(1): 63–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by research grants from the University of Pisa to Romano Danesi. There are no potential conflicts of interest relevant to the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romano Danesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danesi, R., Fogli, S., Gennari, A. et al. Pharmacokinetic-Pharmacodynamic Relationships of the Anthracycline Anticancer Drugs. Clin Pharmacokinet 41, 431–444 (2002). https://doi.org/10.2165/00003088-200241060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241060-00004

Keywords

Navigation