Skip to main content
Log in

Clinical Pharmacokinetics and Summary of Efficacy and Tolerability of Atazanavir

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The efficacy of HIV-1 protease inhibitors (PIs) as part of highly active antiretroviral therapy is now well established and has provided benefits to many patients with HIV infection. Atazanavir is a new azapeptide PI compound that was recently approved in the US and Europe. Atazanavir is recommended in combination with other antiretroviral agents for the treatment of HIV-1 infection.

Atazanavir is rapidly absorbed and administration of a single dose of atazanavir with a light meal resulted in a 70% increase in area under the plasma concentration-time curve (AUC); therefore atazanavir should be taken with food. Atazanavir is 86% bound to human serum protein independently of concentration. Concentration in body fluids appeared to be lower than plasma concentration.

Like other PIs, atazanavir is extensively metabolised by hepatic cytochrome P450 (CYP) 3A isoenzymes. The mean terminal elimination half-life in healthy volunteers was approximately 7 hours at steady state following administration of atazanavir 400mg daily with a light meal.

When atazanavir 300mg was coadministered with ritonavir 100mg on a once-daily dosage regimen, atazanavir AUC from 0 to 24 hours and minimum plasma concentration were increased by 3- to 4-fold and approximately 10-fold, respectively, compared with atazanavir 300mg alone. Therefore, ritonavir boosted atazanavir regimen (ritonavir 100mg and atazanavir 300mg once daily) is increasingly favoured in some patients. Efavirenz, a potent CYP3A inducer, decreased atazanavir concentrations by 75% and, unexpectedly, tenofovir, a nucleotide reverse transcriptase inhibitor, decreased atazanavir concentrations by 25%.

Average predose concentrations in HIV-infected patients who received atazanavir 400mg once daily were 273 ng/mL, which was believed to be several-fold higher than protein-binding corrected 50% inhibitory concentration of wildtype viruses. In HIV-infected patients who received once-daily ritonavir (100mg) boosted atazanavir (300mg), mean (±SD) trough concentration was 862 (±838) ng/mL.

Several clinical trials showed the efficacy of atazanavir 400mg once daily with a nucleoside analogue backbone in antiretroviral-naive patients. The atazanavir 300/ritonavir 100mg once-daily combination coadministered with other antiretrovirals showed the efficacy of this strategy in patients receiving efavirenz or in moderately antiretroviral-experienced HIV-infected patients.

Recommended once-daily doses of atazanavir taken with food are either 400mg or 300mg in combination with low dose ritonavir (100mg) in moderately antiretroviral-experienced patients. Major advantages of atazanavir to date are its simplicity of administration (once-daily administration) and its less undesirable effect on the lipid profiles in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Table II
Fig. 3
Table III

Similar content being viewed by others

References

  1. Carpenter CC, Cooper DA, Fischl MA, et al. Antiretroviral therapy in adults: updated recommendations of the International AIDS Society-USA panel. JAMA 2000; 283: 381–90

    Article  PubMed  CAS  Google Scholar 

  2. Hogg RS, Heath KV, Yip B, et al. Improved survival among HIV-infected individuals following initiation of antiretroviral therapy. JAMA 1998; 279: 450–4

    Article  PubMed  CAS  Google Scholar 

  3. Yeni PG, Hammer SM, Hirsch MS, et al. Treatment for adult HIV infection: 2004 recommendations of the International AIDS Society-USA panel. JAMA 2004; 292: 251–65

    Article  PubMed  CAS  Google Scholar 

  4. Delfraissy JF. Prise en charge thérapeutique des personnes infectées par le VIH: recommandations du groupe d’experts. Paris: Médecine-Sciences Flammarion, 2004

  5. Department of Health And Human Services (DHHS). Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents [online]. Available from URL: http://aidsinfo.nih.gov/guidelines [Accessed 2005 Jul 6]

  6. Taburet AM, Paci-Bonaventure S, Peytavin G, et al. Once-daily administration of antiretrovirals: pharmacokinetics of emerging therapies. Clin Pharmacokinet 2003; 42(14): 1179–91

    Article  PubMed  CAS  Google Scholar 

  7. Ena J, Pasquau F. Once a day highly active antiretroviral therapy: a systematic review. Clin Infect Dis 2003; 36(1): 1186–90

    Article  PubMed  CAS  Google Scholar 

  8. FDA. CDER new and generic drug approvals 1998–2004: Reyataz™ [online]. Available from URL: http://www.fda.gov/cder/foi/label/2003/21567_reyataz_lbl.pdf [Accessed 2005 Aug 22]

  9. European Medicines Agency. EMEA label [online]. Available from URL: http://www.emea.eu.int/humandocs/Humans/EPAR/reyataz/reyataz.htm [Accessed 2005 Aug 22]

  10. Goldsmith DR, Perry CM. Atazanavir. Drugs 2003; 63(16): 1679–93

    Article  PubMed  CAS  Google Scholar 

  11. Murphy RL. Reviving protease inhibitors: new data and more options. J Acquir Immune Defic Syndr 2003; 33: S43–56

    PubMed  CAS  Google Scholar 

  12. Havlir DV, O’Marro SD. Atazanavir: new option for treatment of HIV infection. Clin Infect Dis 2004; 38: 1599–604

    Article  PubMed  CAS  Google Scholar 

  13. Schuster A, Burzawa S, Jemal M, et al. Quantitative determination of the HIV protease inhibitor atazanavir (BMS-232632) in human plasma by liquid chromatography-tandem mass spectrometry following automated solid-phase extraction. J Chromatogr B 2003; 788: 377–86

    Article  CAS  Google Scholar 

  14. Proust V, Toth K, Hulin A, et al. Simultaneous high-performance liquid chromatographic determination of antiretroviral agents amprenavir, nelfinavir, ritonavir, saquinavir, delavirdine and efavirenz in human plasma. J Chromatogr B 2000; 742: 453–8

    Article  CAS  Google Scholar 

  15. Keil K, Frerichs VA, DiFrancesco R, et al. Reverse phase high-performance liquid chromatography method for the analysis of amprenavir, efavirenz, indinavir, lopinavir, nelfinavir and its active metabolite (M8), ritonavir, and saquinavir in heparinized human plasma. Ther Drug Monit 2003 Jun; 25(3): 340–6

    Article  PubMed  CAS  Google Scholar 

  16. Poirier JM, Robidou P, Jaillon P. Simultaneous determination of the six HIV protease inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir) plus M8 nelfinavir metabolite and the non-nucleoside reverse transcription inhibitor efavirenz in human plasma by solid-phase extraction and column liquid chromatography. Ther Drug Monit 2002 Apr; 24(2): 302–9

    Article  PubMed  CAS  Google Scholar 

  17. Jemal M, Rao S, Gatz M, et al. Liquid chromatography-tandem mass spectrometric quantitative determination of the HIV protease inhibitor atazanavir (BMS-232632) in human peripheral blood mononuclear cells (PBMC): practical approaches to PBMC preparation and PBMC assay design for high-throughput analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 795: 273–89

    Article  PubMed  CAS  Google Scholar 

  18. Colombo S, Beguin A, Telenti A, et al. Intracellular measurements of anti-HIV drugs indinavir, amprenavir, saquinavir, ritonavir, nelfinavir, lopinavir, atazanavir, efavirenz and nevirapine in peripheral blood mononuclear cells by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 819(2): 259–76

    Article  PubMed  CAS  Google Scholar 

  19. King JR, Wynn H, Brundage R, et al. Pharmacokinetic enhancement of protease inhibitor therapy. Clin Pharmacokinet 2004; 43: 291–310

    Article  PubMed  CAS  Google Scholar 

  20. O’Mara M, Smith J, Olsen SJ, et al. BMS-232632: single oral dose safety and pharmacokinetic study in healthy volunteers [abstract no. I-242]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego (CA)

  21. Randall D, Agarwala S, Mummanemi V, et al. Multiple-dose pharmacokinetics of atazanavir in healthy subjects: a summary of food effect and drug interaction studies [abstract no. H1717]. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2002 Sep 27–30; San Diego (CA)

  22. Bailey DG, Malcolm J, Arnold O, et al. Grapefruit juice-drug interactions. Br J Clin Pharmacol 1998; 46: 101–10

    Article  PubMed  CAS  Google Scholar 

  23. Randall D, Agarwala S, Mummanemi V, et al. Tissue compartment concentrations of atazanavir in cerebrospinal fluid, seminal fluid and plasma in HIV+subjects [abstract no. H-1711]. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2002 Sep 27–30; San Diego (CA)

  24. Kim RB. Drug transporters in HIV therapy. Top HIV Med 2003; 11(4): 136–9

    PubMed  Google Scholar 

  25. Agarwala S, Grasela D, Child M, et al. Characterization of the steady-state pharmacokinetic (PK) profile of atazanavir (ATV) beyond the 24-hour dosing interval [abstract no. 845]. 8th Conference on Retroviruses and Opportunistic infections; 2001 Feb 4–8; Chicago (IL)

  26. O’Mara E, Piliero P, Drusano G, et al. BMS-232632: a preliminary pharmacokinetic and pharmacodynamic evaluation of BMS-232632 in a protease inhibitor naîve HIV+ population [abstract no. P9]. AIDS 2000; 14 Suppl. 4: S19

    Google Scholar 

  27. Taburet AM, Piketty C, Chazallon C, et al. Interactions between atazanavir/ritonavir and tenofovir in heavily pretreated HIV-infected patients. Antimicrob Agents Chemother 2004; 48: 2091–6

    Article  PubMed  CAS  Google Scholar 

  28. Agarwala S, Russo R, Mummaneni V, et al. Steady state pharmacokinetic interaction study of atazanavir with ritonavir in healthy subjects [abstract no. H1716]. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2002 Sep 27–30; San Diego (CA)

  29. O’Mara E, Randall D, Stoltz R, et al. BMS-232632: a prospective study of age and gender effects on the single-dose pharmacokinetics in healthy volunteers [abstract no. 180]. 1st International AIDS Society Conference; 2001 Jul 8–11; Buenos Aires

  30. Mirochnick M, Capparelli E. Pharmacokinetics of antiretrovirals in pregnant women. Clin Pharmacokinet 2004; 43(15): 1071–87

    Article  PubMed  CAS  Google Scholar 

  31. Taburet AM, Gerard L, Legrand M, et al. Antiretroviral drug removal by haemodialysis. AIDS 2000; 14: 902–3

    Article  PubMed  CAS  Google Scholar 

  32. Paci-Bonaventure S, Hafi A, Vincent I, et al. Lack of removal of nelfinavir during a hemodialysis session in an HIV-1 infected patient with hepatic and renal insufficiency. Nephrol Dial Transplant 2001; 16: 642–3

    Article  PubMed  CAS  Google Scholar 

  33. De Maat MM, Ekhart GC, Huitema AD, et al. Drug interactions between antiretroviral drugs and comedicated agents. Clin Pharmacokinet 2003; 42: 223–82

    Article  PubMed  Google Scholar 

  34. Kaul S, Bassi K, Damle B, et al. Pharmacokinetic (PK) evaluation of the combination of atazanavir (ATV), enteric coated didanosine (ddI-EC), and tenofovir disoproxil fumarate (TDF) for a once-daily antiretroviral regimen [abstract no. A-1616]. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2003 Sep 14–17; Chicago (IL)

  35. Preston S, Piliero P, O’Mara E, et al. Evaluation of the steady state interaction between atazanavir (ATV) and efavirenz (EFV) [abstract no. 443]. 9th Conference on Retroviruses and Opportunistic Infections; 2002 Feb 24–28; Seattle (WA)

  36. O’Mara E, Agarwala S, Randall D, et al. Steady state pharmacokinetic interaction study of atazanavir (ATV) with efavirenz (EFV) and ritonavir (RTV) in healthy subjects [abstract no. 444]. 9th Conference on Retroviruses and Opportunistic Infections; 2002 Feb 24–28; Seattle (WA)

  37. Seminari E, Guffanti M, Villani P, et al. Steady-state pharmacokinetics of atazanavir given alone or in combination with saquinavir hard-gel capsules or amprenavir in HIV-1-infected patients. Eur J Clin Pharmacol. Epub 2005 Jul 23

  38. Mummaneni V, Randall D, Geraldes M, et al. Steady state pharmacokinetic (PK) interaction study of atazanavir (ATV) with fixed-dose lamivudine (3TC) and zidovudine (ZDV) in healthy subjects [abstract no. H-1713]. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2002 Sep 27–30; San Diego (CA)

  39. Murphy RL, Sanne I, Cahn P, et al. Dose-ranging, randomized, clinical trial of atazanavir with lamivudine and stavudine in antiretroviral-naive subjects: 48-week results. AIDS 2003; 17: 2603–14

    Article  PubMed  CAS  Google Scholar 

  40. Fletcher CV, Acosta EP, Cheng H, et al. Competing drug-drug interactions among multidrug antiretroviral regimens used in the treatment of HIV-infected subjects: ACTG 884. AIDS 2000; 14: 2495–501

    Article  PubMed  CAS  Google Scholar 

  41. Johnson M, Grinsztejn B, Rodriguez C, et al. Atazanavir plus ritonavir or saquinavir, and lopinavir/ritonavir in patients experiencing multiple virological failures. AIDS 2005; 19(7): 685–94

    Article  PubMed  CAS  Google Scholar 

  42. Barry M, Mulcahy F, Merry C, et al. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 1999; 36: 289–30

    Article  PubMed  CAS  Google Scholar 

  43. Smith PF, DiCenzo R, Morse G. Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet 2001; 40: 893–905

    Article  PubMed  CAS  Google Scholar 

  44. Back D, Gibbons S, Khoo S. Pharmacokinetic drug interactions with nevirapine. J Acquir Immune Defic Syndr 2003; 34 Suppl. 1: S8–14

    Article  PubMed  CAS  Google Scholar 

  45. Winston A, Bloch M, Carr A, et al. Atazanavir trough plasma concentration monitoring in a cohort of HIV-1-positive individuals receiving highly active antiretroviral therapy. J Antimicrob Chemother. Epub 2005 Jul 4

  46. O’Mara E, Mummaneni V, Bifano M, et al. Steady-state pharmacokinetic interaction study between BMS-232632 and ritonavir in healthy subjects [abstract no. 740]. 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL)

  47. Cooper CL, van Heeswijk RPG, Gallicano K, et al. A review of low-dose ritonavir in protease inhibitor combinaison therapy. Clin Infect Dis 2003; 36: 1585–92

    Article  PubMed  CAS  Google Scholar 

  48. Moyle GJ, Back D. Principle and practice of HIV-protease inhibitor pharmacoenhancement. HIV Med 2001; 2: 105–13

    Article  PubMed  CAS  Google Scholar 

  49. O’Mara E, Mummaneni V, Randall D, et al. BMS-232632: single-oral dose-safety and drug interaction studies in healthy subjects [abstract no. 504]. 7th Conference on Retroviruses and Opportunistic Infections; 2000 Jan 30–Feb 4; San Francisco (CA)

  50. Kilby JM, Sfakianos G, Gizzi N, et al. Safety and pharmacokinetics of once-daily regimens of soft-gel capsule saquinavir plus minidose ritonavir in human immunodeficiency virus-negative adults. Antimicrob Agents Chemother 2000; 44: 2672–8

    Article  PubMed  CAS  Google Scholar 

  51. Cardiello PG, Monhaphol T, Mahanontharit A, et al. Pharmacokinetics of once-daily saquinavir hard-gelatin capsules and saquinavir soft-gelatin capsules boosted with ritonavir in HIV-1-infected subjects. J Acquir Immune Defic Syndr 2003; 32: 375–9

    Article  PubMed  CAS  Google Scholar 

  52. Schutz M, Sargent S, Kakuda T. Optimizing dosing strategies for the combination of atazanavir plus saquinavir. AIDS 2004; 18: 704–5

    Article  PubMed  Google Scholar 

  53. Boffito M, Kurowski M, Kruse G, et al. Atazanavir enhances saquinavir hard-gel concentrations in a ritonavir-boosted once-daily regimen. AIDS 2004; 18: 1291–7

    Article  PubMed  CAS  Google Scholar 

  54. Guffanti M, De Pascalis CR, Seminari E, et al. Pharmacokinetics of amprenavir given once or twice a day when combined with atazanavir in heavily pretreated HIV-positive patients. AIDS 2003; 17: 2669–71

    Article  PubMed  Google Scholar 

  55. Tran JQ, Petersen C, Garrett M, et al. Pharmacokinetic interaction between amprenavir and delavirdine: evidence of induced clearance by amprenavir. Clin Pharmacol Ther 2002; 72: 615–26

    Article  PubMed  CAS  Google Scholar 

  56. Taburet AM, Raguin G, Le Tiec C, et al. Interactions between amprenavir and the lopinavir/ritonavir combination in heavily pretreated HIV-infected patients. The ANRS Protocol 104 (Puzzle 1) Investigators. Clin Pharmacol Ther 2004; 75: 310–23

    Article  PubMed  CAS  Google Scholar 

  57. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57

    Article  PubMed  CAS  Google Scholar 

  58. Agarwala S, Mummaneni V, Randall D, et al. Pharmacokinetic (PK) effect of rifabutin (RIF) on atazanavir (ATV) with and without ritonavir (RTV) in healthy subjects [abstract no. 445]. 9th Conference on Retroviruses and Opportunistic Infections; 2002 Feb 24–28; Seattle (WA)

  59. Lennernas H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors: similarities and differences. Clin Pharmacokinet 1997; 32: 403–25

    Article  PubMed  CAS  Google Scholar 

  60. O’Mara E, Randall D, Uderman H, et al. Steady-state pharmacokinetic interaction study between BMS-232632 and ketoconazole in healthy subjects. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto (ON)

  61. Niemi M, Backman JT, Fromm MF, et al. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 2003; 42: 779–862

    Article  Google Scholar 

  62. Drusano GL, Bilello JA, Preston SL, et al. Hollow-fiber unit evaluation of a new human immunodeficiency virus type 1 protease inhibitor, BMS-232632, for determination of the linked pharmacodynamic variable. J Infect Dis 2001; 183(7): 1126–9

    Article  PubMed  CAS  Google Scholar 

  63. Piliero PJ. The utility of inhibitory quotients in determining the relative potency of protease inhibitors. AIDS 2002; 16: 799–800

    Article  PubMed  Google Scholar 

  64. Colonno RJ, Thiry A, Limoli K, et al. Activities of atazanavir (BMS-232632) against a large panel of human immunodeficiency virus type 1 clinical isolates resistant to one or more approved protease inhibitors. Antimicrob Agents Chemother 2003; 47(4): 1324–33

    Article  PubMed  CAS  Google Scholar 

  65. Colonno R, Rose R, McLaren C, et al. Identification of I50L as the signature atazanavir (ATV)-resistance mutation in treatment-naive HIV-1-infected patients receiving ATV-containing regimens. J Infect Dis 2004; 189: 1802–10

    Article  PubMed  CAS  Google Scholar 

  66. Schnell T, Schmidt B, Moschik G, et al. Distinct cross-resistance profiles of the new protease inhibitors amprenavir, lopinavir and atazanavir in a panel of clinical samples. AIDS 2003; 17(8): 1258–61

    Article  PubMed  Google Scholar 

  67. Becker S, Fisher A, Flexner C, et al. Pharmacokinetic parameters of protease inhibitors and the Cmin/IC50 ratio: call for consensus. J Acquir Immune Defic Syndr 2001; 27: 210–1

    PubMed  CAS  Google Scholar 

  68. Sanne I, Piliero P, Squires K, et al. Results of a phase 2 clinical trial at 48 weeks (AI424-007): a dose-ranging, safety, and efficacy comparative trial of atazanavir at three doses in combination with didanosine and stavudine in antiretroviral-naîve subjects. J Acquir Immune Defic Syndr 2003; 32: 18–29

    Article  PubMed  CAS  Google Scholar 

  69. Squires K, Lazzarin A, Gatell JM, et al. Comparison of once-daily atazanavir with efavirenz, each in combination with fixed-dose zidovudine and lamivudine, as initial therapy for patients infected with HIV. J Acquir Immune Defic Syndr 2004; 36: 1011–9

    Article  PubMed  CAS  Google Scholar 

  70. Haas DW, Zala C, Schrader S, et al. Therapy with atazanavir plus saquinavir in patients failing highly active antiretroviral therapy: a randomized comparative pilot trial. AIDS 2003; 17: 1339–49

    Article  PubMed  CAS  Google Scholar 

  71. Nieto-Cisneros L, Zala C, Fessel WJ, et al. Antiviral efficacy, metabolic changes and safety of atazanavir versus lopinavir/ritonavir in combination with two NRTIs in patients who have experienced virological failure with prior PI-containing regimen(s): 24 week results from BMS AI424-043 [abstract no. 117]. 2nd IAS conference on HIV pathogenesis and treatment; 2003 Jul 13–16; Paris

  72. Carr A, Samarars K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS 1998; 12(7): F51–8

    Article  PubMed  CAS  Google Scholar 

  73. Safrin S, Grunfeld C. Fat distribution and metabolic changes in patients with HIV infection. AIDS 1999; 13: 2493–505

    Article  PubMed  CAS  Google Scholar 

  74. Sulkowski MS. Drug-induced liver injury associated with antiretroviral therapy that includes HIV-1 protease inhibitors. Clin Infect Dis 2004; 38 Suppl. 2: S90–7

    Article  PubMed  CAS  Google Scholar 

  75. O’Mara E, Mummaneni V, Burchell B, et al. Relationship between uridine diphosphate-gluronosyl transferase (UDPGT)1A1 genotype and total bilirubin elevations in healthy subjects receiving BMS-232632 and saquinavir [abstract no. 1645]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto (ON)

  76. Eholie SP, Lacombe K, Serfaty L, et al. Acute hepatic cytolysis in an HIV-infected patient taking atazanavir. AIDS 2004; 18: 1610–1

    Article  PubMed  Google Scholar 

  77. Wood R, Phanuphak P, Cahn P, et al. Long-term efficacy and safety of atazanavir with stavudine and lamivudine in patients previously treated with nelfinavir or atazanavir. J Acquir Immune Defic Syndr 2004; 36: 684–92

    Article  PubMed  CAS  Google Scholar 

  78. Haerter G, Manfras BJ, Mueller M, et al. Regression of lipodystrophy in HIV-infected patients under therapy with the new protease inhibitor atazanavir. AIDS 2004; 18: 952–5

    Article  PubMed  CAS  Google Scholar 

  79. Aarnoutse RE, Schapiro JM, Boucher CAB, et al. Therapeutic drug monitoring: an aid to optimizing response to antiretroviral drugs? Drugs 2003; 63: 741–53

    Article  PubMed  CAS  Google Scholar 

  80. Barrios A, Rendon AL, Rios P, et al. Atazanavir plasma levels are associated with efficacy and safety in protease inhibitor-experienced HIV-infected patients [abstract no. 606]. 11th Conference on Retroviruses and Opportunistic Infections; San Francisco (CA)

  81. Back D, Gatti G, Fletcher C, et al. Therapeutic drug monitoring in HIV infection: current status and future directions. AIDS 2002; 16 Suppl. 1: S5–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. Dr Anne-Marie Taburet has received research grants from GlaxoSmithKline, Gilead and BMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Marie Taburet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiec, C.L., Barrail, A., Goujard, C. et al. Clinical Pharmacokinetics and Summary of Efficacy and Tolerability of Atazanavir. Clin Pharmacokinet 44, 1035–1050 (2005). https://doi.org/10.2165/00003088-200544100-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544100-00003

Keywords

Navigation