Skip to main content
Log in

Fosamprenavir

Clinical Pharmacokinetics and Drug Interactions of the Amprenavir Prodrug

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Fosamprenavir is one of the most recently approved HIV-1 protease inhibitors (Pis) and offers reductions in pill number and pill size, and omits the need for food and fluid requirements associated with the earlier-approved HIV-1 PIs. Three fosamprenavir dosage regimens are approved by the US FDA for the treatment of HIV-1 PI-naive patients, including fosamprenavir 1400mg twice daily, fosamprenavir 1400mg once daily plus ritonavir 200mg once daily, and fosamprenavir 700mg twice daily plus ritonavir 100mg twice daily. Coadministration of fosamprenavir with ritonavir significantly increases plasma amprenavir exposure. The fosamprenavir 700mg twice daily plus ritonavir 100mg twice daily regimen maintains the highest plasma amprenavir concentrations throughout the dosing interval; this is the only approved regimen for the treatment of HIV-1 PI-experienced patients and is the only regimen approved in the European Union.

Fosamprenavir is the phosphate ester prodrug of the HIV-1 PI amprenavir, and is rapidly and extensively converted to amprenavir after oral administration. Plasma amprenavir concentrations are quantifiable within 15 minutes of dosing and peak at 1.5–2 hours after fosamprenavir dosing. Food does not affect the absorption of amprenavir following administration of the fosamprenavir tablet formulation; therefore, fosamprenavir tablets may be administered without regard to food intake. Amprenavir has a large volume of distribution, is 90% bound to plasma proteins and is a substrate of P-glycoprotein.

With <1% of a dose excreted in urine, the renal route is not an important elimination pathway, while the principal route of amprenavir elimination is hepatic metabolism by cytochrome P450 (CYP) 3A4. Amprenavir is also an inhibitor and inducer of CYP3A4. Furthermore, fosamprenavir is commonly administered in combination with low-dose ritonavir, which is also extensively metabolised by CYP3A4, and is a more potent CYP3A4 inhibitor than amprenavir.

This potent CYP3A4 inhibition contraindicates the coadministration of certain CYP3A4 substrates and requires others to be coadministered with caution. However, fosamprenavir can be coadministered with many other antiretroviral agents, including drugs of the nucleoside/nucleotide reverse transcriptase inhibitor, non-nucleoside reverse transcriptase inhibitor and HIV entry inhibitor classes. Coadministration with other HIV-1 PIs continues to be studied.

The extensive fosamprenavir and amprenavir clinical drug interaction information provides guidance on how to coadminister fosamprenavir and fosamprenavir plus ritonavir with many other commonly coprescribed medications, such as gastric acid suppressants, HMG-CoA reductase inhibitors, antibacterials and antifungal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Table II
Fig. 2
Table III

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. N Engl J Med 1997; 337: 725–33

    Article  PubMed  CAS  Google Scholar 

  2. Palella FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 1998; 338: 853–60

    Article  PubMed  Google Scholar 

  3. Crixivan (indinavir) complete prescribing information. White-house Station (NJ); Merck & Co Inc.; 2005

  4. Agenerase (amprenavir) capsules: complete prescribing information. Research Triangle Park (NC): GlaxoSmithKline, 2004

  5. Invirase (saquinavir mesylate) capsules and tablets: complete prescribing information. Nutley (NJ): Roche Laboratories, Inc., 2005

  6. Norvir (ritonavir) capsules: complete prescribing information. North Chicago (IL): Abbott Laboratories, 2005

  7. Viracept (nelfinavir mesylate) tablets: complete prescribing information. La Jolla (CA): Agouron Pharmaceuticals, Inc., 2005

  8. Reyatax (atazanavir sulfate) capsules: complete prescribing information. Princeton (NJ): Bristol-Myers Squibb Company, 2005

  9. Kaletra (lopinavir/ritonavir) capsules: complete prescribing information. North Chicago (IL): Abbott Laboratories, 2005

  10. Kaletra (lopinavir/ritonavir) tablets: complete prescribing information. North Chicago (IL): Abbott Laboratories, 2005

  11. Aptivus (tipranavir) capsules: complete prescribing information. Ridgefield (CT): Boehringer Ingelheim Pharmaceuticals, 2005

  12. Lexiva® (fosamprenavir calcium) prescribing information 2005 [online]. Available from URL: http://www.fda.gov/cder/foi/label/2005/021548s0051bl.pdf [Accessed 2006 Jan 9]

  13. Telzir® (fosamprenavir calcium) summary of product characteristics [online]. Available from URL: http://www.emea.eu.int/humandocs/PDFs/EPAR/telzir/H-534-PI-en.pdf [Accessed 2006 Jan 9]

  14. Furfine ES, Baker CT, Hale MR, et al. Preclinical pharmacology and pharmacokinetics of GW433908, a water-soluble prodrug of the human immunodeficiency virus protease inhibitor amprenavir. Antimicrob Agents Chemother 2004; 48: 791–8

    Article  PubMed  CAS  Google Scholar 

  15. Studenberg SD, Furfine ES, Boehlert CC, et al. Mechanism of absorption of GW433908, the phosphate prodrug of the HIV protease inhibitor amprenavir [abstract no. 69]. HIV DART 2004: Frontiers in Drug Development for Antiretroviral Therapies; 2004 Dec 12–16; Montego Bay

  16. Wood R, Arasteh K, Stellbrink H, et al. Six-week randomized controlled trial to compare the tolerabilities, pharmacokinetics, and antiviral activities of GW433908 and amprenavir in human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother 2004; 48: 116–23

    Article  PubMed  CAS  Google Scholar 

  17. Polli JW, Jarrett JL, Studenberg SD, et al. Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm Res 1999; 16: 1206–12

    Article  PubMed  CAS  Google Scholar 

  18. Sadler BM, Chittick GE, Polk RE, et al. Metabolic disposition and pharmacokinetics of [14C]-amprenavir, a human immunodeficiency virus type 1 (HIV-1) protease inhibitor, administered as a single oral dose to healthy male subjects. J Clin Pharmacol 2001; 41: 386–96

    Article  PubMed  CAS  Google Scholar 

  19. Wire MB, Lou Y, Shelton MJ, et al. Evaluation of plasma amprenavir (APV) pharmacokinetics (PK) following administration of fosamprenavir (FPV) formulations with a high-fat breakfast (HFB; APV10008) [abstract no. A-448]. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct 30–Nov 2; Washington, DC

  20. Baker K, Lou Y, Aggarwal G, et a. A pivotal, phase I, singledose, open-label, randomized, four period, balanced crossover study to assess the relative bioavailability of the GW433908 oral suspension and oral film-coated 700mg tablet formulations and the effect of food on the bioavailability of these formulations in healthy adult subjects (APV10016). Research Triangle Park (NC); GlaxoSmithKline, 2002 (Data on file)

  21. Garraffo R, Lavrut T, Heripret I, et al. Fosamprenavir (FPV) trough concentrations (Cmin) and inhibitory quotients (IQ), at steady-state, in plasma and lymphocytes of HIV infected patients receiving different dosage regimens [abstract no. 5, poster no. 1.5]. 6th International Workshop on Clinical Pharmacology of HIV Therapy; 2005 April 28–30; Quebec City (QC)

  22. Studenberg SD, Woolley JL. Placental transfer of [14C] 141W94 after oral administration to Han Wistar rats (RDI997/4204/00). Research Triangle Park (NC); GlaxoSmithKline, 1997 (Data on file)

  23. Bawden RE. The ex vivo human placental transfer of the anti-HIV nucleoside inhibitor abacavir and the protease inhibitor amprenavir. Infect Dis Obstet Gynecol 1998; 6: 244–6

    Google Scholar 

  24. Chappuy H, Treluyer JM, Rey E, et al. Maternal-fetal transfer and amniotic fluid accumulation of protease inhibitors in pregnant women who are infected with human immunodeficiency virus. Am J Obstet Gynecol 2004; 191: 558–62

    Article  PubMed  CAS  Google Scholar 

  25. Studenberg SD, Dahl RR, Woolley JL. Milk transfer of [14C] 141W94 after oral administration to lactating Han Wistar rats (RD1997/03812/00). Research Triangle Park (NC); GlaxoSmithKline, 1997 (Data on file)

  26. Chaudry NI, Eron JJ, Naderer OJ, et al. Effects of formulation and dosing strategy on amprenavir concentrations in seminal plasma of human immunodeficiency virus type 1-infected men. Clin Infect Dis 2002; 35: 760–2

    Article  PubMed  CAS  Google Scholar 

  27. Pereira AS, Smeaton LM, Gerber JG, et al. The pharmacokinetics of amprenavir, zidovudine, and lamivudine in the genital tracts of men infected with human immunodeficiency virus type 1 (AIDS clinical trials group study 850). J Infect Dis 2002; 186: 198–204

    Article  PubMed  CAS  Google Scholar 

  28. Sadler BM, Gillotin C, Lou Y. A phase I trial to evaluate the safety, pharmacokinetics and antiviral activity of 141W94 after multiple dosing in subjects with HIV infection (PROA1002). Research Triangle Park (NC); GlaxoSmithKline, 1998 (Data on file)

  29. Sereni D, Taulera O, Lascoux C, et al. Antiviral activity of amprenavir in combination with zidovudine/3TC in plasma and cerebrospinal fluid in HIV-1-positive individuals. Symposium on Neuroscience of HIV Infection Basic Research and Clinical Frontiers; 1998 Jun 3–6; Chicago (IL). J Neurovirol 1998; 4: 433–76

    Article  Google Scholar 

  30. Gupta A, Zhang Y, Unadkat JD, et al. HIV protease inhibitor are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 2004; 310: 334–41

    Article  PubMed  CAS  Google Scholar 

  31. van der Sandt ICJ, Vos CMP, Nabulsi L, et al. Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood-brain barrier. AIDS 2001; 15: 483–91

    Article  PubMed  Google Scholar 

  32. Olsen DP, Scadden DT, D’Aquila RT, et al. The protease inhibitor ritonavir inhibits the functional activity of the multidrug resistance related-protein 1 (MRP-1). AIDS 2002; 16: 1743–7

    Article  Google Scholar 

  33. Huang L, Wring SA, Woolley JL, et al. Induction of P-glycoprotein and cytochrome P450 3A by HIV protease inhibitors. Drug Metab Dispos 2001; 29: 754–60

    PubMed  CAS  Google Scholar 

  34. Perloff MD, Von Moltke LL, Marchand JE, et al. Ritonavir induces P-glycoprotein expression, multi-drug resistance-associated protein (MRP1) activity, and drug transporter-mediated activity in a human intestinal cell line. J Pharm Sci 2001; 90: 1829–37

    Article  PubMed  CAS  Google Scholar 

  35. Vishnuvardhan D, von Moltke LL, Richert C, et al. Lopinavir: acute exposure inhibits P-glycoprotein; extended exposure induces P-glycoprotein. AIDS 2003; 17: 1092–4

    Article  PubMed  Google Scholar 

  36. Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately upregulate these proteins in human colon carcinoma cells. Mol Pharmacol 1996; 49: 311–8

    PubMed  CAS  Google Scholar 

  37. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin [published erratum appears in J Clin Invest 2002; 110: 571]. J Clin Invest 1999; 104: 147–53

    Article  PubMed  CAS  Google Scholar 

  38. Penzak SR, Shen JM, Alfaro RM, et al. Ritonavir decreases the nonrenal clearance of digoxin in healthy volunteers with known MDR1 genotypes. Ther Drug Monit 2004; 26: 322–30

    Article  PubMed  CAS  Google Scholar 

  39. Gooding AE, Woolley JL. Plasma protein binding and erythrocyte partitioning studies in rat, dog and humans with 141W94 (RD1996/00626/00). Research Triangle Park (NC); Glaxo-SmithKline, 1996 (Data on file)

  40. Studenberg SD, Woolley JL. Determination of human plasma protein binding interaction between amprenavir (141W94) and the amprenavir metabolites GW549445X and GW549444A (RD2001/00984/00). Research Triangle Park (NC); Glaxo-SmithKline, 2001 (Data on file)

  41. Studenberg SD, Woolley JL. Determination of human plasma protein binding interaction between amprenavir (141W94) and ritonavir, delavirdine, and efavirenz (RD2001/00527/01). Research Triangle Park (NC); GlaxoSmithKline, 2001 (Data on file)

  42. Studenberg SD, Gooding AE, Woolley JL. Human plasma protein binding interaction between 141W94 and diazepam, Verapamil, and indomethacin in vitro (RD1997/01807/00). Research Triangle Park (NC); GlaxoSmithKline, 1997 (Data on file)

  43. Gathe JC, Ive P, Wood R, et al. SOLO: 48-week efficacy and safety comparison of once-daily fosamprenavir/ritonavir versus twice-daily nelfinavir in naive HIV-1-infected patients. AIDS 2004; 18: 1529–37

    Article  PubMed  CAS  Google Scholar 

  44. Elston R, Yates P, Tisdale M, et al. GW433908 (908)/ritonavir (r): 48-week results in Pi-experienced subjects: a retrospective analysis of virologic response based on baseline genotype and phenotype [abstract no. MoOrB1055]. XV International AIDS Conference; 2004 Jul 11–16; Bangkok

    Google Scholar 

  45. Boehlert CC, Sinhababu AK, Woolley JL. Identification of the cytochrome P450 isozymes involved in the metabolism of 141W94 (RD1998/00349/00). Research Triangle Park (NC); GlaxoSmithKline, 1998 (Data on file)

  46. Studenberg SD, Woolley JL. Inhibition of human microsomal cytochrome P450 isozymes by 141W94 (RD1996/00356/00). Research Triangle Park (NC); GlaxoSmithKline, 1996 (Data on file)

  47. Polk RE, Crouch MA, Israel DS, et al. Pharmacokinetic interaction between ketoconazole and amprenavir after single doses in healthy men. Pharmacotherapy 1999; 19: 1378–84

    Article  PubMed  CAS  Google Scholar 

  48. Polk RE, Brophy DF, Israel DS, et al. Pharmacokinetic interaction between amprenavir and rifabutin or rifampin in healthy males. Antimicrob Agents Chemother 2001; 45: 502–8

    Article  PubMed  CAS  Google Scholar 

  49. Wire MB, Baker KL, Moore KHP, et al. The pharmacokinetic (PK) interaction of GW433908 (908) with atorvastatin (ATO) and 908/ritonavir (RTV) with ATO (APV10013) [abstract no. A-1622]. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy; 2003 Sep 14–17; Chicago (IL)

    Google Scholar 

  50. De Jesus E, Piliero P, Summers K, et al. Evaluation of the drug interaction between fosamprenavir (FPV), FPV plus ritonavir (RTV) and nevirapine (NVP) in HIV-infected patients (APV10014) [abstract no. A-447]. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct 30–Nov 2; Washington, DC

    Google Scholar 

  51. Rosemond J, Moore L. In vitro investigation of human PXR activation by GI268188A (amprenavir), GW433908A (fosamprenavir), and GW433908X (fosamprenavir) [RD2003/01212/00]. Research Triangle Park (NC); GlaxoSmithKline, 2003 (Data on file)

  52. Moore JT, Kliewer SA. Use of the nuclear receptor PXR to predict drug interactions. Toxicology 2000; 153: 1–10

    Article  PubMed  CAS  Google Scholar 

  53. Quattrochi LC, Guzelian PS. CYP3A regulation: from pharmacology to nuclear receptors. Drug Metab Dispos 2001; 29: 615–22

    PubMed  CAS  Google Scholar 

  54. Jones SA, Moore LB, Shenk JL, et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 2000; 14: 27–39

    Article  PubMed  CAS  Google Scholar 

  55. Luo G, Cunningham M, Kim S, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos 2002; 30: 795–804

    Article  PubMed  CAS  Google Scholar 

  56. de Serres M. RHuCYP3A4-like immunoreactivity in rat liver microsomes from 3-month amprenavir (TOX771) and 1-month GW433908G (R40427) toxicology studies (RD1999/02460/02). Research Triangle Park (NC); GlaxoSmithKline, 1999 (Data on file)

  57. Gardner GH, Wall HG. GW433908G: a 4-week oral gavage toxicity study in Han Wistar rats (RD1998/02573/00). Research Triangle Park (NC); GlaxoSmithKline, 1998 (Data on file)

  58. Boehlert CC, Studenberg SD, Woolley JL. A re-examination of hepatic microsomal activity in rats given 141W94 in a 3-month toxicity study (RD1998/00348/00). Research Triangle Park (NC); GlaxoSmithKline, 1998 (Data on file)

  59. Tran JQ, Petersen C, Garrett M, et al. Pharmacokinetic interaction between amprenavir and delavirdine: evidence of induced clearance by amprenavir. Clin Pharmacol Ther 2002; 72: 615–26

    Article  PubMed  CAS  Google Scholar 

  60. Justesen US, Klitgaard NA, Brosen K, et al. Pharmacokinetic interaction between amprenavir and delavirdine after multipledose administration in healthy volunteers. Br J Clin Pharmacol 2003; 55: 100–6

    Article  PubMed  CAS  Google Scholar 

  61. Kashuba AD, Tierney C, Downey GF, et al. Combining fosamprenavir with lopinavir/ritonavir substantially reduces amprenavir and lopinavir exposure: ACTG protocol A5143 results. AIDS 2005; 19: 145–52

    Article  PubMed  CAS  Google Scholar 

  62. Taburet AM, Raguin G, Le Tiec C, et al. Interactions between amprenavir and the lopinavir-ritonavir combination in heavily pretreated patients infected with human immunodeficiency virus. Clin Pharmacol Ther 2004; 75: 310–23

    Article  PubMed  CAS  Google Scholar 

  63. Griffith S, Ledford E, Lou Y, et al. A phase IIIb/IV, randomized, open label, multicenter, pilot trial to explore the safety and tolerability of GW433908 ± ritonavir (1400mg twice daily or 700mg/100mg twice daily) when used in combination with a zidovudine-containing regimen (Trizivir® or Combivir® twice daily) over a 24-week period in antiretroviral therapy-naive HIV-1 infected subjects (AZL30006) [RM2003/00478/00]. Research Triangle Park (NC); GlaxoSmithKline, 2004 (Data on file)

  64. Baker K, Shelton M, Wire MB, et al. A pivotal, phase I, openlabel, randomized, four-period, single and multiple dose, crossover study to assess the bioequivalence of two GW433908 700mg oral film-coated tablet variants following administration of single 1400mg doses and following administration of 1400mg bid for 14 days in healthy adult subjects (APV10023) [RM2004/00109/01]. Research Triangle Park (NC); GlaxoSmithKline, 2004 (Data on file)

  65. Shelton MJ, Ford SL, Wire MB, et al. Co-administration of esomeprazole (ESO) with fosamprenavir (FPV) has no impact on steady-state plasma amprenavir (APV) pharmacokinetics (APV10031) [abstract no. 24, poster no. 2.17]. 6th International Workshop on Clinical Pharmacology of HIV Therapy; 2005 April 28–30; Quebec City (QC)

  66. Kim Y, Hu C, Wire M, et al. Steady-state amprenavir pharmacokinetics are similar between healthy and HIV-infected subjects following GW433908 ± ritonavir using population pharmacokinetic analysis [abstract no. 7.5]. 5th International Workshop on Clinical Pharmacology of HIV Therapy; 2004 Apr 1–3; Rome

  67. Wire MB, Ballow C, Preston SL, et al. Pharmacokinetics and safety of GW433908 and ritonavir, with and without efavirenz, in healthy volunteers. AIDS 2004; 18: 897–907

    Article  PubMed  CAS  Google Scholar 

  68. Baker K, Lou Y, Wire MB, et al. A phase I, open-label, randomized, two-period, balanced crossover, study to compare steady-state plasma amprenavir pharmacokinetics following administration of two GW433908 tablet variants, each administered as 1400mg qd in combination with ritonavir 200mg qd in healthy adult subjects (APV10029) [RM2003/00494/00]. Research Triangle Park (NC); GlaxoSmithKline, 2004 (Data on file)

  69. Ruane P, Wire M, Shelton M, et al. Plasma amprenavir (APV) pharmacokinetics (PK) and safety following co-administration of fosamprenavir (FPV) with a reduced ritonavir (RTV) dose once daily (qd) (COL10053) [abstract no. A-449]. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct 30–Nov 2; Washington, DC

    Google Scholar 

  70. Amir-Ansari YA, Elston R, Granier C, et al. A phase III, randomised, multicenter, parallel group, open-label, three arm study to compare the efficacy and safety of two dosing regimens of GW433908/ritonavir (700mg/100mg twice daily or 1400mg/200mg once daily) versus lopinavir/ritonavir (400mg/100mg twice daily) for 48 weeks in protease inhibitor experienced HIV-infected adults experiencing virological failure (APV30003) [GM2003/00236/00]. Research Triangle Park (NC); GlaxoSmithKline, 2003 (Data on file)

  71. Wire MB, Naderer OJ, Masterman AL, et al. The pharmacokinetic (PK) interaction between GW433908 (908) with lopinavir (LPV)/ritonavir (RTV) (APV10011 and APV10012) [abstract no. 612]. 11th Conference on Retroviruses and Opportunistic Infections; 2004 Feb 8–11; San Francisco (CA)

    Google Scholar 

  72. Wire MB, Shelton MJ, Lou Y, et al. Ritonavir increases plasma amprenavir (APV) exposure to a similar extent when coadministered with either fosamprenavir (FPV) or APV (APV10022) [abstract no. A-450]. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct 30–Nov 2; Washington, DC

    Google Scholar 

  73. Wire MB, Shelton MJ, Lou Y, et al. The pharmacokinetic interaction between fosamprenavir/ritonavir and atazanavir in healthy adult subjects (APV10018) [abstract no. PE4.3/9]. 10th European AIDS Conference; 2005 Nov 17–20; Dublin

    Google Scholar 

  74. Borland J, Yuen G, Wire MB, et al. A phase I, open-label, single-sequence, drug-drug interaction study comparing ketoconazole and amprenavir pharmacokinetics following administration of ketoconazole 200mg qd for 4 days, fosamprenavir 700mg bid + ritonavir 100mg bid for 10 days, and ketoconazole 200mg qd + fosamprenavir 700mg bid + ritonavir 100mg bid for 4 days in healthy adult subjects (APV10026) [RM2005/00398/00]. Research Triangle Park (NC): GlaxoSmithKline, 2005 (Data on file)

  75. Shelton MJ, Wire MB, Lou Y, et al. Pharmacokinetic and safety evaluation of high dose combinations of fosamprenavir (FPV) and ritonavir (RTV) (APV10028) [abstract no. A-451]. 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 Oct 30–Nov 2; Washington, DC

    Google Scholar 

  76. Pulido F, Katlama C, Marquez M, et al. A randomised study investigating the efficacy and safety of amprenavir in combination with low-dose ritonavir in protease inhibitor-experienced HIV-infected adults. HIV Med 2004; 5: 296–302

    Article  PubMed  CAS  Google Scholar 

  77. Cattelan A, Pulido F, Stark T, et al. Switch to amprenavir/ritonavir demonstrated superior efficacy compared to the continuation of a protease inhibitor in multiple PI-experienced HIV-1 infected subjects with virological failure [abstract no. P1]. 2nd International HIV Workshop On Management of Treatment Experienced Patients; 2002 Sep 25–27; San Diego (CA)

  78. Gathe J, Wood R, Beilos N, et al. Sustained virologic and immunologic response over 120 weeks in antiretroviral therapy (ART)-naîve subjects receiving fosamprenavir/ritonavir (FPV/r) qd [abstract no. 61]. HIV DART 2004: Frontiers in Drug Development for Antiretroviral Therapies; 2004 Dec 12–16; Montego Bay

  79. Boffito M, Dickinson L, Hill A, et al. Steady-state pharmacokinetics of saquinavir hard-gel/ritonavir/fosamprenavir in HIV-1-infected patients. J Acquir Immune Defic Syndr 2004; 37: 1376–84

    Article  PubMed  CAS  Google Scholar 

  80. Rhame FS, Rawlins SL, Petruschke RA, et al. Pharmacokinetics of indinavir and ritonavir administered at 667 and 100 milligrams, respectively, every 12 hours compared with indinavir administered at 800 milligrams every 8 hours in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2004; 48: 4200–8

    Article  PubMed  CAS  Google Scholar 

  81. Hu C, Moore KHP, Kim Y, et al. Statistical issues in a modeling approach to assessing bioequivalence or PK similarity with presence of sparsely sampled subjects. J Pharmacokinet Pharmacodyn 2004; 31: 321–39

    Article  PubMed  CAS  Google Scholar 

  82. Veronese L, Rautaureau J, Sadler BM, et al. Single-dose pharmacokinetics of amprenavir, a human immunodeficiency virus type 1 protease inhibitor, in subjects with normal or impaired hepatic function. Antimicrob Agents Chemother 2000; 44: 821–6

    Article  PubMed  CAS  Google Scholar 

  83. Rodriguez-French A, Boghossian J, Gray GE, et al. The NEAT study: a 48-week open-label study to compare the antiviral efficacy and safety of GW433908 versus nelfinavir in antiretroviral therapy-naîve HIV-1 infected patients. J Acquir Immune Defic Syndr 2004; 35: 22–32

    Article  PubMed  CAS  Google Scholar 

  84. De Jesus E, La Marca A, Sension M, et al. The CONTEXT study: efficacy and safety of GW433908/RTV in PI-experienced subjects with virological failure (24 week results) [abstract no. 178; oral presentation]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 Feb 10–14; Boston (MA)

    Google Scholar 

  85. Sadler BM, Gillotin C, Lou Y, et al. Pharmacokinetic and pharmacodynamic study of the human immunodeficiency virus protease inhibitor amprenavir after multiple oral dosing. Antimicrob Agents Chemother 2001; 45: 30–7

    Article  PubMed  CAS  Google Scholar 

  86. Xu F, Tomkins S, Yates P, et al. Genotypic inhibitory quotient predicts response to fosamprenavir/ritonavir [abstract no. P141]. 7th International Congress on Drug Therapy in HIV Infection; 2004 Nov 14–18; Glasgow

  87. Marcelin A-G, Lamotte C, Delaugerre C, et al. Genotypic inhibitor quotient as predictor of virological response to ritonavir-amprenavir in human immunodeficiency type 1 protease inhibitor-experienced patients. Antimicrob Agents Chemother 2003; 47: 594–600

    Article  PubMed  CAS  Google Scholar 

  88. New drug application for Lexiva. Research Triangle Park (NC); GlaxoSmithKline, 2002 (Data on file)

  89. Bertz R, Foit C, Burt D, et al. Assessment of the multiple dose pharmacokinetic interaction between Kaletra™ (lopinavir/ritonavir) and amprenavir in healthy volunteers [abstract no. 7.6]. 3rd International Workshop on Clinical Pharmacology of HIV Therapy; 2002 Apr 11–13; Washington, DC

  90. Sadler BM, Gillotin C, Lou Y, et al. Pharmacokinetic study of human immunodeficiency virus protease inhibitors used in combination with amprenavir. Antimicrob Agents Chemother 2001; 45: 3663–8

    Article  PubMed  CAS  Google Scholar 

  91. Walmsley S, Leith K, Katlama C, et al. Pharmacokinetics and safety of tipranavir/ritonavir (TPV/r) alone or in combination with saquinavir (SQV), amprenavir (APV), or lopinavir (LPV): interim analysis of BI1182.51 [abstract no. We-OrB1236]. XVth International AIDS Conference; 2004 Jul 11–16; Bangkok

    Google Scholar 

  92. Falloon J, Piscitelli S, Vogel S, et al. Combination therapy with amprenavir, abacavir, and efavirenz in human immunodeficiency virus (HIV)-infected patients failing a proteaseinhibitor regimen: pharmacokinetic drug interactions and antiviral activity. Clin Infect Dis 2000; 30: 313–8

    Article  PubMed  CAS  Google Scholar 

  93. Wood R, Wire MB, Lancaster CT, et al. An assessment of plasma amprenavir (APV) pharmacokinetics (PK) following administration of agenerase (APV) and low dose ritonavir (RTV) qd in combination with efavirenz (EFV) in HIV-infected adult subjects (COL30500) [abstract no. 2.6]. 3rd International Workshop on Clinical Pharmacology of HIV Therapy; 2002 Apr 11–13; Washington, DC

  94. Piscitelli S, Bechtel C, Sadler B, et al. The addition of a second protease inhibitor eliminates amprenavir-efavirenz drug interactions and increases plasma amprenavir concentrations [abstract no. 78]. 7th Conference on Retroviruses and Opportunistic Infections; 2000 Jan 30–Feb 2; San Francisco (CA)

    Google Scholar 

  95. Sadler DM, Wald MA, Lou Y, et al. The single-dose pharmacokinetics of 141W94, zidovudine and lamivudine when administered alone and in 2 and 3 drug combinations [abstract no. 257]. 6th European Conference on Clinical Aspects and Treatment of HIV Infection; 1997 Oct 11–15; Hamburg

    Google Scholar 

  96. Kurowski M, Walli R, Breske A, et al. Coadministration of tenofovir 300mg qd with fosamprenavir/ritonavir 1400/100mg qd or 1400/200mg qddoesnot affect amprenavir pharmacokinetics [abstract no. 10, poster no. 2.3]. 6th International Workshop on Clinical Pharmacology of HIV Therapy; 2005 Apr 28–30; Quebec City (QC)

  97. Ford SL, Wire MB, Lou Y, et al. Effect of antacids and ranitidine on the single-dose pharmacokinetics of fosamprenavir. Antimicrob Agents Chemother 2005; 49: 467–9

    Article  PubMed  CAS  Google Scholar 

  98. Brophy DF, Israel DS, Pastor A, et al. Pharmacokinetic interaction between amprenavir and Clarithromycin in healthy male volunteers. Antimicrob Agents Chemother 2000; 44: 978–84

    Article  PubMed  CAS  Google Scholar 

  99. McDowell J, Denning J, Lou Y. A study to investigate whether there is a pharmacokinetic interaction between amprenavir and an oral contraceptive following their co-administration to healthy females (PRO10018) [RM2000/00240/00]. Research Triangle Park (NC); GlaxoSmithKline, 2000 (Data on file)

  100. Hendrix CW, Wakeford J, Wire MB, et al. Pharmacokinetics and pharmacodynamics of methadone enantiomers after coadministration with amprenavir in opioid-dependent subjects. Pharmacotherapy 2004; 24: 1110–21

    Article  PubMed  CAS  Google Scholar 

  101. Chen Y, Ford SL, Shelton MJ, et al. Pharmacokinetic interaction between rifabutin (RFB) and fosamprenavir (FPV)/ritonavir (RTV) in healthy subjects (APV10025) [abstract no. A-1199]. 45th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2005 Dec 16–19; Washington, DC

    Google Scholar 

  102. Hsu A, Isaacson J, Brun S, et al. Pharmacokinetic-pharmacodynamic analysis of lopinavir-ritonavir in combination with efavirenz and two nucleoside reverse transcriptase inhibitors in extensively pretreated human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 2003; 47: 350–9

    Article  PubMed  CAS  Google Scholar 

  103. Preston S, Piliero P, O’Mara E, et al. Evaluation of the steady-state interaction between atazanavir (ATV) and efavirenz (EFV) [abstract no. 443]. 9th Conference on Retroviruses and Opportunistic Infections; 2002 Feb 24–28; Seattle (WA)

    Google Scholar 

  104. Schooley R, Haubrich R, Sension M, et al. Efficacy, safety, and amprenavir pharmacokinetic responses of twice-daily amprenavir and low-dose ritonavir regimens in HIV-1 infected, treatment-experienced adults for 24 weeks (ESS40006) [abstract no. I-1924]. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy; 2001 Dec 16–20; Chicago (IL)

    Google Scholar 

  105. Sustiva (efavirenz) complete prescribing information; Princeton (NJ); Bristol-Myers Squibb Co.; 2005

  106. Raguin G, Chene G, Morand-Joubert L, et al. Salvage therapy with amprenavir, lopinavir and ritonavir 200 mg/d or 400 mg/d in HIV-infected patients in virological failure. Antivir Ther 2004; 9: 615–25

    PubMed  CAS  Google Scholar 

  107. De Luca A, Baldini F, Cingolani A, et al. Deep salvage with amprenavir and lopinavir/ritonavir: correlation of pharmacokinetics and drug resistance with pharmacodynamics. J Acquir Immune Defic Syndr 2004; 35: 359–66

    Article  PubMed  Google Scholar 

  108. Collier A, Tierney C, Downey G, et al. Randomized study of twice-daily lopinavir/ritonavir (LPV/r) or fosamprenavir (FPV) + ritonavir (FPV + r) vs LPV/r + FPV (with tenofovir [TDF] and nucleosides [NRTIs]) as rescue therapy [abstract no. 577]. 12th Conference on Retroviruses and Opportunistic Infections; 2005 Feb 22–25; Boston (MA)

    Google Scholar 

  109. Ruxrungtham K, Boyd M, Bellibas SE, et al. Lack of interaction between enfuvirtide and ritonavir or ritonavir-boosted saquinavir in HIV-1-infected patients. J Clin Pharmacol 2004; 44: 793–803

    Article  PubMed  CAS  Google Scholar 

  110. Boyd MA, Zhang X, Dorr A, et al. Lack of enzyme-inducing effect of rifampicin on the pharmacokinetics of enfuvirtide. J Clin Pharmacol 2000; 43: 1382–91

    Google Scholar 

  111. Blum RA, Shi H, Karol MD, et al. The comparative effects of lansoprazole, omeprazole and ranitidine in suppressing gastric acid secretion. Clin Ther 1997; 19: 1013–23

    Article  PubMed  CAS  Google Scholar 

  112. Watson RGP, Johnston BT, Tham TCK, et al. Effervescent and standard formulations of ranitidine: a comparison of their pharmacokinetics and pharmacology. Aliment Pharmacol Ther 1996; 10: 913–8

    Article  PubMed  CAS  Google Scholar 

  113. Lind T, Rydberg L, Kyleback A, et al. Esomeprazole provides improved acid control vs omeprazole in patients with symptoms of gastro-oesophageal reflux disease. Aliment Pharmacol Ther 2000; 14: 861–7

    Article  PubMed  CAS  Google Scholar 

  114. Guess WP, Mathot MAA, Mulder PGH, et al. Pharmacodynamics and kinetics of omeprazole MUPS 20mg and pantoprazole 40mg during repeated administration in Helicobacter pylorinegative subjects. Aliment Pharmacol Ther 2000; 14: 1057–64

    Article  Google Scholar 

  115. Warrington S, Baisley K, Boyce M, et al. Effects of rabeprazole, 20mg, or esomeprazole, 20mg, on 23-h intragastric pH and serum gastrin in healthy subjects. Aliment Pharmacol Ther 2002; 16: 1301–7

    Article  PubMed  CAS  Google Scholar 

  116. Ouellet D, Hsu A, Granneman GR, et al. Pharmacokinetic interaction between ritonavir and Clarithromycin. Clin Pharmacol Ther 1998; 64: 355–62

    Article  PubMed  CAS  Google Scholar 

  117. Bertz R, Wong C, Carothers L, et al. Evaluation of the pharmacokinetics of multiple dose ritonavir and ketoconazole in combination [abstract]. Clin Pharmacol Ther 1998; 63: 230

    Google Scholar 

  118. VFEND (voriconazole) complete prescribing information; New York; Pfizer Inc.; 2005

  119. Gibbs MA, Thummel KE, Shen DD, et al. Inhibition of cytochrome P-450 3A (CYP3A) in human intestinal and liver microsomes: comparison of Ki values and impact of CYP3A5 expression. Drug Metab Dispos 1999; 27: 180–7

    PubMed  CAS  Google Scholar 

  120. Cato A, Cavanaugh J, Shi H, et al. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 1998; 63: 414–21

    Article  PubMed  CAS  Google Scholar 

  121. Bertz R, Hsu A, Lam W, et al. Pharmacokinetic interaction between lopinavir/ritonavir (ABT-378/r) and other non-HIV drugs[abstract no. P291]. 5th International Congress on Drug Therapy in HIV Infection; 2000 Oct 22–26; Glasgow

  122. Burger D, Agarwala S, Child M, et al. Effect of rifampin on steady-state pharmacokinetics of atazanavir and ritonavir in healthy subjects [abstract no. 657]. 12th Conference on Retroviruses and Opportunistic Infections; 2005 Feb 22–25; Boston (MA)

    Google Scholar 

  123. la Porte CJL, Colbers EPH, Bertz R, et al. Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers. Antimicrob Agents Chemother 2004; 48: 1553–60

    Article  PubMed  Google Scholar 

  124. Hsu A, Granneman GR, Carothers L, et al. Ritonavir does not increase methadone exposure in healthy volunteers [abstract no. 342]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; Chicago (IL)

    Google Scholar 

  125. Flonase (fluticasone proprionate) complete prescribing information; Research Triangle Park (NC); GlaxoSmithKline Inc.; 2004 Mar

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. All authors are employees of Glaxo-SmithKline, the company that manufactures and markets fosamprenavir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Beth Wire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wire, M.B., Shelton, M.J. & Studenberg, S. Fosamprenavir. Clin Pharmacokinet 45, 137–168 (2006). https://doi.org/10.2165/00003088-200645020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200645020-00002

Keywords

Navigation