Skip to main content
Log in

Expression of Adenosine Triphosphate-Binding Cassette (ABC) Drug Transporters in Peripheral Blood Cells

Relevance for Physiology and Pharmacotherapy

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Adenosine triphosphate-binding cassette (ABC)-type transport proteins were initially described for their ability to reduce intracellular concentrations of anti-cancer compounds, thereby conferring drug resistance. In recent years, expression of this type of proteins has also been reported in numerous cell types under physiological conditions; here, these transporters are often reported to alter systemic and local drug disposition (e.g. in the brain or the gastrointestinal tract). In this context, peripheral blood cells have also been found to express several ABC-type transporters. While erythrocytes mainly express multidrug resistance protein (MRP) 1, MRP4 and MRP5, which are discussed with regard to their involvement in glutathione homeostasis (MRP1) and in the efflux of cyclic nucleotides (MRP4 and MRP5), leukocytes also express P-glycoprotein and breast cancer resistance protein. In the latter cell types, the main function of efflux transporters may be protection against toxins, as these cells demonstrate a very high turnover rate. In platelets, only two ABC transporters have been described so far. Besides MRP1, platelets express relatively high amounts of MRP4 not only in the plasma membrane but also in the membrane of dense granules, suggesting relevance for mediator storage.

In addition to its physiological function, ABC transporter expression in these structures can be of pharmacological relevance since all systemic drugs reach their targets via circulation, thereby enabling interaction of the therapeutic agent with peripheral blood cells. Moreover, both intended effects and unwanted side effects occur in peripheral blood cells, and intracellular micropharmacokinetics can be affected by these transport proteins. The present review summarises the data available on expression of ABC transport proteins in peripheral blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11(7): 1156–66

    Article  PubMed  CAS  Google Scholar 

  2. Kage K, Tsukahara S, Sugiyama T, et al. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 2002; 97(5): 626–30

    Article  PubMed  CAS  Google Scholar 

  3. de Graaf D, Sharma RC, Mechetner EB, et al. P-glycoprotein confers methotrexate resistance in 3T6 cells with deficient carrier-mediated methotrexate uptake. Proc Natl Acad Sci U S A 1996; 93(3): 1238–42

    Article  PubMed  Google Scholar 

  4. de Lannoy IA, Silverman M. The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 1992; 189(1): 551–7

    Article  PubMed  Google Scholar 

  5. Gramatte T, Oertel R. Intestinal secretion of intravenous talinolol is inhibited by luminal R-verapamil. Clin Pharmacol Ther 1999; 66(3): 239–45

    Article  PubMed  CAS  Google Scholar 

  6. Hendricks CB, Rowinsky EK, Grochow LB, et al. Effect of P-glycoprotein expression on the accumulation and cytotoxicity of topotecan (SK&F 104864), a new camptothecin analogue. Cancer Res 1992; 52(8): 2268–78

    PubMed  CAS  Google Scholar 

  7. Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101(2): 289–94

    Article  PubMed  CAS  Google Scholar 

  8. Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A 1997; 94(5): 2031–5

    Article  PubMed  CAS  Google Scholar 

  9. Ueda K, Cardarelli C, Gottesman MM, et al. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A 1987; 84(9): 3004–8

    Article  PubMed  CAS  Google Scholar 

  10. Verschraagen M, Koks CH, Schellens JH, et al. P-glycoprotein system as a determinant of drug interactions: the case of digoxin-verapamil. Pharmacol Res 1999; 40(4): 301–6

    Article  PubMed  CAS  Google Scholar 

  11. Cole SP, Sparks KE, Fraser K, et al. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 1994; 54(22): 5902–10

    PubMed  CAS  Google Scholar 

  12. Hooijberg JH, Broxterman HJ, Kool M, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res 1999; 59(11): 2532–5

    PubMed  CAS  Google Scholar 

  13. Tamai I, Yamashita J, Kido Y, et al. Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier. J Pharmacol Exp Ther 2000; 295(1): 146–52

    PubMed  CAS  Google Scholar 

  14. Ritter CA, Jedlitschky G, Meyer zu Schwabedissen H, et al. Cellular export of drugs and signaling molecules by the ATP-binding cassette transporters MRP4 (ABCC4) and MRP5 (ABCC5). Drug Metab Rev 2005; 37(1): 253–78

    Article  PubMed  CAS  Google Scholar 

  15. Allen JD, Van Dort SC, Buitelaar M, et al. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res 2003; 63(6): 1339–44

    PubMed  CAS  Google Scholar 

  16. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 1998; 95(26): 15665–70

    Article  PubMed  CAS  Google Scholar 

  17. Maliepaard M, van Gastelen MA, de Jong LA, et al. Overex-pression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 1999; 59(18): 4559–63

    PubMed  CAS  Google Scholar 

  18. Volk EL, Farley KM, Wu Y, et al. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 2002; 62(17): 5035–40

    PubMed  CAS  Google Scholar 

  19. Wang X, Furukawa T, Nitanda T, et al. Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol 2003; 63(1): 65–72

    Article  PubMed  CAS  Google Scholar 

  20. van der Sandt I, Vos CM, Nabulsi L, et al. Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood-brain barrier. AIDS 2001; 15(4): 483–91

    Article  PubMed  Google Scholar 

  21. Tanaka K, Hirai M, Tanigawara Y, et al. Relationship between expression level of P-glycoprotein and daunorubicin transport in LLC-PK1 cells transfected with human MDR1 gene. Biochem Pharmacol 1997; 53(5): 741–6

    Article  PubMed  CAS  Google Scholar 

  22. Wils P, Phung-Ba V, Warnery A, et al. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol 1994; 48(7): 1528–30

    Article  PubMed  CAS  Google Scholar 

  23. Luo FR, Paranjpe PV, Guo A, et al. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab Dispos 2002; 30(7): 763–70

    Article  PubMed  CAS  Google Scholar 

  24. Tanigawara Y, Okamura N, Hirai M, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther 1992; 263(2): 840–5

    PubMed  CAS  Google Scholar 

  25. Pauli-Magnus C, Murdter T, Godel A, et al. P-glycoprotein-mediated transport of digitoxin, alpha-methyldigoxin and beta-acetyldigoxin. Naunyn Schmiedebergs Arch Pharmacol 2001; 363(3): 337–43

    Article  PubMed  CAS  Google Scholar 

  26. Chen C, Mireles RJ, Campbell SD, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos 2005; 33(4): 537–46

    Article  PubMed  CAS  Google Scholar 

  27. Soldner A, Benet LZ, Mutschler E, et al. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and caco-2 cell monolayers. Br J Pharmacol 2000; 129(6): 1235–43

    Article  PubMed  CAS  Google Scholar 

  28. Yusa K, Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res 1989; 49(18): 5002–6

    PubMed  CAS  Google Scholar 

  29. Bello-Reuss E, Ernest S, Holland OB, et al. Role of multidrug resistance P-glycoprotein in the secretion of aldosterone by human adrenal NCI-H295 cells. Am J Physiol Cell Physiol 2000; 278(6): C1256–65

    PubMed  CAS  Google Scholar 

  30. Yates CR, Chang C, Kearbey JD, et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res 2003; 20(11): 1794–803

    Article  PubMed  CAS  Google Scholar 

  31. Huang L, Hoffman T, Vore M. Adenosine triphosphate-dependent transport of estradiol-17beta (beta-D-glucuronide) in membrane vesicles by MDR1 expressed in insect cells. Hepatology 1998; 28(5): 1371–7

    Article  PubMed  CAS  Google Scholar 

  32. Kim WY, Benet LZ. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res 2004; 21(7): 1284–93

    Article  PubMed  CAS  Google Scholar 

  33. Wandel C, Kim R, Wood M, et al. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology 2002; 96(4): 913–20

    Article  PubMed  CAS  Google Scholar 

  34. Pan BF, Dutt A, Nelson JA. Enhanced transepithelial flux of cimetidine by Madin-Darby canine kidney cells overexpressing human P-glycoprotein. J Pharmacol Exp Ther 1994; 270(1): 1–7

    PubMed  CAS  Google Scholar 

  35. Karyekar CS, Eddington ND, Garimella TS, et al. Evaluation of P-glycoprotein-mediated renal drug interactions in an MDR1-MDCK model. Pharmacotherapy 2003; 23(4): 436–42

    Article  PubMed  CAS  Google Scholar 

  36. Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97(11): 2517–24

    Article  PubMed  CAS  Google Scholar 

  37. Takano M, Hasegawa R, Fukuda T, et al. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol 1998; 358(3): 289–94

    Article  PubMed  CAS  Google Scholar 

  38. Miyama T, Takanaga H, Matsuo H, et al. P-glycoprotein-mediated transport of itraconazole across the blood-brain barrier. Antimicrob Agents Chemother 1998; 42(7): 1738–44

    PubMed  CAS  Google Scholar 

  39. Saeki T, Ueda K, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 1993; 268(9): 6077–80

    PubMed  CAS  Google Scholar 

  40. Williams GC, Liu A, Knipp G, et al. Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob Agents Chemother 2002; 46(11): 3456–62

    Article  PubMed  CAS  Google Scholar 

  41. Conrad S, Kauffmann HM, Ito K, et al. A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. Pharmacogenetics 2002; 12(4): 321–30

    Article  PubMed  CAS  Google Scholar 

  42. Grant CE, Valdimarsson G, Hipfner DR, et al. Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res 1994; 54(2): 357–61

    PubMed  CAS  Google Scholar 

  43. Breuninger LM, Paul S, Gaughan K, et al. Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res 1995; 55(22): 5342–7

    PubMed  CAS  Google Scholar 

  44. Renes J, de Vries EG, Nienhuis EF, et al. ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br J Pharmacol 1999; 126(3): 681–8

    Article  PubMed  CAS  Google Scholar 

  45. Loe DW, Almquist KC, Deeley RG, et al. Multidrug resistance protein (MRP)-mediated transport of leukotriene C4 and chem-otherapeutic agents in membrane vesicles: demonstration of glutathione-dependent vincristine transport. J Biol Chem 1996; 271(16): 9675–82

    Article  PubMed  CAS  Google Scholar 

  46. Muller M, Meijer C, Zaman GJ, et al. Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proc Natl Acad Sci U S A 1994; 91(26): 13033–7

    Article  PubMed  CAS  Google Scholar 

  47. Leier I, Jedlitschky G, Buchholz U, et al. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 1994; 269(45): 27807–10

    PubMed  CAS  Google Scholar 

  48. Loe DW, Almquist KC, Cole SP, et al. ATP-dependent 17 beta-estradiol 17- (beta-D-glucuronide) transport by multidrug resistance protein (MRP): inhibition by cholestatic steroids. J Biol Chem 1996; 271(16): 9683–9

    Article  PubMed  CAS  Google Scholar 

  49. Qian YM, Song WC, Cui H, et al. Glutathione stimulates sulfated estrogen transport by multidrug resistance protein 1. J Biol Chem 2001; 276(9): 6404–11

    Article  PubMed  CAS  Google Scholar 

  50. Zelcer N, Reid G, Wielinga P, et al. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J 2003; 371(Pt 2): 361–7

    Article  PubMed  CAS  Google Scholar 

  51. Zaman GJ, Lankelma J, van Tellingen O, et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci U S A 1995; 92(17): 7690–4

    Article  PubMed  CAS  Google Scholar 

  52. Leier I, Jedlitschky G, Buchholz U, et al. ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem J 1996; 314(Pt 2): 433–7

    PubMed  CAS  Google Scholar 

  53. Rigato I, Pascolo L, Fernetti C, et al. The human multidrug-resistance-associated protein MRP1 mediates ATP-dependent transport of unconjugated bilirubin. Biochem J 2004; 383(Pt 2): 335–41

    PubMed  CAS  Google Scholar 

  54. Renes J, de Vries EE, Hooiveld GJ, et al. Multidrug resistance protein MRP1 protects against the toxicity of the major lipid peroxidation product 4-hydroxynonenal. Biochem J 2000; 350 Pt 2: 555–61

    Article  PubMed  CAS  Google Scholar 

  55. Jedlitschky G, Leier I, Buchholz U, et al. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem J 1997; 327(Pt 1): 305–10

    PubMed  CAS  Google Scholar 

  56. Dekkers DW, Comfurius P, Schroit AJ, et al. Transbilayer movement of NBD-labeled phospholipids in red blood cell membranes: outward-directed transport by the multidrug resistance protein 1 (MRP1). Biochemistry 1998; 37(42): 14833–7

    Article  PubMed  CAS  Google Scholar 

  57. Raggers RJ, van Helvoort A, Evers R, et al. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci 1999; 112(Pt 3): 415–22

    PubMed  CAS  Google Scholar 

  58. Jedlitschky G, Leier I, Buchholz U, et al. Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res 1996; 56(5): 988–94

    PubMed  CAS  Google Scholar 

  59. Huisman MT, Smit JW, Crommentuyn KM, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 2002; 16(17): 2295–301

    Article  PubMed  CAS  Google Scholar 

  60. Evers R, de Haas M, Sparidans R, et al. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer 2000; 83(3): 375–83

    Article  PubMed  CAS  Google Scholar 

  61. Cui Y, Konig J, Buchholz JK, et al. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 1999; 55(5): 929–37

    PubMed  CAS  Google Scholar 

  62. Hagmann W, Schubert J, Konig J, et al. Reconstitution of transport-active multidrug resistance protein 2 (MRP2; ABCC2) in proteoliposomes. Biol Chem 2002; 383(6): 1001–9

    Article  PubMed  CAS  Google Scholar 

  63. Kamisako T, Leier I, Cui Y, et al. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology 1999; 30(2): 485–90

    Article  PubMed  CAS  Google Scholar 

  64. Evers R, Kool M, van Deemter L, et al. Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J Clin Invest 1998; 101(7): 1310–9

    PubMed  CAS  Google Scholar 

  65. Zeng H, Liu G, Rea PA, et al. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res 2000; 60(17): 4779–84

    PubMed  CAS  Google Scholar 

  66. Kool M, van der LM, de Haas M, et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci U S A 1999; 96(12): 6914–9

    Article  PubMed  CAS  Google Scholar 

  67. Lee YM, Cui Y, Konig J, et al. Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics 2004; 14(4): 213–23

    Article  PubMed  CAS  Google Scholar 

  68. Zelcer N, van de WK, Hillebrand M, et al. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci U S A 2005; 102(20): 7274–9

    Article  PubMed  CAS  Google Scholar 

  69. Schuetz JD, Connelly MC, Sun D, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999; 5(9): 1048–51

    Article  PubMed  CAS  Google Scholar 

  70. Reid G, Wielinga P, Zelcer N, et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol 2003; 63(5): 1094–103

    Article  PubMed  CAS  Google Scholar 

  71. Adachi M, Sampath J, Lan LB, et al. Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J Biol Chem 2002; 277(41): 38998–9004

    Article  PubMed  CAS  Google Scholar 

  72. Tian Q, Zhang J, Tan TM, et al. Human multidrug resistance associated protein 4 confers resistance to camptothecins. Pharm Res 2005; 22(11): 1837–53

    Article  PubMed  CAS  Google Scholar 

  73. Chen ZS, Lee K, Walther S, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 2002; 62(11): 3144–50

    PubMed  CAS  Google Scholar 

  74. Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4: resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 2001; 276(36): 33747–54

    Article  PubMed  CAS  Google Scholar 

  75. Reid G, Wielinga P, Zelcer N, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A 2003; 100(16): 9244–9

    Article  PubMed  CAS  Google Scholar 

  76. Rius M, Hummel-Eisenbeiss J, Hofmann AF, et al. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am J Physiol Gastrointest Liver Physiol 2006; 290(4): G640–9

    Article  PubMed  CAS  Google Scholar 

  77. Wijnholds J, Mol CA, van Deemter L, et al. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci U S A 2000; 97(13): 7476–81

    Article  PubMed  CAS  Google Scholar 

  78. Pratt S, Shepard RL, Kandasamy RA, et al. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 2005; 4(5): 855–63

    Article  PubMed  CAS  Google Scholar 

  79. Wielinga P, Hooijberg JH, Gunnarsdottir S, et al. The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Res 2005; 65(10): 4425–30

    Article  PubMed  CAS  Google Scholar 

  80. Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 2000; 275(39): 30069–74

    Article  PubMed  CAS  Google Scholar 

  81. Belinsky MG, Chen ZS, Shchaveleva I, et al. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res 2002; 62(21): 6172–7

    PubMed  CAS  Google Scholar 

  82. Hopper-Borge E, Chen ZS, Shchaveleva I, et al. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 2004; 64(14): 4927–30

    Article  PubMed  CAS  Google Scholar 

  83. Chen ZS, Hopper-Borge E, Belinsky MG, et al. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol Pharmacol 2003; 63(2): 351–8

    Article  PubMed  CAS  Google Scholar 

  84. Guo Y, Kotova E, Chen ZS, et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′- (2′-phosphonylmethoxyethyl)adenine. J Biol Chem 2003; 278(32): 29509–14

    Article  PubMed  CAS  Google Scholar 

  85. Chen ZS, Guo Y, Belinsky MG, et al. Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol Pharmacol 2005; 67(2): 545–57

    Article  PubMed  CAS  Google Scholar 

  86. Oguri T, Bessho Y, Achiwa H, et al. MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther 2007; 6(1): 122–7

    Article  PubMed  CAS  Google Scholar 

  87. Wang X, Baba M. The role of breast cancer resistance protein (BCRP/ABCG2) in cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Antivir Chem Chemother 2005; 16(4): 213–6

    PubMed  CAS  Google Scholar 

  88. Chen ZS, Robey RW, Belinsky MG, et al. Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 2003; 63(14): 4048–54

    PubMed  CAS  Google Scholar 

  89. Nakagawa R, Hara Y, Arakawa H, et al. ABCG2 confers resistance to indolocarbazole compounds by ATP-dependent transport. Biochem Biophys Res Commun 2002; 299(4): 669–75

    Article  PubMed  CAS  Google Scholar 

  90. Brangi M, Litman T, Ciotti M, et al. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 1999; 59(23): 5938–46

    PubMed  CAS  Google Scholar 

  91. Breedveld P, Pluim D, Cipriani G, et al. The effect of low pH on breast cancer resistance protein (ABCG2)-mediated transport of methotrexate, 7-hydroxymethotrexate, methotrexate diglutamate, folic acid, mitoxantrone, topotecan, and resveratrol in in vitro drug transport models. Mol Pharmacol 2007; 71(1): 240–9

    Article  PubMed  CAS  Google Scholar 

  92. Huang L, Wang Y, Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos 2006; 34(5): 738–42

    Article  PubMed  CAS  Google Scholar 

  93. Pavek P, Merino G, Wagenaar E, et al. Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo-(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther 2005; 312(1): 144–52

    Article  PubMed  CAS  Google Scholar 

  94. Robey RW, Medina-Perez WY, Nishiyama K, et al. Overex-pression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 2001; 7(1): 145–52

    PubMed  CAS  Google Scholar 

  95. Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A 2002; 99(24): 15649–54

    Article  PubMed  CAS  Google Scholar 

  96. Suzuki M, Suzuki H, Sugimoto Y, et al. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 2003; 278(25): 22644–9

    Article  PubMed  CAS  Google Scholar 

  97. Srivastava SK, Beutler E. The transport of oxidized glutathione from human erythrocytes. J Biol Chem 1969; 244(1): 9–16

    PubMed  CAS  Google Scholar 

  98. Kondo T, Dale GL, Beutler E. Glutathione transport by inside-out vesicles from human erythrocytes. Proc Natl Acad Sci U S A 1980; 77(11): 6359–62

    Article  PubMed  CAS  Google Scholar 

  99. Prchal J, Srivastava SK, Beutler E. Active transport of GSSG from reconstituted erythrocyte ghosts. Blood 1975; 46(1): 111–7

    PubMed  CAS  Google Scholar 

  100. Di Simplicio P, Cacace MG, Lusini L, et al. Role of protein-SH groups in redox homeostasis: the erythrocyte as a model system. Arch Biochem Biophys 1998; 355(2): 145–52

    Article  PubMed  Google Scholar 

  101. Edwards CJ, Fuller J. Oxidative stress in erythrocytes. Comparative Haematology International 1996; 6(1): 24–31

    Article  CAS  Google Scholar 

  102. Pulaski L, Jedlitschky G, Leier I, et al. Identification of the multidrug-resistance protein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. Eur J Biochem 1996; 241(2): 644–8

    Article  PubMed  CAS  Google Scholar 

  103. Klokouzas A, Wu CP, van Veen HW, et al. cGMP and glutathione-conjugate transport in human erythrocytes. Eur J Biochem 2003; 270(18): 3696–708

    Article  PubMed  CAS  Google Scholar 

  104. Hirrlinger J, Dringen R. Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol 2005; 400: 395–409

    Article  PubMed  CAS  Google Scholar 

  105. Spitz DR, Sullivan SJ, Malcolm RR, et al. Glutathione dependent metabolism and detoxification of 4-hydroxy-2-nonenal. Free Radic Biol Med 1991; 11(4): 415–23

    Article  PubMed  CAS  Google Scholar 

  106. Board PG. Transport of glutathione S-conjugate from human erythrocytes. FEBS Lett 1981; 124(2): 163–5

    Article  PubMed  CAS  Google Scholar 

  107. Klokouzas A, Barrand MA, Hladky SB. Effects of clotrimazole on transport mediated by multidrug resistance associated protein 1 (MRP1) in human erythrocytes and tumour cells. Eur J Biochem 2001; 268(24): 6569–77

    Article  PubMed  CAS  Google Scholar 

  108. Wijnholds J, Evers R, van Leusden MR, et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med 1997; 3(11): 1275–9

    Article  PubMed  CAS  Google Scholar 

  109. Zeng H, Chen ZS, Belinsky MG, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res 2001; 61(19): 7225–32

    PubMed  CAS  Google Scholar 

  110. Tornhamre S, Sjolinder M, Lindberg A, et al. Demonstration of leukotriene-C4 synthase in platelets and species distribution of the enzyme activity. Eur J Biochem 1998; 251(1-2): 227–35

    Article  PubMed  CAS  Google Scholar 

  111. Bagrij T, Klokouzas A, Hladky SB, et al. Influences of glutathione on anionic substrate efflux in tumour cells expressing the multidrug resistance-associated protein, MRP1. Biochem Pharmacol 2001; 62(2): 199–206

    Article  PubMed  CAS  Google Scholar 

  112. Loe DW, Oleschuk CJ, Deeley RG, et al. Structure-activity studies of verapamil analogs that modulate transport of leukotriene C (4) and reduced glutathione by multidrug resistance protein MRP1. Biochem Biophys Res Commun 2000; 275(3): 795–803

    Article  PubMed  CAS  Google Scholar 

  113. Dekkers DW, Comfurius P, van Gool RG, et al. Multidrug resistance protein 1 regulates lipid asymmetry in erythrocyte membranes. Biochem J 2000; 350 Pt 2: 531–5

    Article  PubMed  CAS  Google Scholar 

  114. Flo K, Hansen M, Orbo A, et al. Effect of probenecid, verapamil and progesterone on the concentration-dependent and temperature-sensitive human erythrocyte uptake and export of guanosine 3′,5′cyclic monophosphate (cGMP). Scand J Clin Lab Invest 1995; 55(8): 715–21

    Article  PubMed  CAS  Google Scholar 

  115. Boadu E, Sager G. Binding characterization of a putative cGMP transporter in the cell membrane of human erythrocytes. Biochemistry 1997; 36(36): 10954–8

    Article  PubMed  CAS  Google Scholar 

  116. Sager G, Orbo A, Pettersen RH, et al. Export of guanosine 3′,5′-cyclic monophosphate (cGMP) from human erythrocytes characterized by inside-out membrane vesicles. Scand J Clin Lab Invest 1996; 56(4): 289–93

    Article  PubMed  CAS  Google Scholar 

  117. Boadu E, Sager G. ATPase activity and transport by a cGMP transporter in human erythrocyte ghosts and proteoliposome-reconstituted membrane extracts. Biochim Biophys Acta 2000; 1509(1–2): 467–74

    PubMed  CAS  Google Scholar 

  118. Wu CP, Woodcock H, Hladky SB, et al. cGMP (guanosine 3′,5′-cyclic monophosphate) transport across human erythrocyte membranes. Biochem Pharmacol 2005; 69(8): 1257–62

    Article  PubMed  CAS  Google Scholar 

  119. Boadu E, Sager G. Reconstitution of ATP-dependent cGMP transport into proteoliposomes by membrane proteins from human erythrocytes. Scand J Clin Lab Invest 2004; 64(1): 41–8

    Article  PubMed  CAS  Google Scholar 

  120. Zhou S, Zong Y, Ney PA, et al. Increased expression of the Abcg2 transporter during erythroid maturation plays a role in decreasing cellular protoporphyrin IX levels. Blood 2005; 105(6): 2571–6

    Article  PubMed  CAS  Google Scholar 

  121. Zhou S, Zong Y, Lu T, et al. Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques 2003; 35(6): 1248–52

    PubMed  CAS  Google Scholar 

  122. Tamura A, Watanabe M, Saito H, et al. Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 2006; 70(1): 287–96

    PubMed  CAS  Google Scholar 

  123. Sidhu AB, Uhlemann AC, Valderramos SG, et al. Decreasing pfmdr1 copy number in plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 2006; 194(4): 528–35

    Article  PubMed  Google Scholar 

  124. Woodrow CJ, Krishna S. Antimalarial drugs: recent advances in molecular determinants of resistance and their clinical significance. Cell Mol Life Sci 2006; 63(14): 1586–96

    Article  PubMed  CAS  Google Scholar 

  125. Riffkin CD, Chung R, Wall DM, et al. Modulation of the function of human MDR1 P-glycoprotein by the antimalarial drug mefloquine. Biochem Pharmacol 1996; 52(10): 1545–52

    Article  PubMed  CAS  Google Scholar 

  126. Abraham EH, Shrivastav B, Salikhova AY, et al. Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates: functional implications for adenosine triphosphate/drug cotransport in P-glycoprotein overexpressing tumor cells and in P-glycoprotein low-level expressing erythrocytes. Blood Cells Mol Dis 2001; 27(1): 181–200

    Article  PubMed  CAS  Google Scholar 

  127. Wu CP, Klokouzas A, Hladky SB, et al. Interactions of mefloquine with ABC proteins, MRP1 (ABCC1) and MRP4 (ABCC4) that are present in human red cell membranes. Biochem Pharmacol 2005; 70(4): 500–10

    Article  PubMed  CAS  Google Scholar 

  128. Oerlemans R, van der HJ, Vink J, et al. Acquired resistance to chloroquine in human CEM T cells is mediated by multidrug resistance-associated protein 1 and provokes high levels of cross-resistance to glucocorticoids. Arthritis Rheum 2006; 54(2): 557–68

    Article  PubMed  CAS  Google Scholar 

  129. Vezmar M, Georges E. Direct binding of chloroquine to the multidrug resistance protein (MRP): possible role for MRP in chloroquine drug transport and resistance in tumor cells. Biochem Pharmacol 1998; 56(6): 733–42

    Article  PubMed  CAS  Google Scholar 

  130. Kartner N, Riordan JR, Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983; 221(4617): 1285–8

    Article  PubMed  CAS  Google Scholar 

  131. Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987; 84(21): 7735–8

    Article  PubMed  CAS  Google Scholar 

  132. Chaudhary PM, Mechetner EB, Roninson IB. Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 1992; 80(11): 2735–9

    PubMed  CAS  Google Scholar 

  133. Drach D, Zhao S, Drach J, et al. Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 1992; 80(11): 2729–34

    PubMed  CAS  Google Scholar 

  134. Klimecki WT, Futscher BW, Grogan TM, et al. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 1994; 83(9): 2451–8

    PubMed  CAS  Google Scholar 

  135. Ludescher C, Pall G, Irschick EU, et al. Differential activity of P-glycoprotein in normal blood lymphocyte subsets. Br J Haematol 1998; 101(4): 722–7

    Article  PubMed  CAS  Google Scholar 

  136. Vasquez EM, Petrenko Y, Jacobssen V, et al. An assessment of P-glycoprotein expression and activity in peripheral blood lymphocytes of transplant candidates. Transplant Proc 2005; 37(1): 175–7

    Article  PubMed  CAS  Google Scholar 

  137. Meaden ER, Hoggard PG, Khoo SH, et al. Determination of P-gp and MRP1 expression and function in peripheral blood mononuclear cells in vivo. J Immunol Methods 2002; 262(1–2): 159–65

    Article  PubMed  CAS  Google Scholar 

  138. Aggarwal S, Tsuruo T, Gupta S. Altered expression and function of P-glycoprotein (170 kDa), encoded by the MDR 1 gene, in T cell subsets from aging humans. J Clin Immunol 1997; 17(6): 448–54

    Article  PubMed  CAS  Google Scholar 

  139. Donnenberg VS, Burckart GJ, Griffith BP, et al. P-glycoprotein (P-gp) is upregulated in peripheral T-cell subsets from solid organ transplant recipients. J Clin Pharmacol 2001; 41(12): 1271–9

    Article  PubMed  CAS  Google Scholar 

  140. Zhang J, Alston MA, Huang H, et al. Human T cell cytokine responses are dependent on multidrug resistance protein-1. Int Immunol 2006; 18(3): 485–93

    Article  PubMed  CAS  Google Scholar 

  141. Oselin K, Mrozikiewicz PM, Pahkla R, et al. Quantitative determination of the human MRP1 and MRP2 mRNA expression in FACS-sorted peripheral blood CD4+, CD8+, CD19+, and CD56+ cells. Eur J Haematol 2003; 71(2): 119–23

    Article  PubMed  CAS  Google Scholar 

  142. Drach J, Gsur A, Hamilton G, et al. Involvement of P-glycoprotein in the transmembrane transport of interleukin-2 (IL-2), IL-4, and interferon-gamma in normal human T lymphocytes. Blood 1996; 88(5): 1747–54

    PubMed  CAS  Google Scholar 

  143. Raghu G, Park SW, Roninson IB, et al. Monoclonal antibodies against P-glycoprotein, an MDR1 gene product, inhibit interleukin-2 release from PHA-activated lymphocytes. Exp Hematol 1996; 24(10): 1258–64

    PubMed  CAS  Google Scholar 

  144. Pawlik A, Baskiewicz-Masiuk M, Machalinski B, et al. Involvement of P-glycoprotein in the release of cytokines from peripheral blood mononuclear cells treated with methotrexate and dexamethasone. J Pharm Pharmacol 2005; 57(11): 1421–5

    Article  PubMed  CAS  Google Scholar 

  145. Pawlik A, Baskiewicz-Masiuk M, Machalinski B, et al. Involvement of C3435T and G2677T multidrug resistance gene polymorphisms in release of cytokines from peripheral blood mononuclear cells treated with methotrexate and dex-amethasone. Eur J Pharmacol 2005; 528(1-3): 27–36

    Article  PubMed  CAS  Google Scholar 

  146. Gollapudi S, Kim C, Gupta S. P-glycoprotein (encoded by multidrug resistance genes) is not required for interleukin-2 secretion in mice and humans. Genes Immun 2000; 1(6): 371–9

    Article  PubMed  CAS  Google Scholar 

  147. Machado CG, Calado RT, Garcia AB, et al. Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes. Braz J Med Biol Res 2003; 36(12): 1653–7

    Article  PubMed  CAS  Google Scholar 

  148. Dosiou C, Giudice LC. Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev 2005; 26(1): 44–62

    Article  PubMed  CAS  Google Scholar 

  149. Egashira M, Kawamata N, Sugimoto K, et al. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833. Blood 1999; 93(2): 599–606

    PubMed  CAS  Google Scholar 

  150. Wilisch A, Noller A, Handgretinger R, et al. Mdr1/P-glycoprotein expression in natural killer (NK) cells enriched from peripheral or umbilical cord blood. Cancer Lett 1993; 69(2): 139–48

    Article  PubMed  CAS  Google Scholar 

  151. Janneh O, Owen A, Chandler B, et al. Modulation of the intracellular accumulation of saquinavir in peripheral blood mononuclear cells by inhibitors of MRP1, MRP2, P-gp and BCRP. AIDS 2005; 19(18): 2097–102

    Article  PubMed  CAS  Google Scholar 

  152. Malorni W, Lucia MB, Rainaldi G, et al. Intracellular expression of P-170 glycoprotein in peripheral blood mononuclear cell subsets from healthy donors and HIV-infected patients. Haematologica 1998; 83(1): 13–20

    PubMed  CAS  Google Scholar 

  153. Trambas C, Wang Z, Cianfriglia M, et al. Evidence that natural killer cells express mini P-glycoproteins but not classic 170 kDa P-glycoprotein. Br J Haematol 2001; 114(1): 177–84

    Article  PubMed  CAS  Google Scholar 

  154. Laupeze B, Amiot L, Payen L, et al. Multidrug resistance protein (MRP) activity in normal mature leukocytes and CD34-positive hematopoietic cells from peripheral blood. Life Sci 2001; 68(11): 1323–31

    Article  PubMed  CAS  Google Scholar 

  155. Frank MH, Denton MD, Alexander SI, et al. Specific MDR1 P-glycoprotein blockade inhibits human alloimmune T cell activation in vitro. J Immunol 2001; 166(4): 2451–9

    PubMed  CAS  Google Scholar 

  156. Schinkel AH, Roelofs EM, Borst P. Characterization of the human MDR3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res 1991; 51(10): 2628–35

    PubMed  CAS  Google Scholar 

  157. Ratnam KV, Tan CK. A review of neurological complications in AIDS. Singapore Med J 1989; 30(2): 199–201

    PubMed  CAS  Google Scholar 

  158. Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005; 2(1): 86–98

    Article  PubMed  Google Scholar 

  159. Scherrmann JM. Expression and function of multidrug resistance transporters at the blood-brain barriers. Expert Opin Drug Metab Toxicol 2005; 1(2): 233–46

    Article  PubMed  CAS  Google Scholar 

  160. Meaden ER, Hoggard PG, Newton P, et al. P-glycoprotein and MRP1 expression and reduced ritonavir and saquinavir accumulation in HIV-infected individuals. J Antimicrob Chemother 2002; 50(4): 583–8

    Article  PubMed  CAS  Google Scholar 

  161. Jones K, Bray PG, Khoo SH, et al. P-glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? AIDS 2001; 15(11): 1353–8

    Article  PubMed  CAS  Google Scholar 

  162. Jones K, Hoggard PG, Sales SD, et al. Differences in the intracellular accumulation of HIV protease inhibitors in vitro and the effect of active transport. AIDS 2001; 15(6): 675–81

    Article  PubMed  CAS  Google Scholar 

  163. Lee CG, Ramachandra M, Jeang KT, et al. Effect of ABC transporters on HIV-1 infection: inhibition of virus production by the MDR1 transporter. FASEB J 2000; 14(3): 516–22

    PubMed  CAS  Google Scholar 

  164. Speck RR, Yu XF, Hildreth J, et al. Differential effects of P-glycoprotein and multidrug resistance protein-1 on productive human immunodeficiency virus infection. J Infect Dis 2002; 186(3): 332–40

    Article  PubMed  CAS  Google Scholar 

  165. Liao Z, Cimakasky LM, Hampton R, et al. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res Hum Retroviruses 2001; 17(11): 1009–19

    Article  PubMed  CAS  Google Scholar 

  166. Mihm S, Ennen J, Pessara U, et al. Inhibition of HIV-1 replication and NF-kappa B activity by cysteine and cysteine derivatives. AIDS 1991; 5(5): 497–503

    Article  PubMed  CAS  Google Scholar 

  167. Herzenberg LA, Dubs JG, De Rosa SC, et al. Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci U 1997; 94(5): 1967–72

    Article  PubMed  CAS  Google Scholar 

  168. Srinivas RV, Middlemas D, Flynn P, et al. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother 1998; 42(12): 3157–62

    PubMed  CAS  Google Scholar 

  169. Dallas S, Ronaldson PT, Bendayan M, et al. Multidrug resistance protein 1-mediated transport of saquinavir by microglia. Neuroreport 2004; 15(7): 1183–6

    Article  PubMed  CAS  Google Scholar 

  170. Gupta A, Zhang Y, Unadkat JD, et al. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 2004; 310(1): 334–41

    Article  PubMed  CAS  Google Scholar 

  171. Jorajuria S, Dereuddre-Bosquet N, Naissant-Storck K, et al. Differential expression levels of MRP1, MRP4, and MRP5 in response to human immunodeficiency virus infection in human macrophages. Antimicrob Agents Chemother 2004; 48(5): 1889–91

    Article  PubMed  CAS  Google Scholar 

  172. Han K, Kahng J, Kim M, et al. Expression of functional markers in acute nonlymphoblastic leukemia. Acta Haematol 2000; 104(4): 174–80

    Article  PubMed  CAS  Google Scholar 

  173. Del Poeta G, Venditti A, Aronica G, et al. P-glycoprotein expression in de novo acute myeloid leukemia. Leuk Lymphoma 1997; 27(3–4): 257–74

    PubMed  Google Scholar 

  174. Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997; 89(9): 3323–9

    PubMed  CAS  Google Scholar 

  175. Michieli M, Damiani D, Ermacora A, et al. P-glycoprotein, lung resistance-related protein and multidrug resistance associated protein in de novo acute non-lymphocytic leukaemias: biological and clinical implications. Br J Haematol 1999; 104(2): 328–35

    Article  PubMed  CAS  Google Scholar 

  176. Li YH, Wang YH, Li Y, et al. MDR1 gene polymorphisms and clinical relevance. Yi Chuan Xue Bao 2006; 33(2): 93–104

    PubMed  Google Scholar 

  177. Illmer T, Schuler US, Thiede C, et al. MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res 2002; 62(17): 4955–62

    PubMed  CAS  Google Scholar 

  178. Jamroziak K, Mlynarski W, Balcerczak E, et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol 2004; 72(5): 314–21

    Article  PubMed  CAS  Google Scholar 

  179. Kim DH, Park JY, Sohn SK, et al. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int J Cancer 2006; 118(9): 2195–201

    Article  PubMed  CAS  Google Scholar 

  180. Damiani D, Tiribelli M, Calistri E, et al. The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica 2006; 91(6): 825–8

    PubMed  CAS  Google Scholar 

  181. Benderra Z, Faussat AM, Sayada L, et al. MRP3, BCRP, and P-glycoprotein activities are prognostic factors in adult acute myeloid leukemia. Clin Cancer Res 2005; 11(21): 7764–72

    Article  PubMed  CAS  Google Scholar 

  182. van der Kolk DM, de Vries EG, Muller M, et al. The role of drug efflux pumps in acute myeloid leukemia. Leuk Lymphoma 2002; 43(4): 685–701

    Article  PubMed  CAS  Google Scholar 

  183. Swerts K, De Moerloose B, Dhooge C, et al. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer 2006; 42(3): 295–309

    Article  PubMed  CAS  Google Scholar 

  184. Jedlitschky G, Tirschmann K, Lubenow LE, et al. The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage. Blood 2004; 104(12): 3603–10

    Article  PubMed  CAS  Google Scholar 

  185. Sjolinder M, Tornhamre S, Claesson HE, et al. Characterization of a leukotriene C4 export mechanism in human platelets: possible involvement of multidrug resistance-associated protein 1. J Lipid Res 1999; 40(3): 439–46

    PubMed  CAS  Google Scholar 

  186. Lindgren JA, Edenius C. Transcellular biosynthesis of leukotrienes and lipoxins via leukotriene A4 transfer. Trends Pharmacol Sci 1993; 14(10): 351–4

    Article  PubMed  CAS  Google Scholar 

  187. Spangrude GJ, Johnson GR. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A 1990; 87(19): 7433–7

    Article  PubMed  CAS  Google Scholar 

  188. Wolf NS, Kone A, Priestley GV, et al. In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp Hematol 1993; 21(5): 614–22

    PubMed  CAS  Google Scholar 

  189. Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66(1): 85–94

    Article  PubMed  CAS  Google Scholar 

  190. Berenson RJ, Bensinger WI, Hill RS, et al. Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 1991; 77(8): 1717–22

    PubMed  CAS  Google Scholar 

  191. Krause DS, Ito T, Fackler MJ, et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood 1994; 84(3): 691–701

    PubMed  CAS  Google Scholar 

  192. Osawa M, Hanada K, Hamada H, et al. Long-term lymphohe-matopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273(5272): 242–5

    Article  PubMed  CAS  Google Scholar 

  193. Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 3(12): 1337–45

    Article  PubMed  CAS  Google Scholar 

  194. Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183(4): 1797–806

    Article  PubMed  CAS  Google Scholar 

  195. Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7(9): 1028–34

    Article  PubMed  CAS  Google Scholar 

  196. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002; 99(2): 507–12

    Article  PubMed  CAS  Google Scholar 

  197. Tadjali M, Zhou S, Rehg J, et al. Prospective isolation of murine hematopoietic stem cells by expression of an Abcg2/GFP allele. Stem Cells 2006; 24(6): 1556–63

    Article  PubMed  CAS  Google Scholar 

  198. Morita Y, Ema H, Yamazaki S, et al. Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 2006; 108(8): 2850–6

    Article  PubMed  CAS  Google Scholar 

  199. Mogi M, Yang J, Lambert JF, et al. Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 2003; 278(40): 39068–75

    Article  PubMed  CAS  Google Scholar 

  200. Uchida N, Dykstra B, Lyons K, et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status. Blood 2004; 103(12): 4487–95

    Article  PubMed  CAS  Google Scholar 

  201. Zhou S, Morris JJ, Barnes Y, et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A 2002; 99(19): 12339–44

    Article  PubMed  CAS  Google Scholar 

  202. Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 2004; 279(23): 24218–25

    Article  PubMed  CAS  Google Scholar 

  203. van Tellingen O, Buckle T, Jonker JW, et al. P-glycoprotein and Mrp1 collectively protect the bone marrow from vincristine-induced toxicity in vivo. Br J Cancer 2003; 89(9): 1776–82

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB/TR 19-04; Bonn, Germany) and the Deutsche Krebshilfe (grant #502735; Bonn, Germany). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyo K. Kroemer PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köck, K., Grube, M., Jedlitschky, G. et al. Expression of Adenosine Triphosphate-Binding Cassette (ABC) Drug Transporters in Peripheral Blood Cells. Clin Pharmacokinet 46, 449–470 (2007). https://doi.org/10.2165/00003088-200746060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746060-00001

Keywords

Navigation