Skip to main content
Log in

Angiotensin Converting Enzyme Gene Insertion/Deletion Polymorphism and Cardiovascular Disease

Therapeutic Implications

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Cardiovascular disease is the major cause of morbidity and mortality in Westernised societies. It is well known that the aetiology of this devastating disorder involves both genetic and environmental factors. Sequence variants of the components of the renin-angiotensin-aldosterone system and the kallikrein-kinin system are suggested to have significant influences on cardiovascular homeostasis.

Both gene targeting and transgenic studies in mice have clearly suggested a critical role of the angiotensin converting enzyme (ACE) gene in blood pressure regulation. Furthermore, an up-regulation of myocardial ACE gene expression has been observed in patients with heart failure. Thus, the ACE gene has been recognised as a top candidate gene for cardiovascular research.

Over the past decade, the insertion/deletion (I/D) polymorphism of a 287-bp Alu element in intron 16 of the ACE gene has attracted significant attention and has been extensively investigated in a spectrum of cardiovascular phenotypes, because of its correlation with serum ACE activity. A large majority of previous studies have shown a positive association between the DD genotype and an increased risk of myocardial infarction, but results in hypertension, left ventricular hypertrophy, cardiomyopathy and restenosis after percutaneous transluminal coronary angioplasty remain quite controversial.

Since ACE inhibitors are widely used in hypertension and congestive heart failure, we also review the literature on the relationship of ACEI/D polymorphism with ACE inhibitor response. It appears that this polymorphism has some moderate impact on the cardiovascular response to ACE inhibitors but there is no consensus as to which allele confers a more pronounced effect. In addition, previous data are suggestive of an association between the ACE I allele and a greater risk of increased occurrence of ACE inhibitor-induced cough, but such a relationship needs further confirmation. Overall, since ACE I/D is only an intronic marker, the true locus that controls the ACE enzyme activity remains to be identified, and could be located within either the ACE gene or another nearby gene such as the human growth hormone gene. We note that since associations tend to vary across different gender or ethnic groups, or across different socio-ecological settings, consideration of potential gene-gene and gene-environment interactions should be made. Furthermore, the dissection of the genetic underpinning of cardiovascular disease needs delineation of all molecular variants of the key physiological pathways that influence cardiovascular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig. 2
Fig. 3
Fig. 4
Table I
Fig. 5

Similar content being viewed by others

References

  1. Erdos EG. Angiotensin I converting enzyme and the changes in our concepts through the years. Lewis K. Dahl memorial lecture. Hypertension 1990 Oct; 16(4): 363–70

    Article  PubMed  CAS  Google Scholar 

  2. Das M, Soffer RL. Pulmonary angiotensin-converting enzyme: structural and catalytic properties. J Biol Chem 1975; 250: 6762–8

    PubMed  CAS  Google Scholar 

  3. Samani NJ, Thompson JR, O’Toole L, et al. A meta-analysis of the association of the deletion allele of the angiotensin-converting enzyme gene with myocardial infarction. Circulation 1996 Aug 15; 94(4): 708–12

    Article  PubMed  CAS  Google Scholar 

  4. Staessen JA, Wang JG, Ginocchio G, et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens 1997 Dec; 15 (12 Pt 2): 1579–92

    Article  PubMed  CAS  Google Scholar 

  5. Hubert C, Houot AM, Corvol P, et al. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem 1991 Aug 15; 266(23): 15377–83

    PubMed  CAS  Google Scholar 

  6. Ng KK, Vane JR. Conversion of angiotensin I to angiotensin II. Nature 1967 Nov 25; 216(117): 762–6

    Article  PubMed  CAS  Google Scholar 

  7. Wuyts B, Delanghe J, De Buyzere M. Angiotensin I-converting enzyme insertion/deletion polymorphism: clinical implications. Acta Clin Belg 1997; 52(6): 338–49

    PubMed  CAS  Google Scholar 

  8. Hooper NM, Keen J, Pappin DJ, et al. Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J 1987 Oct 1; 247(1): 85–93

    Google Scholar 

  9. Corvol P, Michaud A, Soubrier F, et al. Recent advances in knowledge of the structure and function of the angiotensin I converting enzyme. J Hypertens Suppl 1995 Sep; 13 Suppl. 3: S3–10

    Article  PubMed  CAS  Google Scholar 

  10. Chen X, Pitt BR, Moalli R, et al. Correlation between lung and plasma angiotensin converting enzyme and the hypotensive effect of captopril in conscious rabbits. J Pharmacol Exp Ther 1984 Jun; 229(3): 649–53

    PubMed  CAS  Google Scholar 

  11. Kumar RS, Thekkumkara TJ, Sen GC. The mRNAs encoding the two angiotensin-converting isozymes are transcribed from the same gene by a tissue-specific choice of alternative transcription initiation sites. J Biol Chem 1991 Feb 25; 266(6): 3854–62

    PubMed  CAS  Google Scholar 

  12. Steiner C, Muller M, Baniahmad A, et al. Lysozyme gene activity in chicken macrophages is controlled by positive and negative regulatory elements. Nucleic Acids Res 1987 May 26; 15(10): 4163–78

    Article  PubMed  CAS  Google Scholar 

  13. Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990 Jun 19; 29(24): 5647–59

    Article  PubMed  CAS  Google Scholar 

  14. Howard TE, Shai SY, Langford KG, et al. Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol Cell Biol 1990 Aug; 10(8): 4294–302

    PubMed  CAS  Google Scholar 

  15. Krege JH, John SW, Langenbach LL, et al. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 1995; 375: 146–8

    Article  PubMed  CAS  Google Scholar 

  16. Langford KG, Zhou Y, Russell LD, et al. Regulated expression of testis angiotensin-converting enzyme during spermatogenesis in mice. Biol Reprod 1993 Jun; 48(6): 1210–8

    Article  PubMed  CAS  Google Scholar 

  17. Sibony M, Segretain D, Gasc JM. Angiotensin-converting enzyme in murine testis: step-specific expression of the germinal isoform during spermiogenesis. Biol Reprod 1994 May; 50(5): 1015–26

    Article  PubMed  CAS  Google Scholar 

  18. Williams TA, Villard E, Prigent Y, et al. A genetic study of angiotensin I-converting enzyme levels in human semen. Mol Cell Endocrinol 1995 Feb; 107(2): 215–9

    Article  PubMed  CAS  Google Scholar 

  19. Jeanmougin F, Thompson JD, Gouy M, et al. Multiple sequence alignment with Clustal X. Trends Biochem Sci 1998 Oct; 23(10): 403–5

    Article  PubMed  CAS  Google Scholar 

  20. Thekkumkara TJ, Livingston III W, Kumar RS, et al. Use of alternative polyadenylation sites for tissue-specific transcription of two angiotensin-converting enzyme mRNAs. Nucleic Acids Res 1992 Feb 25; 20(4): 683–7

    Article  PubMed  CAS  Google Scholar 

  21. Corvol P, Williams TA, Soubrier F. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol 1995; 248: 283–305

    Article  PubMed  CAS  Google Scholar 

  22. Esther Jr CR, Howard TE, Marino EM, et al. Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 1996 May; 74(5): 953–65

    PubMed  CAS  Google Scholar 

  23. Esther CR, Marino EM, Howard TE, et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J Clin Invest 1997 May 15; 99(10): 2375–85

    Article  PubMed  CAS  Google Scholar 

  24. Ramaraj P, Kessler SP, Colmenares C, et al. Selective restoration of male fertility in mice lacking angiotensin-converting enzymes by sperm-specific expression of the testicular isozyme. J Clin Invest 1998 Jul 15; 102(2): 371–8

    Article  PubMed  CAS  Google Scholar 

  25. Robinson MO, McCarrey JR, Simon MI. Transcriptional regulatory regions of testis-specific PGK2 defined in transgenic mice. Proc Natl Acad Sci U S A 1989 Nov; 86(21): 8437–41

    Article  PubMed  CAS  Google Scholar 

  26. Kessler SP, Rowe TM, Gomos JB, et al. Physiological non-equivalence of the two isoforms of angiotensin-converting enzyme. J Biol Chem 2000 Aug 25; 275(34): 26259–64

    Article  PubMed  CAS  Google Scholar 

  27. Hagaman JR, Moyer JS, Bachman ES, et al. Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci U S A 1998 Mar 3; 95(5): 2552–7

    Article  PubMed  CAS  Google Scholar 

  28. Krege JH, Kim HS, Moyer JS, et al. Angiotensin-converting enzyme gene mutations, blood pressures, and cardiovascular homeostasis. Hypertension 1997 Jan; 29 (1 Pt 2): 150–7

    Article  PubMed  CAS  Google Scholar 

  29. Davis GK, Millner RW, Roberts DH. Angiotensin converting enzyme (ACE) gene expression in the human left ventricle: effect of ACE gene insertion/deletion polymorphism and left ventricular function. Eur J Heart Fail 2000 Sep; 2(3): 253–6

    Article  PubMed  CAS  Google Scholar 

  30. Studer R, Reinecke H, Muller B, et al. Increased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction. J Clin Invest 1994 Jul; 94(1): 301–10

    Article  PubMed  CAS  Google Scholar 

  31. Zisman LS, Asano K, Dutcher DL, et al. Differential regulation of cardiac angiotensin converting enzyme binding sites and AT1 receptor density in the failing human heart. Circulation 1998 Oct 27; 98(17): 1735–41

    Article  PubMed  CAS  Google Scholar 

  32. Danser AH, Schalekamp MA, Bax WA, et al. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 1995 Sep 15; 92(6): 1387–8

    Article  PubMed  CAS  Google Scholar 

  33. Rieder MJ, Taylor SL, Clark AG, et al. Sequence variation in the human angiotensin converting enzyme. Nat Genet 1999 May; 22(1): 59–62

    Article  PubMed  CAS  Google Scholar 

  34. Batzer MA, Stoneking M, Alegria-Hartman M, et al. African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci U S A 1994 Dec 6; 91(25): 12288–92

    Article  PubMed  CAS  Google Scholar 

  35. Dufour C, Casane D, Denton D, et al. Human-chimpanzee DNA sequence variation in the four major genes of the renin angiotensin system. Genomics 2000 Oct 1; 69(1): 14–26

    Article  PubMed  CAS  Google Scholar 

  36. Tiret L, Rigat B, Visvikis S, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 1992 Jul; 51(1): 197–205

    PubMed  CAS  Google Scholar 

  37. Zhu X, McKenzie CA, Forrester T, et al. Localization of a small genomic region associated with elevated ACE. Am J Hum Genet 2000 Nov; 67(5): 1144–53

    PubMed  CAS  Google Scholar 

  38. McKenzie CA, Julier C, Forrester T, et al. Segregation and linkage analysis of serum angiotensin I-converting enzyme levels: evidence for two quantitative-trait loci. Am J Hum Genet 1995 Dec; 57(6): 1426–35

    PubMed  CAS  Google Scholar 

  39. Brice EA, Friedlander W, Bateman ED, et al. Serum angiotensin-converting enzyme activity, concentration, and specific activity in granulomatous interstitial lung disease, tuberculosis, and COPD. Chest 1995 Mar; 107(3): 706–10

    Article  PubMed  CAS  Google Scholar 

  40. Tomita H, Ina Y, Sugiura Y, et al. Polymorphism in the angiotensin-converting enzyme (ACE) gene and sarcoidosis. Am J Respir Crit Care Med 1997 Jul; 156(1): 255–9

    PubMed  CAS  Google Scholar 

  41. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990 Oct; 86(4): 1343–6

    Article  PubMed  CAS  Google Scholar 

  42. Faure-Delanef L, Baudin B, Beneteau-Burnat B, et al. Plasma concentration, kinetic constants, and gene polymorphism of angiotensin I-converting enzyme in centenarians. Clin Chem 1998 Oct; 44(10): 2083–7

    PubMed  CAS  Google Scholar 

  43. Foy CA, McCormack LJ, Knowler WC, et al. The angiotensin-I converting enzyme (ACE) gene I/D polymorphism and ACE levels in Pima Indians. J Med Genet 1996 Apr; 33(4): 336–7

    Article  PubMed  CAS  Google Scholar 

  44. Bloem LJ, Manatunga AK, Pratt JH. Racial difference in the relationship of an angiotensin I-converting enzyme gene polymorphism to serum angiotensin I-converting enzyme activity. Hypertension 1996 Jan; 27(1): 62–6

    Article  PubMed  CAS  Google Scholar 

  45. Rigat B, Hubert C, Corvol P, et al. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1) [letter]. Nucleic Acids Res 1992 Mar 25; 20(6): 1433

    Article  PubMed  CAS  Google Scholar 

  46. Lindpaintner K, Pfeffer MA, Kreutz R, et al. Aprospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995 Mar 16; 332(11): 706–11

    Article  PubMed  CAS  Google Scholar 

  47. Singer DR, Missouris CG, Jeffery S. Angiotensin-converting enzyme gene polymorphism. What to do about all the confusion. Circulation 1996 Aug 1; 94(3): 236–9

    Article  PubMed  CAS  Google Scholar 

  48. Ueda S, Heeley RP, Lees KR, et al. Mistyping of the human angiotensin-converting enzyme gene polymorphism: frequency, causes and possible methods to avoid errors in typing. J Mol Endocrinol 1996 Aug; 17(1): 27–30

    Article  PubMed  CAS  Google Scholar 

  49. Shanmugam V, Sell KW, Saha BK. Mistyping ACE heterozygotes. PCR Methods Appl 1993 Oct; 3(2): 120–1

    Article  PubMed  CAS  Google Scholar 

  50. Weissensteiner T, Lanchbury JS. Strategy for controlling preferential amplification and avoiding false negatives in PCR typing. Biotechniques 1996 Dec; 21(6): 1102–8

    PubMed  CAS  Google Scholar 

  51. Odawara M, Matsunuma A, Yamashita K. Mistyping frequency of the angiotensin-converting enzyme gene polymorphism and an improved method for its avoidance. Hum Genet 1997 Aug; 100(2): 163–6

    Article  PubMed  CAS  Google Scholar 

  52. Evans AE, Poirier O, Kee F. Polymorphisms of the angiotensin-converting-enzyme gene in subjects who die from coronary heart disease. Q J Med 1994 Apr; 87(4): 211–4

    PubMed  CAS  Google Scholar 

  53. D’Aquila RT, Bechtel LJ, Videler JA, et al. Maximizing sensitivity and specificity of PCR by pre-amplification heating [letter]. Nucleic Acids Res 1991 Jul 11; 19(13): 3749

    Article  PubMed  Google Scholar 

  54. Pepine CJ. Systemic hypertension and coronary artery disease. Am J Cardiol 1998 Aug 6; 82(3A): H21–4

    Article  Google Scholar 

  55. Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch Intern Med 1993; 153: 598–615

    Article  PubMed  CAS  Google Scholar 

  56. Whelton PK. Epidemiology of hypertension. Lancet 1994; 344: 101–6

    Article  PubMed  CAS  Google Scholar 

  57. Havlik RJ, Garrison RJ, Feinleib M, et al. Blood pressure aggregation in families. Am J Epidemiol 1979; 110: 304–12

    PubMed  CAS  Google Scholar 

  58. Hilbert P, Lindpaintner K, Beckmann JS, et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 1991 Oct 10; 353(6344): 521–9

    Article  PubMed  CAS  Google Scholar 

  59. Jacob HJ, Lindpaintner K, Lincoln SE, et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 1991 Oct 4; 67(1): 213–24

    Article  PubMed  CAS  Google Scholar 

  60. Zee RY, Lou YK, Griffiths LR, et al. Association of a polymorphism of the angiotensin I-converting enzyme gene with essential hypertension. Biochem Biophys Res Commun 1992 Apr 15; 184(1): 9–15

    Article  PubMed  CAS  Google Scholar 

  61. Gu XX, Spaepen M, Guo C, et al. Lack of association between the I/D polymorphism of the angiotensin-converting enzyme gene and essential hypertension in a Belgian population. J Hum Hypertens 1994 Sep; 8(9): 683–5

    PubMed  CAS  Google Scholar 

  62. Schmidt S, van Hooft IM, Grobbee DE, et al. Polymorphism of the angiotensin I converting enzyme gene is apparently not related to high blood pressure: Dutch Hypertension and Offspring Study. J Hypertens 1993 Apr; 11(4): 345–8

    Article  PubMed  CAS  Google Scholar 

  63. Vassilikioti S, Doumas M, Douma S, et al. Angiotensin converting enzyme gene polymorphism is not related to essential hypertension in a Greek population. Am J Hypertens 1996 Jul; 9(7): 700–2

    Article  PubMed  CAS  Google Scholar 

  64. Frossard PM, Obineche EN, Elshahat YI, et al. Deletion polymorphism in the angiotensin-converting enzyme gene is not associated with hypertension in a Gulf Arab population. Clin Genet 1997 Mar; 51(3): 211–3

    Article  PubMed  CAS  Google Scholar 

  65. Barley J, Blackwood A, Miller M, et al. Angiotensin converting enzyme gene I/D polymorphism, blood pressure and the renin-angiotensin system in Caucasian and Afro-Caribbean peoples. J Hum Hypertens 1996 Jan; 10(1): 31–5

    PubMed  CAS  Google Scholar 

  66. Asamoah A, Yanamandra K, Thurmon TF, et al. A deletion in the angiotensin converting enzyme (ACE) gene is common among African Americans with essential hypertension. Clin Chim Acta 1996 Oct 15; 254(1): 41–6

    Article  PubMed  CAS  Google Scholar 

  67. Duru K, Farrow S, Wang JM, et al. Frequency of a deletion polymorphism in the gene for angiotensin converting enzyme is increased in African-Americans with hypertension. Am J Hypertens 1994 Aug; 7(8): 759–62

    PubMed  CAS  Google Scholar 

  68. O’Donnell CJ, Lindpaintner K, Larson MG, et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 1998 May 12; 97(18): 1766–72

    Article  PubMed  Google Scholar 

  69. Mastana S, Nunn J. Angiotensin-converting enzyme deletion polymorphism is associated with hypertension in a Sikh population. Hum Hered 1997 Sep–Oct; 47(5): 250–3

    Article  PubMed  CAS  Google Scholar 

  70. Suwazono Y, Kobayashi E, Sakurada I, et al. Associations of the angiotensinogen gene (M235T, T174M) and the angiotensin I-converting enzyme gene (I/D) with blood pressure in Japanese workers. Blood Press 1999; 8(1): 23–8

    Article  PubMed  CAS  Google Scholar 

  71. Zaman MM, Yoshiike N, Date C, et al. Angiotensin converting enzyme genetic polymorphism is not associated with hypertension in a cross-sectional sample of a Japanese population: the Shibata Study. J Hypertens 2001 Jan; 19(1): 47–53

    Article  PubMed  CAS  Google Scholar 

  72. Sugiyama T, Morita H, Kato N, et al. Lack of sex-specific effects on the association between angiotensin-converting enzyme gene polymorphism and hypertension in Japanese. Hypertens Res 1999 Mar; 22(1): 55–9

    Article  PubMed  CAS  Google Scholar 

  73. Uemura K, Nakura J, Kohara K, et al. Association of ACE I/D polymorphism with cardiovascular risk factors. Hum Genet 2000 Sep; 107(3): 239–42

    Article  PubMed  CAS  Google Scholar 

  74. Higaki J, Baba S, Katsuya T, et al. Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation 2000 May 2; 101(17): 2060–5

    Article  PubMed  CAS  Google Scholar 

  75. Jeng JR, Harn HJ, Jeng CY, et al. Angiotensin I converting enzyme gene polymorphism in Chinese patients with hypertension. Am J Hypertens 1997 May; 10 (5 Pt 1): 558–61

    Article  PubMed  CAS  Google Scholar 

  76. Liu Y, Qiu C, Zhou W, et al. Gene polymorphisms of the renin-angiotensin system in essential hypertension. Chin Med J (Engl) 1999 Feb; 112(2): 115–20

    CAS  Google Scholar 

  77. Thomas GN, Young RP, Tomlinson B, et al. Renin-angiotensin-aldosterone system gene polymorphisms and hypertension in Hong Kong Chinese. Clin Exp Hypertens 2000 Jan; 22(1): 87–97

    Article  PubMed  CAS  Google Scholar 

  78. Arnett DK. Genetic contributions to left ventricular hypertrophy. Curr Hypertens Rep 2000 Feb; 2(1): 50–5

    Article  PubMed  CAS  Google Scholar 

  79. Iwai N, Ohmichi N, Nakamura Y, et al. DD genotype of the angiotensin-converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation 1994 Dec; 90(6): 2622–8

    Article  PubMed  CAS  Google Scholar 

  80. Schunkert H, Hense HW, Holmer SR, et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 1994 Jun 9; 330(23): 1634–8

    Article  PubMed  CAS  Google Scholar 

  81. West MJ, Summers KM, Wong KK, et al. Renin-angiotensin system gene polymorphisms and left ventricular hypertrophy. The case against an association. Adv Exp Med Biol 1997; 432: 117–22

    Article  PubMed  CAS  Google Scholar 

  82. Lindpaintner K, Lee M, Larson MG, et al. Absence of association or genetic linkage between the angiotensin-converting-enzyme gene and left ventricular mass. N Engl J Med 1996; 334: 1023–8

    Article  PubMed  CAS  Google Scholar 

  83. Wu S, Hong J, Li H, et al. No correlation of polymorphism of angiotensin-converting enzyme genes with left ventricular hypertrophy in essential hypertension. Hypertens Res 2000 May; 23(3): 261–4

    Article  PubMed  CAS  Google Scholar 

  84. Lopez-Contreras J, Blanco-Vaca F, Borras X, et al. Usefulness of the I/D angiotensin-converting enzyme genotype for detecting the risk of left ventricular hypertrophy in pharmacologically treated hypertensive men. J Hum Hypertens 2000 May; 14(5): 327–31

    Article  PubMed  CAS  Google Scholar 

  85. Kuznetsova T, Staessen JA, Wang JG, et al. Antihypertensive treatment modulates the association between the D/I ACE gene polymorphism and left ventricular hypertrophy: a meta-analysis. J Hum Hypertens 2000 Jul; 14(7): 447–54

    Article  PubMed  CAS  Google Scholar 

  86. Montgomery HE, Clarkson P, Dollery CM, et al. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 1997 Aug 5; 96(3): 741–7

    Article  PubMed  CAS  Google Scholar 

  87. Perticone, Maio R, Cosco C, et al. Hypertensive left ventricular remodeling and ACE-gene polymorphism. Cardiovasc Res 1999 Jul; 43(1): 192–9

    Article  PubMed  CAS  Google Scholar 

  88. Osono E, Kurihara S, Hayama N, et al. Insertion/deletion polymorphism in intron 16 of the ACE gene and left ventricular hypertrophy in patients with end-stage renal disease. Am J Kidney Dis 1998 Nov; 32(5): 725–30

    Article  PubMed  CAS  Google Scholar 

  89. Towbin JA, Bowles NE. Genetic abnormalities responsible for dilated cardiomyopathy. Curr Cardiol Rep 2000 Sep; 2(5): 475–80

    Article  PubMed  CAS  Google Scholar 

  90. Tiret L, Mallet C, Poirier O, et al. Lack of association between polymorphisms of eight candidate genes and idiopathic dilated cardiomyopathy: the CARDIGENE study. J Am Coll Cardiol 2000 Jan; 35(1): 29–35

    Article  PubMed  CAS  Google Scholar 

  91. Montgomery HE, Keeling PJ, Goldman JH, et al. Lack of association between the insertion/deletion polymorphism of the angiotensin-converting enzyme gene and idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1995 Jun; 25(7): 1627–31

    Article  PubMed  CAS  Google Scholar 

  92. Sanderson JE, Young RP, Yu CM, et al. Lack of association between insertion/deletion polymorphism of the angiotensin-converting enzyme gene and end-stage heart failure due to ischemic or idiopathic dilate cardiomyopathy in the Chinese. Am J Cardiol 1996 May 1; 77(11): 1008–10

    Article  PubMed  CAS  Google Scholar 

  93. Harn HJ, Chang CY, Ho LI, et al. Evidence that polymorphism of the angiotensin I converting enzyme gene may be related to idiopathic dilated cardiomyopathy in the Chinese population. Biochem Mol Biol Int 1995 May; 35(6): 1175–81

    PubMed  CAS  Google Scholar 

  94. Yoneya K, Okamoto H, Machida M, et al. Angiotensin-converting enzyme gene polymorphism in Japanese patients with hypertrophic cardiomyopathy. Am Heart J 1995 Nov; 130(5): 1089–93

    Article  PubMed  CAS  Google Scholar 

  95. Marian AJ, Yu QT, Workman R, et al. Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 1993 Oct 30; 342(8879): 1085–6

    Article  PubMed  CAS  Google Scholar 

  96. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis: characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983; 50: 127–34

    Article  PubMed  CAS  Google Scholar 

  97. Davies MJ, Thomas AC. Plaque fissuring-the cause of acute myocardial infarction, sudden ischemic death, and crescendo angina. Br Heart J 1985; 53: 363–73

    Article  PubMed  CAS  Google Scholar 

  98. Leatham E, Barley J, Redwood S, et al. Angiotensin-1 converting enzyme (ACE) polymorphism in patients presenting with myocardial infarction or unstable angina. J Hum Hypertens 1994 Aug; 8(8): 635–8

    PubMed  CAS  Google Scholar 

  99. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992 Oct 15; 359(6396): 641–4

    Article  PubMed  CAS  Google Scholar 

  100. Anderson JL, Carlquist JF, King GJ. Angiotensin-converting enzyme genotypes and risk for myocardial infarction in women. J Am Coll Cardiol 1998 Mar 15; 31(4): 790–6

    Article  PubMed  CAS  Google Scholar 

  101. Espinosa JS, Rueda E, Munoz E, et al. Association between myocardial infarction and angiotensin converting enzyme gene polymorphism in young patients. Med Clin (Barc) 1998 Apr 18; 110(13): 488–91

    CAS  Google Scholar 

  102. Keavney B, McKenzie C, Parish S, et al. Large-scale test of hypothesised associationsin between the angiotensin-converting-enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. International Studies of Infarct Survival (ISIS) Collaborators. Lancet 2000 Feb 5; 355(9202): 434–42

    Article  PubMed  CAS  Google Scholar 

  103. Volzke H, Hertwig S, Rettig R. The Insertion/Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and the Risk for Restenosis After PTCA. Int J Angiol 2000 Mar; 9(2): 82–6

    Article  PubMed  Google Scholar 

  104. Ohishi M, Fujii K, Minamino T, et al. Apotent genetic risk factor for restenosis. Nat Genet 1993 Dec; 5(4): 324–5

    Article  PubMed  CAS  Google Scholar 

  105. Hamon M, Amant C, Bauters C, et al. ACE polymorphism, a genetic predictor of occlusion after coronary angioplasty. Am J Cardiol 1996 Sep 15; 78(6): 679–81

    Article  PubMed  CAS  Google Scholar 

  106. Haberbosch W. ACE I/D gene polymorphism: presence of the ACE D allele increases the risk of coronary artery disease in younger individuals. Atherosclerosis 1998 Jul; 139(1): 153–9

    Article  PubMed  Google Scholar 

  107. Amant C, Bauters C, Bodart JC, et al. D allele of the angiotensin I-converting enzyme is a major risk factor for restenosis after coronary stenting. Circulation 1997 Jul 1; 96(1): 56–60

    Article  PubMed  CAS  Google Scholar 

  108. Lindpaintner K. Genetics of interventional cardiology. Old principles, new frontiers. Circulation 1997 Jul 1; 96(1): 12–4

    Article  PubMed  CAS  Google Scholar 

  109. Ribichini F, Steffenino G, Dellavalle A, et al. Plasma activity and insertion/deletion polymorphism of angiotensin I-converting enzyme: a major risk factor and a marker of risk for coronary stent restenosis. Circulation 1998 Jan 20; 97(2): 147–54

    Article  PubMed  CAS  Google Scholar 

  110. Koch W, Kastrati A, Mehilli J, et al. Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene is not associated with restenosis after coronary stent placement. Circulation 2000 Jul 11; 102(2): 197–202

    Article  PubMed  CAS  Google Scholar 

  111. MERCATOR Study Group. Does the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty?. Results of the MERCATOR study: a multicenter, randomized, double-blind placebo-controlled trial. Multicenter European Research Trial with Cilazapril after Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis (MERCATOR) Study Group. Circulation 1992 Jul; 86(1): 100–10

    Article  Google Scholar 

  112. Faxon DP. Effect of high dose angiotensin-converting enzyme inhibition on restenosis: final results of the MARCATOR Study, a multicenter, double-blind, placebo-controlled trial of cilazapril. The Multicenter American Research Trial With Cilazapril After Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis (MARCATOR) Study Group. J Am Coll Cardiol 1995 Feb; 25(2): 362–9

    Article  PubMed  CAS  Google Scholar 

  113. Meurice T, Bauters C, Hermant X, et al. Effect of ACE inhibitors on angiographie restenosis after coronary stenting (PARIS): a randomised, double-blind, placebo-controlled trial. Lancet 2001 Apr 28; 357(9265): 1321–4

    Article  PubMed  CAS  Google Scholar 

  114. Powell JS, Clozel JP, Muller RK, et al. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 1989 Jul 14; 245(4914): 186–8

    Article  PubMed  CAS  Google Scholar 

  115. Mintz GS, Popma JJ, Pichard AD, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 1996 Jul 1; 94(1): 35–43

    Article  PubMed  CAS  Google Scholar 

  116. Franklin SM, Faxon DP. Pharmacologie prevention of restenosis after coronary angioplasty: review of the randomized clinical trials. Coron Artery Dis 1993 Mar; 4(3): 232–42

    Article  PubMed  CAS  Google Scholar 

  117. Biollaz J, Brunner HR, Gavras I, et al. Antihypertensive therapy with MK 421: angiotensin II—renin relationships to evaluate efficacy of converting enzyme blockade. J Cardiovasc Pharmacol 1982 Nov–Dec; 4(6): 966–72

    Article  PubMed  CAS  Google Scholar 

  118. Hingorani AD, Jia H, Stevens PA, et al. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition. J Hypertens 1995 Dec; 13 (12 Pt 2): 1602–9

    PubMed  CAS  Google Scholar 

  119. Todd GP, Chadwick IG, Higgins KS, et al. Relation between changes in blood pressure and serum ACE activity after a single dose of enalapril and ACE genotype in healthy subjects. Br J Clin Pharmacol 1995 Feb; 39(2): 131–4

    Article  PubMed  CAS  Google Scholar 

  120. Dudley C, Keavney B, Casadei B, et al. Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of renin-angiotensin system genes. J Hypertens 1996 Feb; 14(2): 259–62

    Article  PubMed  CAS  Google Scholar 

  121. Sasaki M, Oki T, Iuchi A. Relationship between the angiotensin converting enzyme gene polymorphism and the effects of enalapril on left ventricular hypertrophy and impaired diastolic filling in essential hypertension: M-mode and pulsed Doppler echocardiographic studies. J Hypertens 1996 Dec; 14(12): 1403–8

    Article  PubMed  CAS  Google Scholar 

  122. Ohmichi N, Iwai N, Uchida Y, et al. Relationship between the response to the angiotensin converting enzyme inhibitor imidapril and the angiotensin converting enzyme genotype. Am J Hypertens 1997 Aug; 10(8): 951–5

    Article  PubMed  CAS  Google Scholar 

  123. Mizuiri S, Hemmi H, Inoue A, et al. Renal hemodynamic changes induced by captopril and angiotensin-converting enzyme gene polymorphism. Nephron 1997; 75(3): 310–4

    Article  PubMed  CAS  Google Scholar 

  124. Nakano Y, Oshima T, Watanabe M, et al. Angiotensin I-converting enzyme gene polymorphism and acute response to captopril in essential hypertension. Am J Hypertens 1997 Sep; 10(9 Pt 1): 1064–8

    Article  PubMed  CAS  Google Scholar 

  125. O’Toole L, Stewart M, Padfield P, et al. Effect of the insertion/deletion polymorphism of the angiotensin-converting enzyme gene on response to angiotensin-converting enzyme inhibitors in patients with heart failure. J Cardiovasc Pharmacol 1998 Dec; 32(6): 988–94

    Article  PubMed  Google Scholar 

  126. Stavroulakis GA, Makris TK, Krespi PG, et al. Predicting response to chronic antihypertensive treatment with fosinopril: the role of angiotensin-converting enzyme gene polymorphism. Cardiovasc Drugs Ther 2000 Aug; 14(4): 427–32

    Article  PubMed  CAS  Google Scholar 

  127. Wang L, Pan CY, Hu W. Association between ACE gene polymorphism and therapeutic responsiveness of ACEI in diabetic nephropathy. Zhonghua Yi Xue Za Zhi 1998 May; 78(5): 372–4

    PubMed  CAS  Google Scholar 

  128. Semple PF. Putative mechanisms of cough after treatment with angiotensin converting enzyme inhibitors. J Hypertens Suppl 1995 Sep; 13 Suppl. 3: S17–21

    Article  PubMed  CAS  Google Scholar 

  129. Furuya K, Yamaguchi E, Hirabayashi T, et al. Angiotensin-I-converting enzyme gene polymorphism and susceptibility to cough [letter]. Lancet 1994 Feb 5; 343(8893): 354

    Article  PubMed  CAS  Google Scholar 

  130. Woo KS, Norris RM, Nicholls G. Racial difference in incidence of cough with angiotensin-converting enzyme inhibitors (a tale of two cities). Am J Cardiol 1995 May 1; 75(14): 967–8

    Article  PubMed  CAS  Google Scholar 

  131. Woo KS, Nicholls MG. High prevalence of persistent cough with angiotensin converting enzyme inhibitors in Chinese. Br J Clin Pharmacol 1995 Aug; 40(2): 141–4

    PubMed  CAS  Google Scholar 

  132. Tomlinson B, Young RP, Chan JC, et al. Pharmacoepidemiology of ACE inhibitor—induced cough. Drug Saf 1997 Feb; 16(2): 150–1

    Article  PubMed  CAS  Google Scholar 

  133. Zee RY, Rao VS, Paster RZ, et al. Three candidate genes and angiotensin-converting enzyme inhibitor-related cough: a pharmacogenetic analysis. Hypertension 1998 Apr; 31(4): 925–8

    Article  PubMed  CAS  Google Scholar 

  134. McGarvey LP, Savage DA, Feeney SA, et al. Is there an association between angiotensin-converting enzyme gene variants and chronic nonproductive cough? Chest 2000 Oct; 118(4): 1091–4

    Article  PubMed  CAS  Google Scholar 

  135. Kamitani A, Rakugi H, Higaki J, et al. Enhanced predictability of myocardial infarction in Japanese by combined genotype analysis. Hypertension 1995 May; 25(5): 950–3

    Article  PubMed  CAS  Google Scholar 

  136. Naber CK, Husing J, Wolfhard U, et al. Interaction of the ACE D allele and the GNB3 825T allele in myocardial infarction. Hypertension 2000 Dec; 36(6): 986–9

    Article  PubMed  CAS  Google Scholar 

  137. Alvarez R, Reguero JR, Batalla A, et al. Angiotensin-converting enzyme and angiotensin II receptor 1 polymorphisms: association with early coronary disease. Cardiovasc Res 1998 Nov; 40(2): 375–9

    Article  PubMed  CAS  Google Scholar 

  138. van Bockxmeer FM, Mamotte CD, Gibbons FA, et al. Angiotensin-converting enzyme and apolipoprotein E genotypes and restenosis after coronary angioplasty. Circulation 1995 Oct 15; 92(8): 2066–71

    Article  PubMed  Google Scholar 

  139. Williams RR, Hunt SC, Hasstedt S J, et al. Are there interactions and relations between genetic and environmental factors predisposing to high blood pressure? Hypertension 1991 Sep; 18 (3 Suppl.): 129–37

    Article  Google Scholar 

  140. Niu T. Gene-Environment Interaction. In: El-Shaarawi A, Piegorsch WW, editors. The Encyclopedia of Environmetrics. Vol 2. West Sussex, England: John Wiley & Sons, Ltd., 2001: 848–851

    Google Scholar 

  141. Young RP, Thomas GN, Critchley JA, et al. Interethnic differences in coronary heart disease mortality in 25 populations: association with the angiotensin-converting enzyme DD genotype frequency. J Cardiovasc Risk 1998 Oct–Dec; 5(5-6): 303–7

    Article  PubMed  CAS  Google Scholar 

  142. Julier C, Delepine M, Keavney B, et al. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet 1997 Nov; 6(12): 2077–85

    Article  PubMed  CAS  Google Scholar 

  143. Sacca L, Cittadini A, Fazio S. Growth hormone and the heart. Endocr Rev 1994 Oct; 15(5): 555–73

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NIEHS Kresge Center Grant ES-00002 and IR01 HL64109-01 from NHLBI. GeneVISTA version 1.0 is developed by Dr Niu in collaboration with Dr. Zhenjun Hu, and is available upon request from Dr Niu. We are also grateful to Dr. Scott Venners and Ms. Marcia Rich for their comments and careful reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhua Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, T., Chen, X. & Xu, X. Angiotensin Converting Enzyme Gene Insertion/Deletion Polymorphism and Cardiovascular Disease. Drugs 62, 977–993 (2002). https://doi.org/10.2165/00003495-200262070-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200262070-00001

Keywords

Navigation