Skip to main content
Log in

Adenosine as a Potential Analgesic Target in Inflammatory and Neuropathic Pains

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Substantial evidence exists for the physiological role of adenosine in the modulation of primary afferent transmission. Since the first description of the anti-nociceptive effects of adenosine, there has been considerable interest in the development of adenosine analogues as potential analgesics for the treatment of various pain states. The direction of effect of adenosine in the periphery is complicated by the existence of multiple receptors and species differences. The analgesic actions of agents acting on adenosine receptor systems are largely attributed to actions at the spinal cord. Two subtypes of adenosine receptors (A1 and A2) have been identified in the substantia gelatinosa of the spinal cord where they were shown to be localised primarily on intrinsic neurons. Although evidence exists for the involvement of A2 receptors in spinally mediated antinociception, it appears to be predominantly the A1 receptor subtype which plays a major role in inhibiting the nociceptive input in the dorsal spinal cord.

The antinociceptive properties of adenosine and receptor-selective analogues have been demonstrated across a wide range of animal models, including acute nociceptive tests and in models of inflammation and neuropathy. These results, observed across several models of pain, strongly support the potential clinical use of these agents in various pain states. In humans, systemic or intrathecal administration of adenosine was shown to be effective against experimentally induced pain in healthy volunteers. Subsequently, there is evidence for the effectiveness of systemic and spinally administered adenosine in patients with neuropathic pain.

A number of studies have demonstrated possible interactions between adenosine and glutamate in the spinal cord, and between N-methyl-D-aspartate receptor activation and adenosine release elsewhere in the brain. There is also some evidence that drugs acting to inhibit the metabolism of adenosine may have therapeutic potential in pain states. In this context, the release of adenosine appears to be elevated in hyperexcitable neuronal systems. This would allow therapies to selectively target active neurons in pain systems and therefore would be expected to have low adverse effect liability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dickenson AH. Mechanisms of the analgesic actions of opiates and opioids. Br Med Bull 1991; 47: 690–702

    PubMed  CAS  Google Scholar 

  2. Dickenson AH. Where and how do opioids act? In: Gebhart GF, Hammond DL, Jenson TS, editors. Proceedings of the 7th World Congress on Pain. Progress in Pain Research and Management. Vol. 2. Seattle (WA): IASP Press, 1994: 525–52

    Google Scholar 

  3. Yaksh TL. The spinal actions of opioids. In: Herz A, editor. Handbook of experimental pharmacology. Opioids. Vol. 104/11. Heidelberg: Springer-Verlag, 1993: 53–90

    Google Scholar 

  4. Yaksh TL, Rudy TA. Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J Pharmacol Exp Ther 1977; 202: 411–28

    PubMed  CAS  Google Scholar 

  5. Fredholm BB, Abbracchio MP, Burnstock G, et al. Nomenclature and classification of purinoreceptors. Pharmacol Rev 1994; 46(2): 143–56

    PubMed  CAS  Google Scholar 

  6. Ralevic V, Burnstock G. Receptors for purines and pyramidines. Pharmacol Rev 1998; 50: 413–92

    PubMed  CAS  Google Scholar 

  7. Choca JI, Green RD, Proudfit HK. Adenosine A1 and A2 receptors of the substantia gelatinosa are located predominantly on intrinsic neurons: an autoradiography study. J Pharmacol Exp Ther 1988; 247: 757–64

    PubMed  CAS  Google Scholar 

  8. Fastbom J, Pazos A, Probst A, et al. Adenosine A1 receptors in the human brain: a quantitative autoradiographic study. Neuroscience 1987; 22: 827–39

    Article  PubMed  CAS  Google Scholar 

  9. Goodman RR, Kuhar MJ, Hester L, et al. Adenosine receptors: autoradiographic evidence for their location on axon terminals of excitatory neurones. Science 1983; 220: 967–9

    Article  PubMed  CAS  Google Scholar 

  10. Goodman RR, Snyder SH. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J Neurosci 1982; 2: 1230–41

    PubMed  CAS  Google Scholar 

  11. Geiger JD, LaBella FS, Nagy JI. Characterization and localization of adenosine receptors in rat spinal cord. J Neurosci 1984; 4: 2303–10

    PubMed  CAS  Google Scholar 

  12. Linden J. Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. Trends Pharmacol Sci 1994; 15: 298–306

    Article  PubMed  CAS  Google Scholar 

  13. Murphy S, Pearce B. Functional receptors for neurotransmitters on astroglial cells. Neuroscience 1987; 22: 381–94

    Article  PubMed  CAS  Google Scholar 

  14. Sweeney MI, White TD, Sawynok J. Morphine-evoked release of adenosine from the spinal cord occurs via a nucleoside carrier with differential sensitivity to dipyridamole and nitro-benzylthioinosine. Brain Res 1993; 614: 301–7

    Article  PubMed  CAS  Google Scholar 

  15. Braas KM, Newby AC, Wilson VS, et al. Adenosine-containing neurones in the brain localized by immunocytochemistry. J Neurosci 1986; 6: 1952–61

    PubMed  CAS  Google Scholar 

  16. Garthwaite J, Garthwaite G, Palmer RMJ, et al. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 1989; 172: 413–6

    Article  PubMed  CAS  Google Scholar 

  17. Santicioli P, Del Bianco E, Maggi CA. Adenosine A1 receptors mediate the presynaptic inhibition of calcitonin gene related peptide release by adenosine in the rat spinal cord. Eur J Pharm 1993; 231: 139–42

    Article  CAS  Google Scholar 

  18. Geiger JD, Nagy JI. Distribution of adenosine deaminase activity in rat brain and spinal cord. J Neurosci 1986; 6: 2707–14

    PubMed  CAS  Google Scholar 

  19. Nagy JI, Daddona PE. Anatomical and cytochemical relationships of adenosine deaminase-containing primary afferent neurons in the rat. Neurosci Int 1985; 15: 799–813

    Article  CAS  Google Scholar 

  20. Nagy JI, Buss M, LaBella LA, et al. Immunohistochemical localization of adenosine deaminase in primary afferent neurons of the rat. Neurosci Lett 1984; 48: 133–8

    Article  PubMed  CAS  Google Scholar 

  21. Geiger JD, Nagy JI. Heterogeneous distribution of adenosine transport sites labelled by [3H]nitrobenzylthioinosine in rat brain: an autoradiographic and membrane binding study. Brain Res Bull 1984; 13:657–66

    Article  PubMed  CAS  Google Scholar 

  22. Geiger JD, Nagy JI. Localization of [3H]nitrobenzylthioinosine binding sites in rat spinal cord and primary afferent neurones. Brain Res 1985; 347: 321–7

    Article  PubMed  CAS  Google Scholar 

  23. Sawynok J, Sweeney MI. The role of purines in nociception. Neuroscience 1989; 32: 557–69

    Article  PubMed  CAS  Google Scholar 

  24. Ahlijanian MK, Takemori AE. Effects of (−)-N6-(R-phenylisopropyl) -adenosine (PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur J Pharmacol 1985; 112: 171–9

    Article  PubMed  CAS  Google Scholar 

  25. Holmgren M, Hedner J, Nordberg G, et al. Antinociceptive effects in the rat of an adenosine analogue, N6-phenylisopro-pyladenosine. J Pharm Pharmacol 1983; 35: 679–80

    Article  PubMed  CAS  Google Scholar 

  26. Holmgren M, Hedner J, Mellstrand T, et al. Characterization of the antinociceptive effects of some adenosine analogues in the rat. Naunyn Schmiedebergs Arch Pharmakol 1986; 334: 290–3

    Article  CAS  Google Scholar 

  27. Vapaatalo H, Onken D, Neuvonen PJ, et al. Stereospecificity in some central and circulatory effects of phenylisopropyl-adenosine (PIA). Arzneimittl-Forsch 1975; 25: 407–10

    CAS  Google Scholar 

  28. Herrick-Davis K, Chippari S, Luttinger D, et al. Evaluation of adenosine agonists as potential analgesics. Eur J Pharmacol 1989; 162: 365–9

    Article  PubMed  CAS  Google Scholar 

  29. DeLander GE, Hopkins CJ. Spinal adenosine modulates descending antinociceptive pathways stimulated by morphine. J Pharm Exp Ther 1986; 239: 88–93

    CAS  Google Scholar 

  30. Doi T, Kuzuna S, Maki Y. Spinal antinociceptive effects of adenosine compounds in mice. Eur J Pharmacol 1987; 137: 227–31

    Article  PubMed  CAS  Google Scholar 

  31. Karlsten R, Gordh Jr T, Hartvig P, et al. Effects of intrathecal injection of the adenosine receptor agonists R-phenylisopropyl-adenosine and N-ethylcarboxamide-adenosine on nociception and motor function in the rat. Anesth Analg 1990; 71: 60–4

    Article  PubMed  CAS  Google Scholar 

  32. Malmberg AB, Yaksh TL. Pharmacology of the spinal action of ketorolac, morphine, ST-91, U50488H, and L-PIA on the formalin test and isobolographic analysis of the NSAID interaction. Anesthesiology 1993; 79: 270–81

    Article  PubMed  CAS  Google Scholar 

  33. Post C. Antinociceptive effects in mice after intrathecal injection of 5′-N-Ethylcarboxamide adenosine. Neurosci Lett 1984; 51: 325–30

    Article  PubMed  CAS  Google Scholar 

  34. Sawynok J, Sweeney MI, White TD. Classification of adenosine receptors mediating antinociception in the rat spinal cord. Br J Pharmacol 1986; 88: 923–30

    Article  PubMed  CAS  Google Scholar 

  35. Sosnowski M, Yaksh TL. Role of spinal adenosine receptors in modulating the hyperesthesia produced by spinal glycine receptor antagonism. Anesth Analg 1989; 69: 587–92

    Article  PubMed  CAS  Google Scholar 

  36. Yarbrough GY, McGuffm-Clineschmidt JC. In vivo behavioral assessment of central nervous system purinergic receptors. Eur J Pharmacol 1981; 76: 137–44

    Article  PubMed  CAS  Google Scholar 

  37. Reeve AJ, Dickenson AH. Electrophysiological study on spinal antinociceptive interactions between adenosine and morphine in the dorsal horn of the rat. Neurosci Lett 1995; 194: 81–4

    Article  PubMed  CAS  Google Scholar 

  38. Reeve AJ, Dickenson AH. The roles of spinal adenosine receptors in the control of acute and more persistent nociceptive responses of dorsal horn neurones in the anaesthetized rat. BrJ Pharmacol 1995; 116: 2221–8

    Article  CAS  Google Scholar 

  39. Reeve AJ, Dickenson AH, Kerr NC. Spinal effects of bicuculline: modulation of an allodynia-like state by an A1-receptor agonist, morphine, and an NMDA-receptor antagonist, J Neurophys 1998; 79: 1494–507

    CAS  Google Scholar 

  40. Mendell LM. Physiological properties of unmyelinated fiber projection to the spinal cord. Exp Neurol 1966; 16: 316–32

    Article  PubMed  CAS  Google Scholar 

  41. Davies SN, Lodge D. Evidence for involvement of N-methyl-D-aspartate receptors in wind-up of class 2 neurones in the dorsal horn of the rat. Brain Res 1987; 424: 402–6

    Article  PubMed  CAS  Google Scholar 

  42. Dickenson AH, Sullivan AF. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C-fibre stimulation. Neuropharmacol 1987; 26: 1235–8

    Article  CAS  Google Scholar 

  43. White TD. Potentiation of excitatory amino-acid-evoked adenosine release from rat cortex by inhibitors of adenosine kinase and adenosine deaminase and by acadesine. Eur J Pharmacol 1996; 303: 27–38

    Article  PubMed  CAS  Google Scholar 

  44. Dora CD, Koch S, Sanchez A, et al. Intraspinal injection of adenosine agonists protect against L-NAME induced neuronal loss in the rat. J Neurotrauma 1998; 15: 473–83

    Article  PubMed  CAS  Google Scholar 

  45. Keil GJII, DeLander GE. Altered sensory behaviors in mice following manipulation of endogenous spinal adenosine neurotransmission. Eur J Pharmacol 1996; 312: 7–14

    Article  PubMed  CAS  Google Scholar 

  46. Backonja M, Arndt G, Gombar KA, et al. Response of chronic neuropathic pain syndromes to ketamine: apreliminary study. Pain 1994; 56: 51–7

    Article  PubMed  CAS  Google Scholar 

  47. Chapman V, Dickenson AH. Enhanced responses of rat dorsal horn neurones after UV irradiation of the hindpaw; roles of the NMDA receptor. Neurosci Lett 1994; 176: 41–4

    Article  PubMed  CAS  Google Scholar 

  48. Dickenson AH. NMDA receptor antagonists as analgesics. In: Fields HL, Liebeskind JC, editors. Pharmacological approaches to the treatment of chronic pain: new concepts and critical issues. Progress in pain research and management. Vol. 1. Seattle (WA): IASP Press, 1994: 173–87

    Google Scholar 

  49. Eide PK, Jorum E, Stubhaug A, et al. Relief of post-herpetic neuralgia with the N-methyl-D-aspartic acid receptor antagonist ketamine: a double-blind, cross-over comparison with morphine and placebo. Pain 1994; 58: 347–54

    Article  PubMed  CAS  Google Scholar 

  50. Ma Q-P, Woolf CJ. Noxious stimuli induce an N-methyl-D-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch: implications for the treatment of mechanical allodynia. Pain 1995; 61: 383–90

    Article  PubMed  CAS  Google Scholar 

  51. Persson J, Axelsson G, Hallin RG, et al. Beneficial effects of ketamine in a chronic pain state with allodynia, possibly due to central sensitization. Pain 1995; 60: 217–22

    Article  PubMed  CAS  Google Scholar 

  52. Sherman SE, Loomis CW. Morphine insensitive allodynia is produced by intrathecal strychnine in the lightly anesthetized rat. Pain 1994; 56: 17–29

    Article  PubMed  CAS  Google Scholar 

  53. Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989; 37: 111–23

    Article  PubMed  CAS  Google Scholar 

  54. Desmeules JA, Kayser V, Guilbaud G. Selective opioid receptor agonists modulate mechanical allodynia in an animal model of neuropathic pain. Pain 1993; 53: 277–85

    Article  PubMed  CAS  Google Scholar 

  55. Jadad AR, Carroll D, Glynn CJ, et al. Morphine responsiveness of chronic pain: double-blind randomized crossover study with patient-controlled analgesia. Lancet 1992; 339: 1367–71

    Article  PubMed  CAS  Google Scholar 

  56. Sollevi A. Adenosine for pain control. Acta Anaesthesiol Scand 1997;Suppl. 110: 135–6

    Article  CAS  Google Scholar 

  57. Segerdahl M, Ekblom A, Sollevi A. The influence of adenosine, ketamine, and morphine on experimentally induced ischemic pain in healthy volunteers. Anesth Analg 1994; 79: 787–91

    Article  PubMed  CAS  Google Scholar 

  58. Segerdahl M, Ekblom A, Sjolund K-F, et al. Systemic adenosine attenuates touch evoked allodynia induced by mustard oil in humans. Neuroreport 1995; 6: 753–6

    Article  PubMed  CAS  Google Scholar 

  59. Ekblom A, Segerdahl M, Sollevi A. Adenosine increases the cutaneous heat pain threshold in healthy volunteers. Acta Anaesthesiol Scand 1995; 39: 717–22

    Article  PubMed  CAS  Google Scholar 

  60. Rane K, Segerdahl M, Goiny M, et al. Intrathecal adenosine administration: a phase 1 clinical safety study in healthy volunteers, with additional evaluation of its influence on sensory thresholds and experimental pain. Anesthesiology 1998; 89: 1108–15

    Article  PubMed  CAS  Google Scholar 

  61. Kingery WS. A critical review of controlled clinical trials for peripheral neuropathic pain and complex regional syndrome. Pain 1997; 73: 123–39

    Article  PubMed  CAS  Google Scholar 

  62. Guieu R, Peragut JC, Roussel P, et al. Adenosine and neuropathic pain. Pain 1996; 68: 271–4

    Article  PubMed  CAS  Google Scholar 

  63. Sugimoto T, Bennett GJ, Kajander KC. Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of chronic constriction injury, transection, and strychnine. Pain 1990; 42: 205–13

    Article  PubMed  CAS  Google Scholar 

  64. Sjolund KF, von Heijne M, Hao JX, et al. Intrathecal administration of the adenosine A1 receptor agonist R-phenylisopropyl adenosine reduces presumed pain behaviour in a rat model of central pain. Neurosci Lett 1998; 243: 89–92

    Article  PubMed  CAS  Google Scholar 

  65. Cui J-G, Sollevi A, Linderoth B, et al. Adenosine receptor activation suppresses tactile hypersensitivity and potentiates spinal cord stimulation in mononeuropathic rats. Neurosci Lett 1997; 223: 173–6

    Article  PubMed  CAS  Google Scholar 

  66. Lee Y-W, Yaksh TL. Pharmacology of the spinal adenosine receptor which mediates the antiallodynic action of intrathecal adenosine agonists. J Pharmacol Exp Ther 1996; 277: 1642–8

    PubMed  CAS  Google Scholar 

  67. Sjolund KF, Sollevi A, Segerdahl M, et al. Intrathecal and systemic R-phenylisopropyl-adenosine reduces scratching behaviour in a rat mononeuropathy model. Neuroreport 1996; 7: 1856–60

    Article  PubMed  CAS  Google Scholar 

  68. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992; 50: 355–63

    Article  PubMed  CAS  Google Scholar 

  69. Lavand’homme PM, Eisenach JC. Exogenous and endogenous adenosine enhance the spinal antiallodynic effects of morphine in a rat model of neuropathic pain. Pain 1999; 80: 31–6

    Article  PubMed  Google Scholar 

  70. Beifrage M, Sollevi A, Segerdahl M, et al. Systemic adenosine infusion alleviates spontaneous and stimulus evoked pain in patients with peripheral neuropathic pain. Anesth Analg 1995; 81: 713–7

    Google Scholar 

  71. Sollevi A, Belfrage, Lundeberg T, et al. Systemic adenosine infusion: a new treatment modality to alleviate neuropathic pain. Pain 1995; 61: 155–8

    Article  PubMed  CAS  Google Scholar 

  72. Karlsten R, T Jr Gordh. An A1-selective adenosine agonist abolishes allodynia elicited by vibration and touch after intrathecal injection. Anesth Analg 1995; 80: 844–7

    PubMed  CAS  Google Scholar 

  73. Sollevi A, Rane K, Segerdahl M, et al. Intrathecal adenosine injection elevates cutaneous pain thresholds in man [abstract]. In: 8th World Congress on Pain: 1996 Aug 18–22: Vancouver. Seattle (WA): IASP Press, 1996: 356

    Google Scholar 

  74. Dolphin AC, Prestwich SA. Pertussis toxin reverses adenosine inhibition of neuronal glutamate release. Nature 1985; 316: 148–50

    Article  PubMed  CAS  Google Scholar 

  75. Craig CG, White TD. Low-level N-methyl-D-aspartate receptor activation provides a purinergic inhibitory threshold against further N-methyl-D-aspartate-mediated neurotransmission in the cortex. J Pharm Exp Ther 1992; 260: 1278–84

    CAS  Google Scholar 

  76. Craig CG, White TD. N-methyl-D-aspartate and non-N-methyl D-aspartate-evoked adenosine release from rat cortical slices: distinct purinergic sources and mechanisms of release. J Neurochem 1993; 60: 1073–80

    Article  PubMed  CAS  Google Scholar 

  77. Conway CM, Marsala M, Somogyi GT, et al. Intrathecal NMDA-induced release of spinal adenosine and amino acids. Soc Neurosci Abstr 1997; 23: 1013

    Google Scholar 

  78. Mao J, Price DD, Mayer DJ, et al. Intrathecal MK-801 and local nerve anesthesia synergistically reduce nociceptive behaviors in rats with experimental peripheral mononeuropathy. Brain Res 1992; 576: 254–62

    Article  PubMed  CAS  Google Scholar 

  79. Qian J, Brown SD, Carlton SM. Systemic ketamine attenuates nociceptive behaviors in a rat model of peripheral neuropathy. Brain Res 1996; 715: 51–62

    Article  PubMed  CAS  Google Scholar 

  80. Sumida T, Smith MA, Maehara Y, et al. Spinal R-phenyl-isopropyl adenosine inhibits spinal dorsal horn neurons responding to noxious heat stimulation in the absence and presence of sensitization. Pain 1998; 74: 307–13

    Article  PubMed  CAS  Google Scholar 

  81. Sawynok J. Purines in pain management. Curr Opin CPNS Invest Drugs 1999; 1: 27–38

    CAS  Google Scholar 

  82. Dowd E, McQueen DS, Chessell IP, et al. Adenosine A1 receptor-mediatedexcitation of nociceptive afferents innervatingthe normal and arthritic knee joint. Br J Pharm 1998; 125:1267–71

    Article  CAS  Google Scholar 

  83. Sawynok J, Zarrindast MR, Reid AR, et al. Adenosine A3 receptor activation produces nociceptive behaviour and edema by release of histamine and 5-hydroxytryptamine. Eur J Pharmacol 1997; 333: 1–7

    Article  PubMed  CAS  Google Scholar 

  84. Sawynok J. Adenosine receptor activation and nociception. Eur J Pharmacol 1998; 347: 1–11

    Article  PubMed  CAS  Google Scholar 

  85. Abbott FV, Melzack R, Samuel C. Morphine analgesia in the tail-flick and formalin pain tests is mediated by different neural systems. Exp Neurol 1982; 75: 644–51

    Article  PubMed  CAS  Google Scholar 

  86. Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977; 4: 161–74

    Article  PubMed  CAS  Google Scholar 

  87. Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988; 32: 77–88

    Article  PubMed  CAS  Google Scholar 

  88. Tjolsen A, Berge O-G, Hunskaar S, et al. The formalin test: an evaluation of the method. Pain 1992; 51: 5–17

    Article  PubMed  CAS  Google Scholar 

  89. Wheeler-Aceto H, Cowan A. Standardization of the rat paw formalin test for the evaluation of analgesics. Psychopharmacol 1991; 104: 35–44

    Article  CAS  Google Scholar 

  90. Doak GJ, Sawynok J. Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. Eur J Pharmacol 1995; 281: 311–8

    Article  PubMed  CAS  Google Scholar 

  91. Karlsten R, Gordh T, Post C. Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol Toxicol 1992; 70: 434–8

    Article  PubMed  CAS  Google Scholar 

  92. Holton FA, Holton P. The capillary dilator substances in dry powders of spinal roots: a possible role of adenosine triphosphate in chemical transmission from nerve endings. J Physiol 1954; 126: 124–40

    PubMed  CAS  Google Scholar 

  93. Holton P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 1959; 145:494–504

    PubMed  CAS  Google Scholar 

  94. Rae CP, Mansfield MD, Dryden C, et al. Analgesic effect of adenosine on ischaemic pain in human volunteers. Br J Anaesth 1999; 82: 427–8

    Article  PubMed  CAS  Google Scholar 

  95. Sjolund KF, Segerdahl M, Sollevi A. Adenosine reduces secondary hyperalgesia in two human models of cutaneous inflammatory pain. Anesth Analg 1999; 88: 605–10

    PubMed  CAS  Google Scholar 

  96. Bleehen T, Keele CA. Observations on the allogenic actions of adenosine compounds on the human blister base preparation. Pain 1977; 3: 367–77

    Article  PubMed  CAS  Google Scholar 

  97. Poon A, Sawynok J. Antinociception by adenosine analogs and an adenosine kinase inhibitor: dependence on formalin concentration. Eur J Pharmacol 1995; 286: 177–84

    Article  PubMed  CAS  Google Scholar 

  98. Sawynok J, Reid A, Poon A. Peripheral antinociceptive effect of an adenosine kinase inhibitor, with augmentation by an adenosine deaminase inhibitor, in the rat formalin test. Pain 1998; 74: 75–81

    Article  PubMed  CAS  Google Scholar 

  99. Keil 2nd GJ, DeLander GE. Spinally-mediated antinociception is induced in mice by an adenosine kinase-,but not by an adenosine deaminase-,inhibitor. Life Sci 1992; 51: 171–6

    Article  Google Scholar 

  100. Keil 2nd GJ, DeLander GE. Adenosine kinase and adenosine deaminase inhibition modulate spinal adenosine- and opioid agonist-induced antinociception in mice. Eur J Pharmacol 1994; 271: 37–46

    Article  PubMed  CAS  Google Scholar 

  101. Poon A, Sawynok J. Antinociception by adenosine analogues and inhibition of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 1998; 74: 235–45

    Article  PubMed  CAS  Google Scholar 

  102. Meghji P. Adenosine production and metabolism. In: Stone TW, editor. Adenosine in the nervous system. London: Academic Press, 1991: 25–42

    Google Scholar 

  103. Dickenson AH, Sullivan AF. Combined therapy in analgesia; seeking synergy. Curr Opin Anaesthesiol 1993; 6: 861–5

    Article  Google Scholar 

  104. DeLander GE, Hopkins CJ. Involvement of A2 adenosine receptors in spinal mechanisms of antinociception. Eur J Pharm 1987; 139: 215–23

    Article  CAS  Google Scholar 

  105. Segerdahl M, Forsberg C, Sollevi A. Ketamine and adenosine infusion prevent thermal changes in the secondary hyperalgesic area after mustard oil skin application [abstract]. In: 8th World Congress on Pain: 1996 Aug 18–22: Vancouver. Seattle (WA): IASP Press, 1996: 35

    Google Scholar 

  106. Sollevi A. Adenosine infusion during isoflurane-nitrous oxide anaesthesia: indications of perioperative analgesic effect. Acta Anaesthesiol Scand 1992; 36: 595–9

    Article  PubMed  CAS  Google Scholar 

  107. Sylven C, Eriksson B, Jensen J, et al. Analgesic effects of adenosine during exercise-provoked myocardial ischaemia. Neuroreport 1996; 7: 1521–5

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony H. Dickenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickenson, A.H., Suzuki, R. & Reeve, A.J. Adenosine as a Potential Analgesic Target in Inflammatory and Neuropathic Pains. Mol Diag Ther 13, 77–85 (2000). https://doi.org/10.2165/00023210-200013020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200013020-00001

Keywords

Navigation