Skip to main content
Log in

Impact of Estrogen Therapy on Alzheimer’s Disease

A Fork in the Road?

  • Current Opinion
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

The results of recent clinical studies have challenged our previously held view that estrogen therapy promotes neurological health and prevents or ameliorates Alzheimer’s disease. A major question emerging from these studies is: how can there be such disparity between the basic science and epidemiological data that show that estrogen can protect neurons against degenerative insults and reduce the risk of Alzheimer’s disease and the recent data (from the Women’s Health Initiative Memory Study [WHIMS] trial and the trial of estrogen treatment for Alzheimer’s disease), which show that hormone replacement therapy (HRT) showed no benefit and even a potential deleterious effect? Which set of data is correct? The proposition put forth in this review is that both sets of data are correct and that two major factors determine the efficacy of estrogen or HRT.

First is the time at which estrogen therapy is initiated. The data indicate that initiation of therapy early in menopause and when neurons are in a healthy state, reduces the risk of Alzheimer’s disease; whereas, estrogen therapy initiated after the disease has developed or decades following menopause is without benefit. Second, estrogen therapy is not the same as HRT and the type of progestogen used determines the outcome of the therapeutic intervention. Insights into the mechanisms of action of estrogen and progestogen in the brain provide a framework for understanding the paradox of the benefit of estrogen in the prevention of Alzheimer’s disease versus the lack of benefit in treatment trials and in trials when HRT is instituted many years after menopause.

Based on estrogen-inducible mechanisms, which have been elucidated in healthy neuron model systems, it would be predicted that estrogen therapy could be highly effective in preventing neurodegenerative disease by promoting neuronal defence and memory mechanisms. The mechanisms of action of estrogen also predict that estrogen therapy would be an ineffective strategy for reversing the pathology of Alzheimer’s disease.

In summary, the time at which estrogen therapy is initiated, the neurological status of the brain at the time of estrogen therapy initiation and the type of progestogen used all contribute to the efficacy of estrogen in preventing neurodegenerative disease and to sustaining neurological health and function. An estrogen advantage hypothesis is put forth that provides a unifying mechanism of estrogen action with implications for both the benefits and risks of estrogen therapy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Table II
Fig. 3
Table III

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Fillit HM, O’Connell AW, Brown WM, et al. Barriers to drug discovery and development for Alzheimer disease. Alzheimer Dis Assoc Disord 2002; 16Suppl. 1: S1–8

    Article  PubMed  Google Scholar 

  2. Alzheimer’s Disease Education & Referral Center. Alzheimer’s disease: unraveling the mystery [online]. Available from URL: http://www.alzheimers.org/unraveling/unraveling.pdf [Accessed 2003 Mar 9]

  3. Whitehouse PJ. Alzheimer’s disease: an international public health problem. Clinical goals, strategies, and outcomes. In: Decker MW, editor. Pharmacological treatment of Alzheimer’s disease. New York: Wiley-Liss, 1997: 331–43

    Google Scholar 

  4. Birge SJ. The role of estrogen in the treatment of Alzheimer’s disease. Neurology 1997; 48(5 Suppl. 7): S36–41

    Article  PubMed  CAS  Google Scholar 

  5. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 1998; 88: 1337–42

    Article  PubMed  CAS  Google Scholar 

  6. Brinton RD. A women’s health issue: Alzheimer’s disease and strategies for maintaining cognitive health. Int J Fertil Womens Med 1999; 44(4): 174–85

    PubMed  CAS  Google Scholar 

  7. Payami H, Montee K, Grimslid H, et al. Increased risk of familial late-onset Alzheimer’s disease in women. Neurology 1996; 46(1): 126–9

    Article  PubMed  CAS  Google Scholar 

  8. Gao S, Hendrie HC, Hall KS, et al. The relationship between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch Gen Psychiatry 1998; 55(9): 809–15

    Article  PubMed  CAS  Google Scholar 

  9. Zandi PP, Carlson MC, Plassman BL, et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 2002 Nov 6; 288(17): 2123–9

    Article  PubMed  CAS  Google Scholar 

  10. Lindsay J, Laurin D, Verreault R, et al. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 2002; 156(5): 445–53

    Article  PubMed  Google Scholar 

  11. North American Menopause Society. Menopause core curriculum study guide: basic overview, definitions, & statistics [online]. Available from URL: http://www.menopause.org [Accessed 2003 Mar 9]

  12. Henderson VW. Hormone therapy and the brain: a clinical perspective on the role of estrogen. New York: Parthenon Publishing, 2000

    Google Scholar 

  13. Holden C. New populations of old add to poor nations’ burdens. Science 1996 Jul 5; 273(5271): 46–8

    PubMed  CAS  Google Scholar 

  14. Yaffe K, Sawaya G, Lieberburg I, et al. Estrogen therapy in postmenopausal women: effects on cognitive function and dementia. JAMA 1998; 279(9): 688–95

    Article  PubMed  CAS  Google Scholar 

  15. Tang MX, Jacobs D, Stern Y, et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996; 348(9025): 429–32

    Article  PubMed  CAS  Google Scholar 

  16. LeBlanc ES, Janowshy J, Chan BK, et al. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA 2001; 285(11): 1489–99

    Article  PubMed  CAS  Google Scholar 

  17. Brinton RD, Yamazaki RS. Advances and challenges in the prevention and treatment of Alzheimer’s disease. Pharm Res 1998; 15: 384–97

    Article  Google Scholar 

  18. Gandy S, Almeida OP, Fonte J, et al. Chemical andropause and amyloid-β peptide. JAMA 2001; 285(17): 2195–6

    Article  PubMed  CAS  Google Scholar 

  19. Shumaker SA, Legault C, Rapp SR, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 2003 May 28; 289(20): 2651–62

    Article  PubMed  CAS  Google Scholar 

  20. Troncoso JC, Martin LJ, Dal FG, et al. Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging. Neurobiol Aging 1996; 17(3): 365–71

    Article  PubMed  CAS  Google Scholar 

  21. Troncoso JC, Cataldo AM, Nixon RA, et al. Neuropathology of preclinical and clinical late-onset Alzheimer’s disease. Ann Neurol 1998; 43(5): 673–6

    Article  PubMed  CAS  Google Scholar 

  22. LeBlanc ES, Janowsky J, Chan BK, et al. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA 2001 Mar 21; 285(11): 1489–99

    Article  PubMed  CAS  Google Scholar 

  23. Wassertheil-Smoller S, Hendrix SL, Limacher M, et al. Effect of estrogen plus progestin on stroke in postmenopausal women. The Women’s Health Initiative: a randomized trial. JAMA 2003; 289(20): 2673–84

    CAS  Google Scholar 

  24. Chlebowski RT, Hendrix SL, Langer RD, et al. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative Randomized Trial. JAMA 2003 Jun 25; 289(24): 3243–53

    Article  PubMed  CAS  Google Scholar 

  25. Rapp SR, Espeland MA, Shumaker SA, et al. Effect of estrogen plus progestin on global cognitive function in postmenopausal women. The Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 2003 May 28; 289(20): 2663–72

    CAS  Google Scholar 

  26. Resnick SM, Henderson VW. Hormone therapy and risk of Alzheimer’s disease: a critical time. JAMA 2002 Nov 6; 288(17): 2170–2

    Article  PubMed  Google Scholar 

  27. Nilsen J, Brinton RD. Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norproges-terone and antagonism by medroxyprogesterone acetate. Endocrinology 2002; 143(1): 205–12

    Article  PubMed  CAS  Google Scholar 

  28. Nilsen J, Brinton RD. Impact of progestins on estradiol-potentiation of the glutamate calcium response. Neuroreport 2002; 13(6): 825–30

    Article  PubMed  CAS  Google Scholar 

  29. Nilsen J, Brinton RD. Divergent impact of progesterone and medroxyprogesterone acetate (Provera) on nuclear mitogen-activated protein kinase signaling. PNAS 2003; (100): 10506–11

    Article  PubMed  CAS  Google Scholar 

  30. Yaffe K. Hormone therapy and the Brain: déjà vu all over again? JAMA 2003 May 28; (289): 2717–9

    Article  PubMed  Google Scholar 

  31. Shumaker SA, Reboussin BA, Espeland MA, et al. The Women’s Health Initiative Memory Study (WHIMS): a trial of the effect of estrogen therapy in preventing and slowing the progression of dementia. Controlled Clinical Trials 1998; (19): 604–21

    Article  PubMed  CAS  Google Scholar 

  32. DiazBrinton R, Chen S, Montoya M, et al. The women’s health initiative estrogen replacement therapy is neurotrophic and neuroprotective. Neurobiol Aging 2000; 21(3): 475–96

    Article  CAS  Google Scholar 

  33. Neurgaren BL, Kraines RJ. Menopausal symptoms in women of various ages. Psychosomatic Med 1965; (27): 266–73

    Google Scholar 

  34. McEwen BS, Alves SE, Bulloch K, et al. Ovarian steroids and the brain: implications for cognition and aging. Neurology 1997; 48(5 Suppl. 7): S8–15

    Article  PubMed  CAS  Google Scholar 

  35. Luine VN. Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 1985; 89(2): 484–90

    Article  PubMed  CAS  Google Scholar 

  36. Sherwin BB. Oestrogen and cognitive function throughout the female lifespan. Novartis Foundation Symp 2000; (230): 188–96; discussion 196-201

    Article  CAS  Google Scholar 

  37. Maki P, Zonderman A, Resnick S. Enhanced verbal memory in nondemented elderly women receiving hormone-replacement therapy. Am J Psychiatry 2001; 158(2): 227–33

    Article  PubMed  CAS  Google Scholar 

  38. Resnick SM, Metter EJ, Zonderman AB. Estrogen replacement therapy and longitudinal decline in visual memory: a possible protective effect? Neurology 1997; 49(6): 1491–7

    Article  PubMed  CAS  Google Scholar 

  39. Sherwin BB. Estrogen and cognitive aging in women. Trends Pharmacol Sci 2002; 23(11): 527–34

    Article  PubMed  CAS  Google Scholar 

  40. Brinton RD. Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer’s disease: recent insights and remaining challenges. Learn Mem 2000; 8(3): 121–33

    Article  Google Scholar 

  41. Nilsen J, Chen S, Brinton RD. Dual action of estrogen on glutamate-induced calcium signaling: mechanisms requiring interaction between estrogen receptors and src/mitogen activated protein kinase pathway. Brain Res 2002; 930(1-2): 216–34

    Article  PubMed  CAS  Google Scholar 

  42. Wade CB, Robinson S, Shapiro RA, et al. Estrogen receptor (ER) alpha and ERbeta exhibit unique pharmacologie properties when coupled to activation of the mitogen-activated protein kinase pathway. Endocrinology 2001; 142(6): 2336–42

    Article  PubMed  CAS  Google Scholar 

  43. Singh M, Setalo Jr G, Guan X, et al. Estrogen-induced activation of the mitogen-activated protein kinase cascade in the cerebral cortex of estrogen receptor-alpha knock-out mice. J Neurosci 2000; 20(5): 1694–700

    PubMed  CAS  Google Scholar 

  44. Woolley CS. Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Horm Behav 1998; 34(2): 140–8

    Article  PubMed  CAS  Google Scholar 

  45. Woolley CS, McEwen BS. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J Neurosci 1994; 14(12): 7680–7

    PubMed  CAS  Google Scholar 

  46. Sandstrom NJ, Williams CL. Memory retention is modulated by acute estradiol and progesterone replacement. Behav Neurosci 2001; 115(2): 384–93

    Article  PubMed  CAS  Google Scholar 

  47. Dubai DB, Zhu H, Yu J, et al. Estrogen receptor alpha, not beta, is a critical link in estradiol-mediated protection against brain injury. PNAS 2001; 98(4): 1952–7

    Google Scholar 

  48. Yaffe K, Lui IY, Grady D, et al. Estrogen receptor 1 polymorphisms and risk of cognitive impairment in older women. Biol Psychiatry 2002; 51(8): 677–82

    Article  PubMed  CAS  Google Scholar 

  49. Klein R, Berlin L. Benefits and risks of hormone replacement therapy. In: Pavlik EJ, editor. Estrogens, progestins and their antagonists. Boston (MA): Birkhäuser, 1996: 3–50

    Google Scholar 

  50. Mattox JH, Shulman LP. Combined oral hormone replacement therapy formulations. Am J Obstet Gynecol 2001; 185 (2 Suppl.): S38–46

    Google Scholar 

  51. Schairer C, Lubin J, Troisi R, et al. Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA 2000 Jan 26; 283(4): 485–91

    Article  PubMed  CAS  Google Scholar 

  52. Writing Group for the Women’s Health Initiative I. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002; 288(3): 321–33

    Article  Google Scholar 

  53. Newton J. The current status of intra-uterine contraceptive devices and systems. Br J Fam Plann 2000; 26(1): 14–5

    PubMed  CAS  Google Scholar 

  54. Davis AJ. Advances in contraception. Obstet Gynecol Clin North Am 2000 Sep; 27(3): 597–610, vii

    Article  PubMed  CAS  Google Scholar 

  55. Lahteenmaki P, Jukarainen H. Novel delivery systems in contraception. Br Med Bull 2000; 56(3): 739–48

    Article  PubMed  CAS  Google Scholar 

  56. Brinton RD, Chen S, Montoya M, et al. The Women’s Health Initiative estrogen replacement therapy is neurotrophic and neuroprotective. Neurobiol Aging 2000; (vn21): 475–96

    Google Scholar 

  57. Green PS, Gridley KE, Simpkins JW. Nuclear estrogen receptor-independent neuroprotection by estratrienes: a novel interaction with glutathione. Neuroscience 1998; 84(1): 7–10

    Article  PubMed  CAS  Google Scholar 

  58. Behl C, Skutella T, Lezoualc’h F, et al. Neuroprotection against oxidative stress by estrogens: structure-activity relationship. Mol Pharmacol 1997; 51(4): 535–41

    PubMed  CAS  Google Scholar 

  59. Simpkins JW, Rajakumar G, Zhang YQ, et al. Estrogens may reduce mortality and ischemic damage caused by middle cerebral artery occlusion in the female rat. J Neurosurg 1997; 87(5): 724–30

    Article  PubMed  CAS  Google Scholar 

  60. Pike CJ. Estrogen modulates neuronal Bcl-xL expression and beta-amyloid-induced apoptosis: relevance to Alzheimer’s disease. J Neurochem 1999; 72(4): 1552–63

    Article  PubMed  CAS  Google Scholar 

  61. Nilsen J, Brinton RD. Mechanism of estrogen-mediated neuroprotection: regulation of mitochondrial calcium and Bcl-2 expression. Proc Natl Acad Sci U S A 2003 Mar 4; 100(5): 2842–7

    Article  PubMed  CAS  Google Scholar 

  62. Petanceska SS, Nagy V, Frail D, et al. Ovariectomy and 17beta-estradiol modulate the levels of Alzheimer’s amyloid beta-peptides in brain. Neurology 2000; 54(12): 2212–7

    Article  PubMed  CAS  Google Scholar 

  63. Li R, Shen Y, Yang LB, et al. Estrogen enhances uptake of amyloid beta-protein by microglia derived from the human cortex. J Neurochem 2000; 75(4): 1447–54

    Article  PubMed  CAS  Google Scholar 

  64. Xu H, Gouras GK, Greenfield JP, et al. Estrogen reduces neuronal generation of Alzheimer beta-amyloid peptides. Nat Med 1998; 4(4): 447–51

    Article  PubMed  CAS  Google Scholar 

  65. Callahan MJ, Lipinski WJ, Bian F, et al. Augmented senile plaque load in aged female beta-amyloid precursor protein-transgenic mice. Am J Pathol 2001; 158(3): 797–801

    Article  Google Scholar 

  66. Zheng H, Xu H, Uljon SN, et al. Modulation of A-beta peptides by estrogen in mouse models. J Neurochem 2002; 80(1): 191–6

    Article  PubMed  CAS  Google Scholar 

  67. Fillit H, Weinreb H, Cholst I, et al. Observations in a preliminary open trial of estradiol therapy for senile dementia-Alzheimer’s type. Psychoneuroendocrinology 1986; 11(3): 337–45

    Article  PubMed  CAS  Google Scholar 

  68. Henderson VW, Paganini-Hill A, Miller BL, et al. Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology 2000; 54(2): 295–301

    Article  PubMed  CAS  Google Scholar 

  69. Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer’s Disease Cooperative Study. JAMA 2000 Feb 23; 283(8): 1007–15

    CAS  Google Scholar 

  70. Asthana S, Craft S, Baker LD, et al. Cognitive and neuroendo-crine response to transdermal estrogen in postmenopausal women with Alzheimer’s disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology 1999; 24(6): 657–77

    Article  PubMed  CAS  Google Scholar 

  71. Marder K, Sano M. Estrogen to treat Alzheimer’s disease: too little, too late? So what’s a woman to do? [letter]. Neurology 2000 Jun 13; 54(11): 2035–7

    Article  PubMed  CAS  Google Scholar 

  72. Finch CE, Tanzi RE. Genetics of aging. Science 1997 Oct 17; 278(5337): 407–11

    Article  PubMed  CAS  Google Scholar 

  73. Adams MM, Shah RA, Janssen WG, et al. Different modes of hippocampal plasticity in response to estrogen in young and aged female rats. Proc Natl Acad Sci U S A 2001 Jul 3; 98(14): 8071–6

    Article  PubMed  CAS  Google Scholar 

  74. Hao J, Janssen WG, Tang Y, et al. Estrogen increases the number of spinophilin-immunoreactive spines in the hippocampus of young and aged female rhesus monkeys. J Comp Neurol 2003; 465(4): 540–50

    Article  PubMed  CAS  Google Scholar 

  75. Brinton RD. Selective estrogen receptor modulators (SERM) for the brain: advances and challenges in developing a NeuroSERM. Drug Dev Res 2002; 15: 1–13

    Google Scholar 

  76. Thibault O, Porter NM, Chen KC, et al. Calcium dysregulation in neuronal aging and Alzheimer’s disease: history and new directions. Cell Calcium 1998; 24(5-6): 417–33

    Article  PubMed  CAS  Google Scholar 

  77. Solodkin A, Van Hoesen GW. Neuropathology and functional anatomy of Alzheimer’s disease. In: Brioni JD, Decker MW, editors. Pharmacological treatment of Alzheimer’s disease: molecular and neurobiological foundations. New York: John Wiley & Sons, 1997

    Google Scholar 

  78. Rebar RW. Premature ovarian failure. In: Lobo R, editor. Treatment of the postmenopausal woman: basic and clinical aspects. Philadelphia (PA): Lippincott Williams & Wilkins, 1999: 13–22

    Google Scholar 

  79. Hammond CB. Women’s concerns with hormone replacement therapy: compliance issues. Fertil Steril 1994; 62(6 Suppl. 2): 157S–60S

    PubMed  CAS  Google Scholar 

  80. American Society for Reproductive Medicine. HRT use and compliance [online]. Available from URL: http://www.Asrm.org/Literature/Menopausal.Medicine/menospring01.pdf [Accessed 2004 Apr 28]

  81. Grese TA, Pennington LD, Sluka JP, et al. Synthesis and pharmacology of conformationally restricted raloxifene analogues: highly potent selective estrogen receptor modulators. J Med Chem 1998; 41(8): 1272–83

    Article  PubMed  CAS  Google Scholar 

  82. Gustafsson JA. Therapeutic potential of selective estrogen receptor modulators. Curr Opin Chem Biol 1998; 2(4): 508–11

    Article  PubMed  CAS  Google Scholar 

  83. O’Neill KJ, Chen S, Brinton RD. Impact of the selective estrogen receptor modulator, tamoxifen, on neuronal outgrowth and survival following toxic insults associated with aging and Alzheimer’s disease. Exp Neurol. In press

  84. O’Neill KJ, Chen, S, Brinton RD. Impact of the selective estrogen receptor modulator, raloxifene, on neuronal outgrowth and survival following toxic insults associated with aging and Alzheimer’s disease. Exp Neurol 2004; 185(1): 63–80

    Article  PubMed  Google Scholar 

  85. Zhao L, Chen Q, Brinton RD. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurones. Exp Biol Med (Maywood) 2002 Jul; 227(7): 509–19

    CAS  Google Scholar 

Download references

Acknowledgements

The author expresses sincere gratitude to the Kenneth T. and Eileen L. Norris Foundation, which has graciously and steadfastly supported our efforts to understand estrogen action in the brain, to develop therapeutic strategies for preventing Alzheimer’s disease and to communicate the results of our endeavours to clinicians who face the challenge of preventing and treating this devastating disease in their patients. The authors work is also supported by the National Institute of Aging and the National Institute of Mental Health. Also gratefully acknowledged are the excellent investigators who have contributed to the science from the authors laboratory, especially Drs Jon Nilsen, Shuhua Chen, Liqin Zhao and JunMing Wang; graduate students Lixia Zhao, Tsu Wei Wu, Kathleen O’Neill and Michael Kim, and the authors collaborator Dr Theodore W. Berger. The author has provided no information on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta D. Brinton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinton, R.D. Impact of Estrogen Therapy on Alzheimer’s Disease. CNS Drugs 18, 405–422 (2004). https://doi.org/10.2165/00023210-200418070-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200418070-00001

Keywords

Navigation