Skip to main content
Log in

Oral Delivery of Peptide Drugs

Barriers and Developments

  • Drug Delivery
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

A wide variety of peptide drugs are now produced on a commercial scale as a result of advances in the biotechnology field. Most of these therapeutic peptides are still administered by the parenteral route because of insufficient absorption from the gastrointestinal tract. Peptide drugs are usually indicated for chronic conditions, and the use of injections on a daily basis during long-term treatment has obvious drawbacks. In contrast to this inconvenient and potentially problematic method of drug administration, the oral route offers the advantages of self-administration with a high degree of patient acceptability and compliance. The main reasons for the low oral bioavailability of peptide drugs are pre-systemic enzymatic degradation and poor penetration of the intestinal mucosa. A considerable amount of research has focused on overcoming the challenges presented by these intestinal absorption barriers to provide effective oral delivery of peptide and protein drugs. Attempts to improve the oral bioavailability of peptide drugs have ranged from changing the physicochemical properties of peptide molecules to the inclusion of functional excipients in specially adapted drug delivery systems. However, the progress in developing an effective peptide delivery system has been hampered by factors such as the inherent toxicities of absorption-enhancing excipients, variation in absorption between individuals, and potentially high manufacturing costs. This review focuses on the intestinal barriers that compromise the systemic absorption of intact peptide and protein molecules and on the advanced technologies that have been developed to overcome the barriers to peptide drug absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Fig. 3

Similar content being viewed by others

Notes

  1. The use of trade names is for identification purposes only, and does not imply endorsement

References

  1. Torchilin VP, Lukyanov AN. Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 2003; 8(6): 259–66

    Article  PubMed  CAS  Google Scholar 

  2. Soltero R, Ekwuribe N. The oral delivery of protein and peptide drugs. Innovations in Pharmaceutical Technology 2001 Dec: 106-10

  3. Sarciaux JM, Acar L, Sado PA. Using microemulsion formulations for oral drug delivery of therapeutic peptides. Int J Pharm 1995; 120: 127–36

    Article  CAS  Google Scholar 

  4. Muranishi S. Modification of intestinal absorption of drugs by lipoidal adjuvants. Pharm Res 1985; 2: 108–18

    Article  Google Scholar 

  5. Lennernäs H. Does fluid flow across the intestinal mucosa affect quantitative oral drug absorption? Is it time for a reevaluation? Pharm Res 1995; 12(11): 1573–82

    Article  PubMed  Google Scholar 

  6. Ghilzai MK. Advances in the delivery of large-size drug molecules. Innovations in Pharmaceutical Technology 2004 Jun: 103-8

  7. Taylor J. Improving insulin therapy. Drug Deliv Systems Sci 2001; 1(4): 101–5

    Google Scholar 

  8. Eppstein DA, Longenecker JP. Alternative delivery systems for peptides and proteins as drugs. Crit Rev Ther Drug Carrier Syst 1988; 5(2): 99–139

    PubMed  CAS  Google Scholar 

  9. Fasano A. Innovative strategies for the oral delivery of drugs and peptides. Trends Biotechnol 1998; 16: 152–7

    Article  PubMed  CAS  Google Scholar 

  10. Lee VHL, Dodda-Kashi S, Grass GM, et al. Oral route of peptide and protein drug delivery. In: Lee VHL, editor. Peptide and protein drug delivery. New York: Marcel Dekker Inc, 1991: 691–738

    Google Scholar 

  11. Hochman J, Artursson P. Mechanisms of absorption enhancement and tight junction regulation. J Control Release 1994; 29: 253–67

    Article  CAS  Google Scholar 

  12. Shargel LS, Yu A, editors. Applied biopharmaceutics and pharmacokinetics. New York: McGraw-Hill, 1999

    Google Scholar 

  13. Shen W-C. Oral peptide and protein delivery: unfulfilled promises? Drug Discov Today 2003; 8(14): 607–8

    Article  PubMed  Google Scholar 

  14. Junginger HE, Verhoef JC. Macromolecules as safe penetration enhancers for hydrophilic drugs: a fiction? Pharm Sci Technol Today 1998; 1(9): 370–6

    Article  CAS  Google Scholar 

  15. Cleland JL, Daugherty A, Mrsny R. Emerging protein delivery methods. Curr Opin Biotechnol 2001; 12: 212–9

    Article  PubMed  CAS  Google Scholar 

  16. Lennernäs H. Human intestinal permeability. J Pharm Sci 1998; 87(4): 403–10

    Article  PubMed  Google Scholar 

  17. Gabor F, Bogner E, Weissenboeck A, et al. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev 2004; 56: 459–80

    Article  PubMed  CAS  Google Scholar 

  18. Lipka E, Crison J, Amidon GL. Transmembrane transport of peptide type compounds: prospects for oral delivery. J Control Release 1996; 39: 121–9

    Article  PubMed  CAS  Google Scholar 

  19. Hunter J, Hirst BH. Intestinal secretions of drugs: the role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv Drug Deliv Rev 1997; 25: 129–57

    Article  CAS  Google Scholar 

  20. Brayden DJ, O’Mahony DJ. Novel oral drug delivery gateways for biotechnology products: polypetides and vaccines. Pharm Sci Technol Today 1998; 1(7): 291–9

    Article  CAS  Google Scholar 

  21. Van Hoogdalem EJ, De Boer AG, Breimer DD. Intestinal drug absorption enhancement: an overview. Pharmacol Ther 1989; 44: 407–43

    Article  PubMed  Google Scholar 

  22. Fagerholm U, Lennernas H. Experimental estimation of the effective unstirred water layer thickness in the human jejunum and its importance in oral drug absorption. Eur J Pharm Sci 1995; 3: 247–53

    Article  CAS  Google Scholar 

  23. Schipper NGM, Vårum KM, Stenberg P, et al. Chitosans as absorption enhancers of poorly absorbable drugs: 3. Influence of mucus on absorption enhancement. Eur J Pharm Sci 1999; 8: 335–43

    Article  PubMed  CAS  Google Scholar 

  24. Sinko PJ, Hu M, Amidon GL. Carrier mediated transport of amino acids, small peptides and their analogs. J Control Release 1987; 6: 115–21

    Article  CAS  Google Scholar 

  25. Larhed AW, Artursson P, Gråsj J, et al. Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci 1997; 86(6): 660–5

    Article  PubMed  CAS  Google Scholar 

  26. Baker J, Hidalgo IJ, Borchardt RT. Intestinal epithelial and vascular endothelial barriers to peptide and protein delivery. In: Lee VHL, editor. Peptide and protein drug delivery. New York: Marcel Dekker Inc, 1991: 359–390

    Google Scholar 

  27. Swenson ES, Curatolo WJ. Means to enhance penetration: intestinal permeability enhancement for proteins, peptides and other polar drugs. Mechanisms and potential toxicity. Adv Drug Deliv Rev 1992; 8: 39–92

    Article  CAS  Google Scholar 

  28. Pauletti GM, Gangwar S, Knipp GT, et al. Structural requirements for intestinal absorption of peptide drugs. J Control Release 1996; 41: 3–17

    Article  CAS  Google Scholar 

  29. Zhou XH. Overcoming enzymatic and absorption barriers to non-parenterally administered protein and peptide drugs. J Control Release 1994; 29: 239–52

    Article  CAS  Google Scholar 

  30. Lee VHL, Traver RD, Taub ME. Enzymatic barriers to peptide and protein drug delivery. In: Lee VHL, editor. Peptide and protein drug delivery. New York: Marcel Dekker Inc, 1991: 303–58

    Google Scholar 

  31. Pauletti GM, Gangwar S, Siahaan TJ, et al. Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies. Adv Drug Deliv Rev 1997; 27: 235–56

    Article  PubMed  Google Scholar 

  32. Lapierre LA. The molecular structure of the tight junction. Adv Drug Deliv Rev 2000; 41: 255–64

    Article  PubMed  CAS  Google Scholar 

  33. Madara JL, Trier JS. Functional morphology of the mucosa of the small intestine. In: Johnson LR, editor. Physiology of the gastrointestinal tract. New York: Raven Press, 1987: 1780

    Google Scholar 

  34. Schumacher U, Schumacher D. Functional histology of epithelia relevant for drug delivery: respiratory tract, digestive tract, eye, skin and vagina. In: Mathiowitz E, Chickering DE, Lehr C-M, editors. Bioadhesive drug delivery systems fundamentals, novel approaches and development. New York: Marcel Dekker Inc, 1999: 67–83

    Google Scholar 

  35. Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technol Today 2000; 3(10): 346–58

    Article  PubMed  CAS  Google Scholar 

  36. Camenisch G, Folkers G, Van de Waterbeemd H. Review of theoretical passive drug absorption models: historical background, recent developments and limitations. Pharm Acta Helv 1996; 71: 309–27

    Article  PubMed  CAS  Google Scholar 

  37. Nellans NH. Paracellular intestinal absorption: modulation of transport. Adv Drug Deliv Rev 1991; 7: 339–64

    Article  CAS  Google Scholar 

  38. Diamond J. The epithelial junction: bridge gate and fence. Physiologist 1977; 20: 10–8

    PubMed  CAS  Google Scholar 

  39. Gumbiner B. Structure, biochemistry and assembly of epithelial tight junctions. Am J Physiol Cell Physiol 1987; 253: C749–58

    CAS  Google Scholar 

  40. Bretscher MS. The molecules of the cell membrane. Sci Am 1985; 253: 86–90

    Article  Google Scholar 

  41. Benet LZ, Wu C-Y, Hebert MF, et al. Intestinal drug metabolism and antitransport processes: a potential paradigm shift in oral drug delivery. J Control Release 1996; 39: 139–43

    Article  CAS  Google Scholar 

  42. Burton PS, Goodwin JT, Conradi RA, et al. In vitro permeability of peptidomimetics drugs: the role of polarized efflux pathways as additional barriers to absorption. Adv Drug Deliv Rev 1997; 23: 143–56

    Article  CAS  Google Scholar 

  43. Sun J, He Z-G, Cheng G, et al. Multidrug resistance P-glycoprotein: crucial significance in drug disposition and interaction. Med Sci Monit 2004; 10(1): RA5–14

    PubMed  CAS  Google Scholar 

  44. Ashford M. The gastrointestinal tract: physiology and drug absorption. In: Aulton ME, editor. Pharmaceutics: the science of dosage form design. Edinburgh: Churchill Livingstone, 2002: 217–33

    Google Scholar 

  45. Langguth P, Bohner V, Heizmann J, et al. The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release 1997; 46: 39–57

    Article  CAS  Google Scholar 

  46. Whitehead K, Shen Z, Mitragotri S. Oral delivery of macromolecules using intestinal patches: applications for insulin delivery. J Control Release 2004; 98: 37–45

    Article  PubMed  CAS  Google Scholar 

  47. Mahato RI, Narang AS, Thoma L, et al. Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 2003; 20: 153–214

    Article  PubMed  CAS  Google Scholar 

  48. Touitou E. Enhancement of intestinal peptide absorption. J Control Release 1992; 21: 139–44

    Article  CAS  Google Scholar 

  49. Bernkop-Schn A. Chitosan and its derivatives: potential excipients for peroral peptide delivery systems. Int J Pharm 2000; 194: 1–13

    Article  Google Scholar 

  50. Gangwar S, Pauletti GM, Wang B, et al. Prodrug strategies to enhance the intestinal absorption of peptides. Drug Discov Today 1997; 2(4): 148–55

    Article  CAS  Google Scholar 

  51. Kahns AH, Friis GJ, Bundgaard H. Protection of the peptide bond against α-chymotrypsin by the prodrug approach. Bioorg Med Chem Lett 1993; 3(5): 809–12

    Article  CAS  Google Scholar 

  52. Bundgaard H. Prodrugs as a means to improve the delivery of peptide drugs. Adv Drug Deliv Rev 1992; 8: 1–38

    Article  CAS  Google Scholar 

  53. Bundgaard H. The utility of the prodrug approach to improve peptide absorption. J Control Release 1992; 21: 63–72

    Article  CAS  Google Scholar 

  54. Borchard RT. Optimising oral absorption of peptides using prodrug strategies. J Control Release 1999; 62: 231–8

    Article  Google Scholar 

  55. Mizuma T, Koyanagi A, Awazu S. Intestinal transport and metabolism of glucose-conjugated kyotorphin and cyclic kyotorphin: metabolic degradation is crucial to intestinal absorption of peptide drugs. Biochim Biophys Acta 2000; 1475: 90–8

    Article  PubMed  CAS  Google Scholar 

  56. Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 2002; 54: 459–76

    Article  PubMed  CAS  Google Scholar 

  57. Hinds KD, Kim SW. Effects of PEG conjugation on insulin properties. Adv Drug Deliv Rev 2002; 54: 505–30

    Article  PubMed  CAS  Google Scholar 

  58. Greenwald RB, Choe YH, McGuire J, et al. Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 2003; 55: 217–50

    Article  PubMed  CAS  Google Scholar 

  59. Cefalu WT. Concept, strategies, and feasibility of noninvasive insulin delivery. Diabetes Care 2004; 27: 239–46

    Article  PubMed  Google Scholar 

  60. Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med 2003; 20: 886–98

    Article  PubMed  CAS  Google Scholar 

  61. Wang J, Chow D, Heiati H, et al. Reversible lipidisation for the oral delivery of salmon calcitonin. J Control Release 2003; 88: 369–80

    Article  PubMed  CAS  Google Scholar 

  62. Jones RM, Boatman PD, Semple G, et al. Clinically validated peptides as templates for de novo peptidomimetics drug design at G-protein-coupled receptors. Curr Opin Pharmacol 2003; 3: 530–43

    Article  PubMed  CAS  Google Scholar 

  63. Walter E, Kissel T, Amidon GL. The intestinal peptide carrier: a potential transport system for small peptide derived drugs. Adv Drug Deliv Rev 1996; 20: 33–58

    Article  CAS  Google Scholar 

  64. Rubio-Aliaga I, Daniel H. Mammalian peptide transporters as targets for drug delivery. Trends Pharmacol Sci 2002; 23(9): 434–40

    Article  PubMed  CAS  Google Scholar 

  65. Friedrichen GM, Nielsen CU, Steffansen B, et al. Model prodrugs designed for the intestinal peptide transporter: a synthetic approach for coupling of hydroxy-containing compounds to dipeptides. Eur J Pharm Sci 2001; 14: 13–9

    Article  Google Scholar 

  66. Lee VHL. Membrane transporters. Eur J Pharm Sci 2000; 11(2 Suppl.): S41–50

    Article  PubMed  CAS  Google Scholar 

  67. Daugherty AL, Mrsny R. Transcellular uptake mechanisms of the intestinal epithelial barrier: part one. Pharm Sci Technol Today 1999; 4(2): 144–51

    Article  PubMed  Google Scholar 

  68. Russel-Jones GJ, Arthur L, Walker H. Vitamin B12-mediated transport of nanoparticles across Caco-2 cells. Int J Pharm 1999; 179: 247–55

    Article  Google Scholar 

  69. Van der Lubben IM, Verhoef JC, Borchard G, et al. Chitosan for mucosal vaccination. Adv Drug Deliv Rev 2001; 52: 139–44

    Article  PubMed  Google Scholar 

  70. Baird AW, Campion DP, O’Brien L, et al. Oral delivery of pathogens from the intestine to the nervous system. J Drug Target 2004; 12: 71–8

    Article  PubMed  CAS  Google Scholar 

  71. Van der Lubben IM, Verhoef JC, Borchard G, et al. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 2001; 14: 201–7

    Article  PubMed  Google Scholar 

  72. Kompella UB, Lee VHL. Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev 2001; 46: 211–45

    Article  PubMed  CAS  Google Scholar 

  73. Aungst BJ. Intestinal permeation enhancers. J Pharm Sci 2000; 89(4): 429–42

    Article  PubMed  CAS  Google Scholar 

  74. Muranishi S. Absorption enhancers. Crit Rev Ther Drug Carrier Syst 1990; 7(1): 1–33

    PubMed  CAS  Google Scholar 

  75. Lee VHL, Yamamoto A, Kompella UB. Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit Rev Ther Drug Carrier Syst 1991; 8(2): 91–192

    PubMed  CAS  Google Scholar 

  76. Aungst BJ, Saitoh H, Burcham DL, et al. Enhancement of the intestinal absorption of peptides and non peptides. J Control Release 1996; 41: 19–31

    Article  CAS  Google Scholar 

  77. Aungst BJ. Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. J Pharm Sci 1993; 82(10): 979–87

    Article  PubMed  CAS  Google Scholar 

  78. Kajii H, Horie T, Hayashi M, et al. Effects of salicylic acid on the permeability of the plasma membrane of the small intestine of the rat: a fluorescence spectroscopic approach to elucidate the mechanism of promoted drug absorption. J Pharm Sci 1986; 75(5): 475–8

    Article  PubMed  CAS  Google Scholar 

  79. Yeh P-Y, Berenson MM, Samowitz WS, et al. Site-specific drug delivery and penetration enhancement in the gastrointestinal tract. J Control Release 1995; 36: 109–24

    Article  CAS  Google Scholar 

  80. Hochman JH, Fix JA, LeCluyse EL. In vitro and in vivo analysis of the mechanism of absorption enhancement by palmitoylcarnitine. J Pharmacol Exp Ther 1994; 269(2): 813–22

    PubMed  CAS  Google Scholar 

  81. Yamashita S, Masada M, Nadai T, et al. Effect of adjuvants on charge-selective permeability and electrical resistance of rat membrane. J Pharm Sci 1990; 79(7): 579–83

    Article  PubMed  CAS  Google Scholar 

  82. Anderberg EK, Nyström C, Artursson P. Epithelial transport of drugs in cell culture: VII. Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells. J Pharm Sci 1992; 81(9): 879–87

    Article  PubMed  CAS  Google Scholar 

  83. Swenson ES, Milisen WB, Curatolo W. Intestinal permeability enhancement: efficacy, acute local toxicity and reversibility. Pharm Res 1994; 11(8): 1132–42

    Article  PubMed  CAS  Google Scholar 

  84. Noach ABJ, Kurosaki Y, Blom-Roosemalen MCM, et al. Cell-polarity dependent effect of chelation on the paracellular permeability of confluent Caco-2 cell monolayers. Int J Pharm 1993; 90: 229–37

    Article  CAS  Google Scholar 

  85. Raiman J, Törmälehto S, Yritys K, et al. Effects of various absorption enhancers on transport of clodronate through Caco-2 cells. Int J Pharm 2003; 261: 129–36

    Article  PubMed  CAS  Google Scholar 

  86. Cox DS, Raje S, Gao H, et al. Enhanced permeability of molecular weight markers and poorly bioavailable compounds across Caco-2 cell monolayers using the absorption enhancer, zonula occludens toxin. Pharm Res 2002; 19(11): 1680–8

    Article  PubMed  CAS  Google Scholar 

  87. Fasano A, Nataro JP. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev 2004; 56: 795–807

    Article  PubMed  CAS  Google Scholar 

  88. Su M, He C, West CA, et al. Cytolytic peptides induce biphasic permeability changes in mammalian cell membranes. J Immunol Methods 2001; 252: 63–71

    Article  PubMed  CAS  Google Scholar 

  89. Liu P, Davis P, Liu H, et al. Evaluation of cytotoxicity and absorption enhancing effects of mellitin: a novel absorption enhancer. Eur J Pharm Biopharm 1999; 48: 85–7

    Article  PubMed  CAS  Google Scholar 

  90. Borchard G, Luessen HL, De Boer AG, et al. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption: III. Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release 1996; 39: 131–8

    Article  CAS  Google Scholar 

  91. Kotzé AF, De Leeuw BJ, Luessen HL, et al. Chitosans for enhanced delivery of therapeutic peptides across intestinal epithelia: in vitro evaluation in Caco-2 cell monolayers. Int J Pharm 1997; 159: 243–53

    Article  Google Scholar 

  92. Kotzé AF, Luessen HL, De Boer AG, et al. Chitosan for enhanced intestinal permeability: prospects for derivatives soluble in neutral and basic environments. Eur J Pharm Sci 1998; 7: 145–51

    Article  Google Scholar 

  93. Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 2001; 52: 117–26

    Article  PubMed  CAS  Google Scholar 

  94. Kotzé AF, Luessen HL, De Leeuw BJ, et al. N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2). Pharm Res 1997; 14(9): 1197–202

    Article  PubMed  Google Scholar 

  95. Hamman JH, Stander M, Junginger HE, et al. Enhancement of paracellular drug transport across mucosal epithelia by N-trimethyl chitosan chloride. STP Pharma Sci 2000; 10(1): 35–8

    CAS  Google Scholar 

  96. Hamman JH, Schultz CM, Kotzé AF. N-trimethyl chitosan chloride: optimum degree of quaternization for drug absorption enhancement across epithelial cells. Drug Deliv Ind Pharm 2003; 29(2): 161–72

    Article  CAS  Google Scholar 

  97. Bernkop-Schnürch A, Kast CE, Guggi D. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems. J Control Release 2003; 93: 95–103

    Article  PubMed  CAS  Google Scholar 

  98. Luessen HL, De Leeuw BJ, Pérard D, et al. Mucoadhesive polymers in peroral peptide drug delivery: I. Influence of mucoadhesive excipients on proteolytic activity of intestinal enzymes. Eur J Pharm Sci 1996; 4: 117–28

    Article  CAS  Google Scholar 

  99. Bernkop-Schnürch A. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J Control Release 1998; 52: 1–16

    Article  PubMed  Google Scholar 

  100. Chickering DE, Mathiowitz E. Definitions, mechanisms and theories of bioadhesion. In: Mathiowitz E, Chickering DE, Lehr C-M, editors. Bioadhesive drug delivery systems fundamentals, novel approaches and development. New York: Marcel Dekker Inc, 1999: 1–10

    Google Scholar 

  101. Easson JH, Haltner E, Lehr C-M, et al. Bacterial invasion factors and lectins as second-generation bioadhesives. In: Mathiowitz E, Chickering DE, Lehr C-M, editors. Bioadhesive drug delivery systems fundamentals, novel approaches and development. New York: Marcel Dekker Inc, 1999: 409–31

    Google Scholar 

  102. Junginger HE. Mucoadhesive hydrogels. Pharm Ind 1991; 53(11): 1056–65

    CAS  Google Scholar 

  103. Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release 2003; 89: 151–65

    Article  PubMed  CAS  Google Scholar 

  104. Lehr C-M. Lectin-mediated drug delivery: the second generation of bioadhesives. J Control Release 2000; 65: 19–29

    Article  PubMed  CAS  Google Scholar 

  105. Marshütz MK, Bernkop-Schnürch A. Thiolated polymers: self-crosslinking properties of thiolated 450 kDa poly (acrylic acid) and their influence on mucoadhesion. Eur J Pharm Sci 2002; 15: 387–94

    Article  Google Scholar 

  106. Kast CE, Bernkop-Schnürch A. Thiolated polymers-thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 2001; 22: 2345–52

    Article  PubMed  CAS  Google Scholar 

  107. Marschiitz MK, Caliceti P, Bernkop-Schnürch A. Design and in vivo evaluation of an oral delivery system for insulin. Pharm Res 2000; 17: 1468–74

    Article  Google Scholar 

  108. Naisbett B, Woodley J. The potential use of tomato lectin for oral drug delivery: 3. Bioadhesion in vivo. Int J Pharm 1995; 114: 227–36

    Article  CAS  Google Scholar 

  109. Gabor F, Bernkop-Schnürch A, Hamilton G. Bioadhesion to the intestine by means of E. coli K99-fimbriae: gastrointestinal stability and specificity of adherence. Eur J Pharm Sci 1997; 5: 233–42

    Article  CAS  Google Scholar 

  110. Ponchel G, Montisci M-J, Dembri A, et al. Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract. Eur J Pharm Biopharm 1997; 44: 25–31

    Article  CAS  Google Scholar 

  111. Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 2000; 50: 147–60

    Article  PubMed  CAS  Google Scholar 

  112. Jones M-C, Leroux J-C. Polymeric micelles: a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999; 48: 101–11

    Article  PubMed  CAS  Google Scholar 

  113. Russel-Jones GJ. The potential use of receptor-mediated endocytosis for oral drug delivery. Adv Drug Deliv Rev 2001; 46: 59–73

    Google Scholar 

  114. Norris DA, Puri N, Sinko PJ. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev 1998; 34: 135–54

    Article  PubMed  CAS  Google Scholar 

  115. Pan Y, Li Y-J, Zhao H-Y, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249: 139–47

    Article  PubMed  CAS  Google Scholar 

  116. Mrsny RJ. The colon as a site for drug delivery. J Control Release 1992; 22: 15–34

    Article  CAS  Google Scholar 

  117. Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 2002; 235: 1–15

    Article  PubMed  CAS  Google Scholar 

  118. Lambkin I, Pinilla C, Dee J, et al. Ligand display on targeted oral drug delivery systems. Drug Discov Today 2002; 2(2): 52–6

    Google Scholar 

  119. Dorkoosh FA, Verhoef JC, Borchard G, et al. Development and characterisation of a novel peroral peptide drug delivery system. J Control Release 2001; 71: 307–18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Research Foundation (GUN: 2053097) and Tshwane University of Technology, Pretoria, South Africa. The authors have no conflict of interest directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josias H. Hamman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamman, J.H., Enslin, G.M. & Kotzé, A.F. Oral Delivery of Peptide Drugs. BioDrugs 19, 165–177 (2005). https://doi.org/10.2165/00063030-200519030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200519030-00003

Keywords

Navigation