Skip to main content
Log in

Protein Array Technology

Potential Use in Medical Diagnostics

  • Technology
  • Published:
American Journal of Pharmacogenomics

Abstract

The human genome is sequenced, but only a minority of genes have been assigned a function. Whole-genome expression profiling is an important tool for functional genomic studies. Automated technology allows high-throughput gene activity monitoring by analysis of complex expression patterns, resulting in fingerprints of diseased versus normal or developmentally distinct tissues. Differential gene expression can be most efficiently monitored by DNA hybridization on arrays of oligonucleotides or cDNA clones. Starting from high-density filter membranes, cDNA microarrays have recently been devised in chip format. We have shown that the same cDNA libraries can be used for high-throughput protein expression and antibody screening on high-density filters and microarrays. These libraries connect recombinant proteins to clones identified by DNA hybridization or sequencing, hence creating a direct link between gene catalogues and functional catalogues. Microarrays can now be used to go from an individual clone to a specific gene and its protein product. Clone libraries become amenable to database integration including all steps from DNA sequencing to functional assays of gene products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wolfsberg TG, Landsman D. A comparison of expressed sequence tags (ESTs) to human genomic sequences. Nucleic Acids Res 1997; 25(8): 1626–32

    Article  PubMed  CAS  Google Scholar 

  2. Strachan T, Abitbol M, Davidson D, et al. A new dimension for the human genome project — towards comprehensive expression maps. Nat Genet 1997; 16(2): 126–32

    Article  PubMed  CAS  Google Scholar 

  3. Maier E, Meier-Ewert S, Bancroft D, et al. Automated array technologies for gene expression profiling. Drug Discovery Today 1997; 2(8): 315–24

    Article  Google Scholar 

  4. Lander ES. Array of hope. Nat Genet 1999; 21(1 Suppl.): 3–4

    Article  PubMed  CAS  Google Scholar 

  5. Meier-Ewert S, Lange J, Gerst H, et al. Comparative gene expression profiling by oligonucleotide fingerprinting. Nucleic Acids Res 1998; 26(9): 2216–23

    Article  PubMed  CAS  Google Scholar 

  6. Pastinen T, Raitio M, Lindroos K, et al. A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res 2000; 10(7): 1031–42

    Article  PubMed  CAS  Google Scholar 

  7. Mei R, Galipeau PC, Prass C, et al. Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays, Genome Res 2000; 10(8): 1126–37

    Article  PubMed  CAS  Google Scholar 

  8. Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: microarraybased expression monitoring of 1000 genes. Proc Natl Acad Sci U S A 1996; 93(20): 10614–9

    Article  PubMed  CAS  Google Scholar 

  9. Heller RA, Schena M, Chai A, et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc Natl Acad Sci USA 1997; 94(6): 2150–5

    Article  PubMed  CAS  Google Scholar 

  10. Khan J, Saal LH, Bittner ML, et al. Expression profiling in cancer using cDNA microarrays. Electrophoresis 1999; 20(2): 223–9

    Article  PubMed  CAS  Google Scholar 

  11. Khan J, Bittner ML, Chen Y, et al. DNA microarray technology: the anticipated impact on the study of human disease. Biochim Biophys Acta 1999; 1423(2): M17–28

    PubMed  CAS  Google Scholar 

  12. Eickhoff H, Schuchhardt J, Ivanov I, et al. Tissue gene expression profiling using arrayed normalized cDNA libraries. Genome Res 2000; 10(8): 1230–40

    Article  PubMed  CAS  Google Scholar 

  13. Schuchhardt J, Beule D, Malik A, et al. Normalization strategies for cDNA microarrays. Nucleic Acids Res 2000; 28(10): E47

    Article  PubMed  CAS  Google Scholar 

  14. Walter G, Büssow K, Cahill D, et al. Protein arrays for gene expression and molecular interaction screening. Curr Opin Microbiol 2000; 3(3): 298–302

    Article  PubMed  CAS  Google Scholar 

  15. Emili AQ, Cagney G. Large-scale functional analysis using peptide or protein arrays. Nat Biotechnol 2000; 18(4): 393–7

    Article  PubMed  CAS  Google Scholar 

  16. Cheung VG, Morley M, Aguilar F, et al. Making and reading microarrays. Nat Genet 1999; 21(1 Suppl.): 15–9

    Article  PubMed  CAS  Google Scholar 

  17. Brody EN, Willis MC, Smith JD, et al. The use of aptamers in large arrays for molecular diagnostics. Mol Diagn 1999; 4(4): 381–8

    Article  PubMed  CAS  Google Scholar 

  18. Shi H, Tsai WB, Garrison MD, et al. Template-imprinted nanostructured surfaces for protein recognition. Nature 1999; 398(6728): 593–7

    Article  PubMed  CAS  Google Scholar 

  19. Martin BD, Gaber BP, Patterson CH, et al. Direct protein microarray fabrication using a hydrogel ‘stamper’. Langmuir 1998; 14(15): 3971–5

    Article  CAS  Google Scholar 

  20. Mooney JF, Hunt AJ, McIntosh JR, et al. Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc Natl Acad Sci U S A 1996; 93(22): 12287–91

    Article  PubMed  CAS  Google Scholar 

  21. Davies H, Lomas L, Austen B. Profiling of amyloid beta peptide variants using SELDI Protein Chip arrays. BioTechniques 1999; 27(6): 1258–61

    PubMed  CAS  Google Scholar 

  22. de Wildt RM, Mundy CR, Gorick BD, et al. Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 2000; 18(9): 989–94

    Article  PubMed  Google Scholar 

  23. Frank R. Spot synthesis: an easy techique for the positionally addressable parallel chemical synthesis on a membrane support. Tetrahedron 1992; 48: 9217–32

    Article  CAS  Google Scholar 

  24. Mendoza LG, McQuary P, Mongan A, et al. High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques 1999; 27(4): 778–780, 782-786, 788

    PubMed  CAS  Google Scholar 

  25. Zhu H, Klemic JF, Chang S, et al. Analysis of yeast protein kinases using protein chips. Nat Genet 2000; 26(3): 283–9

    Article  PubMed  CAS  Google Scholar 

  26. Büssow K, Cahill D, Nietfeld W, et al. A method for global protein expression and antibody screening on high-density filters of an arrayed cDNA library. Nucleic Acids Res 1998; 26(21): 5007–8

    Article  PubMed  Google Scholar 

  27. Lueking A, Horn M, Eickhoff H, et al. Protein microarrays for gene expression and antibody screening. Anal Biochem 1999; 270(1): 103–11

    Article  PubMed  CAS  Google Scholar 

  28. MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science 2000; 289(5485): 1760–3

    PubMed  CAS  Google Scholar 

  29. Jones VW, Kenseth JR, Porter MD, et al. Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem 1998; 70(7): 1233–41

    Article  PubMed  CAS  Google Scholar 

  30. Parinov S, Barsky V, Yershov G, et al. DNA sequencing by hybridization to microchip octa-and decanucleotides extended by stacked pentanucleotides. Nucleic Acids Res 1996; 24(15): 2998–3004

    Article  PubMed  CAS  Google Scholar 

  31. Arenkov P, Kukhtin A, Gemmell A, et al. Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 2000; 278(2): 123–31

    Article  PubMed  CAS  Google Scholar 

  32. Schuerenberg M, Luebbert C, Eickhoff H, et al. Prestructured MALDI-MS sample supports. Anal Chem 2000; 72(15): 3436–42

    Article  PubMed  CAS  Google Scholar 

  33. Cohen CB, Chin-Dixon E, Jeong S, et al. A microchip-based enzyme assay for protein kinase A. Anal Biochem 1999; 273(1): 89–97

    Article  PubMed  CAS  Google Scholar 

  34. Ge H. UPA, a universal protein array system for quantitative detection of proteinprotein, protein-DNA, protein-RNA and protein-ligand interactions. Nucleic Acids Res 2000; 28(2): e3

    Article  PubMed  CAS  Google Scholar 

  35. Bieri C, Ernst OP, Heyse S, et al. Micropatterned immobilization of a G proteincoupled receptor and direct detection of G protein activation. Nat Biotechnol 1999; 17(11): 1105–8

    Article  PubMed  CAS  Google Scholar 

  36. Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403(6770): 623–7

    Article  PubMed  CAS  Google Scholar 

  37. Holt LJ, Bussow K, Walter G, et al. By-passing selection: direct screening for antibody-antigen ineractions using protein arrays. Nucleic Acids Res 2000; 28(15): E72

    Article  PubMed  CAS  Google Scholar 

  38. Klose, J, Kobalz, U. 2-dimensional electrophoresis of proteins — an updated protocol and implications for a functional-analysis of the genome. Electrophoresis 1995; 16(N6): 1034–59

    Article  PubMed  CAS  Google Scholar 

  39. Gauss C, Kalkum M, Lowe M, et al. Analysis of the mouse proteome. (I) Brain proteins: separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation. Electrophoresis 1999; 20(3): 575–600

    Article  PubMed  CAS  Google Scholar 

  40. Robertson DL, Joyce GF. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990; 344(6265): 467–8

    Article  PubMed  CAS  Google Scholar 

  41. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature 1990; 346(6287): 818–22

    Article  PubMed  CAS  Google Scholar 

  42. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249(4968): 505–10

    Article  PubMed  CAS  Google Scholar 

  43. Lee M, Walt DR. A fiber-optic microarray biosensor using aptamers as receptors. Anal Biochem 2000; 282(1): 142–6

    Article  PubMed  CAS  Google Scholar 

  44. Haupt K, Mosbach K. Plastic antibodies: developments and applications. Trends Biotechnol 1998; 16(11): 468–75

    Article  PubMed  CAS  Google Scholar 

  45. Ramstrom O, Mosbach K. Synthesis and catalysis by molecularly imprinted materials. Curr Opin Chem Biol 1999; 3(6): 759–64

    Article  PubMed  CAS  Google Scholar 

  46. Martzen MR, McCraith SM, Spinelli SL, et al. A biochemical genomics approach for identifying genes by the activity of their products. Science 1999; 286(5442): 1153–5

    Article  PubMed  CAS  Google Scholar 

  47. Heyman JA, Cornthwaite J, Foncerrada L, et al. Genome-scale cloning and expression of individual open reading frames using topoisomerase I-mediated ligation. Genome Res 1999; 9(4): 383–92

    PubMed  CAS  Google Scholar 

  48. Büssow K, Nordhoff E, Lübbert C, et al. A human cDNA library for high-throughput protein expression screening. Genomics 2000; 65(1): 1–8

    Article  PubMed  Google Scholar 

  49. Lueking A, Holz C, Gothold C, et al. A system for dual protein expression in Pichia pastoris and Escherichia coli. Protein Expr Purif 2000; 20: 372–8

    Article  PubMed  CAS  Google Scholar 

  50. Egelhofer V, Büssow K, Luebbert C, et al. Improvements in Protein Identification by MALDI-TOF-MS Peptide Mapping. Anal Chem 2000; 72: 2741–50

    Article  PubMed  CAS  Google Scholar 

  51. Yang Z, Frey W, Oliver T, et al. Light-activated affinity micropatterning of proteins on self-assembled monolayers on gold. Langmuir 2000; 16: 1751–8

    Article  CAS  Google Scholar 

  52. Michael KL, Taylor LC, Schultz SL, et al. Randomly ordered addressable high-density optical sensor arrays. Anal Chem 1998; 70(7): 1242–8

    Article  PubMed  CAS  Google Scholar 

  53. Ekins RP. Ligand assays: from electrophoresis to miniaturized microarrays. Clin Chem 1998; 44(9): 2015–30

    PubMed  CAS  Google Scholar 

  54. Smith PA, Tripp BC, DiBlasio-Smith ES, et al. A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli. Nucleic Acids Res 1998; 26(6): 1414–20

    Article  PubMed  CAS  Google Scholar 

  55. Müller U, Nyarsik L, Horn M, et al. Development of a technology for automation and miniaturisation of protein crystallisation. J Biotechnol. In press

  56. Sanders GHW, Manz A. Chip-based microsystems for genomic and proteomic analysis. Trends Anal Chem 2000; 19(6): 364–78

    Article  CAS  Google Scholar 

  57. Rogers KR. Principles of affinity-based biosensors. Mol Biotechnol 2000; 14(2): 109–29

    Article  PubMed  CAS  Google Scholar 

  58. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000; 21(6): 1164–77

    Article  PubMed  CAS  Google Scholar 

  59. Kuwata H, Yip TT, Yip CL, et al. Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochem Biophys Res Commun 1998; 245(3): 764–73

    Article  PubMed  CAS  Google Scholar 

  60. Rich RL, Myszka DG. Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 2000; 11(1): 54–61

    Article  PubMed  CAS  Google Scholar 

  61. Holt LJ, Enever C, de Wildt RM, et al. The use of recombinant antibodies in proteomics. Curr Opin Biotechnol 2000; 11(5): 445–9

    Article  PubMed  CAS  Google Scholar 

  62. Hoogenboom HR, de Bruine AP, Hufton SE, et al. Antibody phage display technology and its applications. Immunotechnology 1998; 4(1): 1–20

    Article  PubMed  CAS  Google Scholar 

  63. Collins J. Phage display. In: Moos WH, Pavia MR, Ellington A, et al., editors. Annual reports in combinatorial chemistry and molecular diversity. Vol. 1. Amsterdam: Kluwer Academic Publishers, 1997: 210–62

    Google Scholar 

  64. Latif N, Baker CS, Dunn MJ, et al. Frequency and specificity of antiheart antibodies in patients with dilated cardiomyopathy detected using SDS-PAGE and western blotting. J Am Coll Cardiol 1993; 22(5): 1378–84

    Article  PubMed  CAS  Google Scholar 

  65. Pohlner, K, Portig, I, Pankuweit, S, et al. Identification of mitochondrial antigens recognized by antibodies in sera of patients with idiopathic dilated cardiomyopathy by two-dimensional gel electrophoresis and protein sequencing. Am J Cardiol 1997; 80(8): 1040–5

    Article  PubMed  CAS  Google Scholar 

  66. McCurdy, DK, Tai, LQ, Nguyen, J, et al. MAGE Xp-2: a member of the MAGE gene family isolated from an expression library using systemic lupus erythematosus sera. Mol Genet Metab 1998; 63(1): 3–13

    Article  PubMed  CAS  Google Scholar 

  67. Joos, TO, Schrenk, M, Hopfl, P, et al. A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 2000; 21(13): 2641–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Büssow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Büssow, K., Konthur, Z., Lueking, A. et al. Protein Array Technology. Am J Pharmacogenomics 1, 37–43 (2001). https://doi.org/10.2165/00129785-200101010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200101010-00005

Keywords

Navigation