Skip to main content
Log in

Persistent Pulmonary Hypertension of the Newborn

Pathogenesis, Etiology, and Management

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Persistent pulmonary hypertension of the newborn (PPHN) is characterized by severe hypoxemia shortly after birth, absence of cyanotic congenital heart disease, marked pulmonary hypertension, and vasoreactivity with extrapulmonary right-to-left shunting of blood across the ductus arteriosus and/or foramen ovale. In utero, a number of factors determine the normally high vascular resistance in the fetal pulmonary circulation, which results in a higher pulmonary compared with systemic vascular pressure. However, abnormal conditions may arise antenatally, during, or soon after birth resulting in the failure of the pulmonary vascular resistance to normally decrease as the circulation evolves from a fetal to a postnatal state. This results in cyanosis due to right-to-left shunting of blood across normally existing cardiovascular channels (foramen ovale or ductus arteriosus) secondary to high pulmonary versus systemic pressure.

The diagnosis is made by characteristic lability in oxygenation of the infant, echocardiographic evidence of increased pulmonary pressure, with demonstrable shunts across the ductus arteriosus or foramen ovale, and the absence of cyanotic heart disease lesions.

Management of the disease includes treatment of underlying causes, sedation and analgesia, maintenance of adequate systemic blood pressure, and ventilator and pharmacologic measures to increase pulmonary vasodilatation, decrease pulmonary vascular resistance, increase blood and tissue oxygenation, and normalize blood pH. Inhaled nitric oxide has been one of the latest measures to successfully treat PPHN and significantly reduce the need for extracorporeal membrane oxygenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Hageman JR, Adams MA, Gardner TH. Persistent pulmonary hypertension of the newborn: trends in incidence, diagnosis and management. Am J Dis Child 1984; 138: 592–5

    PubMed  CAS  Google Scholar 

  2. Steinhorn RH, Millard SL, Moran III FC. Persistent pulmonary hypertension of the newborn: role of nitric oxide and endothelin in pathophysiology and treatment. Clin Perinatol 1995; 22: 405–28

    PubMed  CAS  Google Scholar 

  3. Ziegler JW, Ivy DD, Kinsella JP, et al. The role of nitric oxide, endothelin and prostaglandins in the transition of the pulmonary circulation. Clin Perinatol 1995; 22: 387–403

    PubMed  CAS  Google Scholar 

  4. Kinsella JP, Abman SH. Recent developments in the pathophysiology and treatment of persistent pulmonary hypertension of the newborn. J Pediatr 1995; 126: 853–63

    Article  PubMed  CAS  Google Scholar 

  5. Rudolph A. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res 1985; 57: 811–21

    Article  PubMed  CAS  Google Scholar 

  6. Whitsett JA, Pryhuber GS, Rice WR, et al. Acute respiratory disorders. In: Avery GB, Fletcher MA, Macdonald MG, editors. Neonatalogy: pathophysiology and management of the newborn. 5th ed. Baltimore (MD): Lippincott Williams and Wilkins, 1999: 497–501

    Google Scholar 

  7. Steinhorn RH, Morin III FC, Fineman JR. Models of persistent pulmonary hypertension of the newborn (PPHN) and the role of cyclic guanosine monophosphate (GMP) in pulmonary vasorelaxation. Semin Perinatol 1997; 21: 393–408

    Article  PubMed  CAS  Google Scholar 

  8. Endo A, Ayusawa M, Minato M, et al. Endogenous nitric oxide and endothelin-1 in persistent pulmonary hypertension of the newborn. Eur J Pediatr 2001; 160: 217–22

    Article  PubMed  CAS  Google Scholar 

  9. Tzao C, Nickerson PA, Steinhorn RH, et al. Type 1 NOS is decreased in the fetal circulation of hypertensive lambs. Pediatr Pulmonol 2002; 33(6): 437–42

    Article  PubMed  Google Scholar 

  10. Rosenberg AA, Kennaugh J, Kappenhafer SL, et al. Elevated immunoreactive endothelin 1 levels in newborn infants with persistent pulmonary hypertension. J Pediatr 1993; 123: 109–14

    Article  PubMed  CAS  Google Scholar 

  11. MacDonald PD, Paton RD, Logan RW, et al. Endothelin 1 levels in infants with pulmonary hypertension receiving extracorporeal membrane oxygenation. J Perinat Med 1999; 27: 216–20

    Article  PubMed  CAS  Google Scholar 

  12. Gersony WM. Neonatal pulmonary hypertension: pathophysiology, classification and etiology. Clin Perinatol 1984; 11: 517–24

    PubMed  CAS  Google Scholar 

  13. Bhatia BD, Gupta V, Dey PK. Meconium aspiration syndrome: current concepts. Indian J Matern Child Health 1996; 7: 1–7

    PubMed  CAS  Google Scholar 

  14. Krauss AN. New methods advance treatment for respiratory distress syndrome. Pediatr Ann 2003; 32: 585–91

    PubMed  Google Scholar 

  15. Lin YC, Ma JY, Yeh SJ, et al. Use of extracorporeal membrane oxygenation to rescue a newborn with early-onset group B streptococcal sepsis and cardiopulmonary failure. J Formos Med Assoc 2004; 103: 67–70

    PubMed  Google Scholar 

  16. Hintz SR, Benitz WE, Halamek LP, et al. Secondary infection presenting as recurrent pulmonary hypertension. J Perinatol 2000; 20: 262–4

    Article  PubMed  CAS  Google Scholar 

  17. Alano MA, Ngougmna E, Ostrea Jr E, et al. Analysis of nonsteroidal antiinflammatory drugs in meconium and its relation to persistent pulmonary hypertension of the newborn. Pediatrics 2001; 107: 519–23

    Article  PubMed  CAS  Google Scholar 

  18. Singh SA, Ibrahim T, Clark DJ, et al. Persistent pulmonary hypertension of newborn due to congenital capillary alveolar dysplasia. Pediatr Pulmonol 2005; 40: 349–53

    Article  PubMed  Google Scholar 

  19. Mukhtar AI, Halliday HL. Eisenmenger syndrome in pregnancy: a possible cause of neonatal polycythemia and persistent fetal circulation. Obstet Gynecol 1982; 60: 651–2

    PubMed  CAS  Google Scholar 

  20. Austin MT, Lovvorn III HN, Feurer ID, et al. Congenital diaphragmatic hernia repair on extracorporeal life support: a decade of lessons learned. Am Surg 2004; 70: 389–95

    PubMed  Google Scholar 

  21. Kabra NS, Kluckow MR, Powell J. Nitric oxide in preterm infant with pulmonary hypoplasia. Indian J Pediatr 2004 May; 71(5): 427–9

    Article  PubMed  Google Scholar 

  22. Wang PY, Hwang BT, Lu JH, et al. Significance of pulmonary venous obstruction in total anomalous pulmonary venous return. J Chin Med Assoc 2004; 67: 331–5

    PubMed  Google Scholar 

  23. Lang D, Wagenvoort CA, Kupferschmid C, et al. Cor triatriatum masked by primary pulmonary hypertension. Pediatr Cardiol 1985; 6: 161–4

    Article  PubMed  CAS  Google Scholar 

  24. Vance MS. Hypoplastic left heart syndrome with intact atrial septum: levoatriocardinal vein stent placement as a bridge to surgery. Catheter Cardiovasc Interv 2002; 57: 85–7

    Article  PubMed  Google Scholar 

  25. Turrentine MW, Kesler KA, Caldwell R, et al. Cardiac transplantation in infants and children. Ann Thorac Surg 1994; 57: 546–53

    Article  PubMed  CAS  Google Scholar 

  26. Long WA. Structural cardiovascular abnormalities presenting as persistent pulmonary hypertension of the newborn. Clin Perinatol 1984; 11: 601–26

    PubMed  CAS  Google Scholar 

  27. Sandberg K, Engelhardt B, Hellerqvist C, et al. Pulmonary response to group B streptococcal toxin in young lambs. J Appl Physiol 1987; 63: 2024–30

    PubMed  CAS  Google Scholar 

  28. Hammerman C, Komar K, Abu-Khudair H. Hypoxic vs septic pulmonary hypertension: selective role of thromboxane mediation. Am J Dis Child 1988 Mar; 142(3): 319–25

    PubMed  CAS  Google Scholar 

  29. Bearer C, Emerson RK, O’Riordan MA, et al. Maternal tobacco smoke exposure and persistent pulmonary hypertension of the newborn. Environ Health Perspect 1997; 105: 202–6

    Article  PubMed  CAS  Google Scholar 

  30. Henry GW. Noninvasive assessment of cardiac function and pulmonary hypertension in persistent pulmonary hypertension of the newborn. Clin Perinatol 1984; 11(3): 627–40

    PubMed  CAS  Google Scholar 

  31. Riggs T, Hirschfield S, Fanaroff A, et al. Persistence of fetal circulation: an echocardiographic study. J Pediatr 1977; 91: 626–31

    Article  PubMed  CAS  Google Scholar 

  32. Skinner JR, Hunter S, Hey EN. Hemodynamic features at presentation in persistent pulmonary hypertension of the newborn and outcome. Arch Dis Child 1996; 74: 26–32

    Google Scholar 

  33. Su BH, Peng CT, Tsai CH. Persistent pulmonary hypertension of the newborn: echocardiographic assessment. Acta Pediatr Taiwan 2001; 42: 218–23

    CAS  Google Scholar 

  34. Kinsella JP, Abman SH. Clinical approach to inhaled nitric oxide therapy in the newborn with hypoxemia. J Pediatr 2000; 136: 717–26

    PubMed  CAS  Google Scholar 

  35. Suguihara C. Treatment of persistent pulmonary hypertension of the newborn. J Pediatr (Rio J) 2001; 77Suppl. 1: S17–24

    Article  Google Scholar 

  36. Walsh-Sukys MC, Tyson JE, Wright LL, et al. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics 2000; 105: 14–20

    Article  PubMed  CAS  Google Scholar 

  37. Asabe K, Tsuji K, Handa N, et al. Immunohistochemical distribution of surfactant apoprotein A in congenital diaphragmatic hernia. J Pediatr Surg 1997; 32: 667–72

    Article  PubMed  CAS  Google Scholar 

  38. Lotze A, Knight FR, Martin GR, et al. Improved pulmonary outcome after exogenous surfactant therapy for respiratory failure in term infants requiring extracorporeal membrane oxygenation. J Pediatr 1993; 122: 261–8

    Article  PubMed  CAS  Google Scholar 

  39. Findley RD, Taeusch MW, Walther FJ. Surfactant replacement therapy for meconium aspiration syndrome. Pediatrics 1996; 97: 48–52

    Google Scholar 

  40. Rais-Bahrami K, Rivera O, Seale WR, et al. Effect of nitric oxide in meconium aspiration syndrome after treatment with surfactant. Crit Care Med 1997; 25: 1744–7

    Article  PubMed  CAS  Google Scholar 

  41. Lotze A, Knight GR, Anderson KD, et al. Surfactant therapy for infants with congenital diaphragmatic hernia on ECMO: evidence of persistent surfactant deficiency. J Pediatr Surg 1994; 29: 407–12

    Article  PubMed  CAS  Google Scholar 

  42. Weinberger B, Weiss K, Heck DE, et al. Pharmacological therapy of persistent pulmonary hypertension of the newborn. Pharmacol Ther 2001; 89: 67–79

    Article  PubMed  CAS  Google Scholar 

  43. Sakurai Y, Azarow K, Cutz E, et al. Pulmonary barotraumas in congenital diaphragmatic hernia: a clinicopathological correlation. J Pediatr Surg 1999; 34: 1813–7

    Article  PubMed  CAS  Google Scholar 

  44. Ambalavanan N, Carlo WA. Hypocapnia and hypercapnia in respiratory management of newborn infants. Clin Perinatol 2001; 28: 517–31

    Article  PubMed  CAS  Google Scholar 

  45. Kusuda S, Shishida N, Miyagi N, et al. Cerebral blood flow during treatment for pulmonary hypertension. Arch Dis Child Fetal Neonatal Ed 1999; 80: F30–3

    Article  PubMed  CAS  Google Scholar 

  46. Wung JT, James LS, Kilchevsky E, et al. Management of infants with severe respiratory failure and persistence of fetal circulation, without hyperventilation. Pediatrics 1985; 76: 488–94

    PubMed  CAS  Google Scholar 

  47. Hsieh WS, Hwang MS, Su WJ. Non-hyperventilation respiratory therapy of persistent pulmonary hypertension of the newborn. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 1995; 36: 24–9

    PubMed  CAS  Google Scholar 

  48. Thome UH, Carlo WA. Permissive hypercapnia. Semin Neonatol 2002 Oct; 7: 409–19

    Article  PubMed  Google Scholar 

  49. Wilson JM, Lund DP, Lillehei CW, et al. Congenital diaphragmatic hernia: a tale of two cities: the Boston experience. J Pediatr Surg 1997 Mar; 32: 401–5

    Article  PubMed  CAS  Google Scholar 

  50. Boloker J, Bateman DA, Wung JT, et al. Congential diaphragmatic hernia in 120 infants treated consecutively with permissive hypercapnia/spontaneous respiration/elective repair. J Pediatr Surg 2002 Mar; 37: 357–66

    Article  PubMed  Google Scholar 

  51. Ng SP, Tan TH, Gomez JM. A retrospective study of infants with severe persistent pulmonary hypertension managed without extracorporeal membrane oxygenation. Ann Acad Med Singapore 1998; 27: 366–70

    PubMed  CAS  Google Scholar 

  52. Gupta A, Rastogi S, Sahni R, et al. Inhaled nitric oxide and gentle ventilation in the treatment of pulmonary hypertension of the newborn: a single center 5 year experience. J Perinatol 2002; 22: 435–41

    Article  PubMed  Google Scholar 

  53. Goldstein B, Shannon DC, Todres ID. Supercarbia in children: clinical course and outcome. Crit Care Med 1990 Feb; 18: 166–8

    Article  PubMed  CAS  Google Scholar 

  54. Woodgate PG, Davies MW. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst Rev 2001; (2): CD002061

    Google Scholar 

  55. Yeh TF, Lillien LD, Barathi A, et al. Lung volume, dynamic lung compliance and blood gasses during the first 3 days of postnatal life in infants with meconium aspiration syndrome. Crit Care Med 1982; 10: 588–92

    Article  PubMed  CAS  Google Scholar 

  56. Bhutani VK, Chima R, Silvieri EM. Innovative neonatal ventilation and meconium aspiration syndrome. Indian J Pediatr 2003; 70: 421–7

    Article  PubMed  Google Scholar 

  57. Martin LD, Bratton SL, Walker LK. Principles and practice of respiratory support and mechanical ventilation. In: Rogers MC, Nichols DG. Textbook of pediatric intensive care. 3rd ed. Baltimore (MD): Williams and Wilkins, 1996: 265–330

    Google Scholar 

  58. Ng PC, Hui J, Lewindon PJ, et al. High frequency oscillator ventilation in newborns with idiopathic persistent pulmonary hypertension. Singapore Med J 1995; 36: 517–20

    PubMed  CAS  Google Scholar 

  59. Engle WA, Yoder MC, Andreoli SP, et al. Controlled prospective randomized comparison of high frequency ventilation and conventional ventilation in neonates with respiratory failure and persistent pulmonary hypertension. J Peri-nat 1997; 17: 3–9

    CAS  Google Scholar 

  60. Wiswell TE, Foster NH, Slayter MV, et al. Management of a piglet model of the meconium aspiration syndrome with high-frequency or conventional ventilation. Am J Dis Child 1992; 146: 1287–93

    PubMed  CAS  Google Scholar 

  61. Alexander J, Milner AD. Determination of gas-trapping during high frequency oscillatory ventilation. Acta Paediatr 1997; 86: 268–73

    Article  PubMed  CAS  Google Scholar 

  62. Pillow JJ, Wilkinson MH, Neil HL, et al. In vitro performance characteristics of high frequency oscillatory ventilations. Am J Respir Crit Care Med 2001 Sep 15; 164: 1019–24

    PubMed  CAS  Google Scholar 

  63. Jirapaet KS, Kiatchuskul P, Kolatat T, et al. Comparison of high frequency flow interruption ventilation and hyperventilation in persistent pulmonary hypertension of the newborn. Respir Care 2001; 46: 586–94

    PubMed  CAS  Google Scholar 

  64. Bohn DJ, Miyasaka K, Marchak BE, et al. Ventilation by high frequency oscillation. J Appl Physiol 1980; 48: 710–6

    PubMed  CAS  Google Scholar 

  65. Chang HK. Mechanism of gas transport during ventilation by high frequency oscillation. J Appl Physiol 1984; 56: 553–63

    PubMed  CAS  Google Scholar 

  66. Kinsella JP, Abman SH. High frequency oscillatory ventilation augments the response to inhaled nitric oxide in persistent pulmonary hypertension of the newborn: Nitric Oxide Study Group. Chest 1998; 114 (1 Suppl.): 1005

    Article  Google Scholar 

  67. Kinsella JP, Truog WE, Walsh WF, et al. Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr 1997; 131: 55–62

    Article  PubMed  CAS  Google Scholar 

  68. Bhuta T, Clark RH, Henderson-Smart DJ. Rescue high frequency oscillatory ventilation vs conventional ventilation for infants with severe pulmonary dysfunction born at or near term. Cochrane Database Syst Rev 2001; (1): CD002974

    Google Scholar 

  69. Patole S, Lee J, Buettner P, et al. Improved oxygenation following adenosine infusion in persistent pulmonary hypertension of the newborn. Biol Neonate 1998; 74: 345–50

    Article  PubMed  CAS  Google Scholar 

  70. Eronen M, Pohjavuori M, Andersson S, et al. Prostacyclin treatment for persistent pulmonary hypertension of the newborn. Pediatr Cardiol 1997; 18: 3–7

    Article  PubMed  CAS  Google Scholar 

  71. Bindl L, Fahnenstich H, Peukert U. Aerosolized prostacyclin for pulmonary hypertension in neonates. Arch Dis Child Fetal Neonatal Ed 1994; 71: F214–6

    Article  PubMed  CAS  Google Scholar 

  72. Soditt V, Aring C, Groneck P. Improvement of oxygenation induced by aerosolized prostacyclin in a preterm infant with persistent pulmonary hypertension. Intensive Care Med 1997; 23: 1275–8

    Article  PubMed  CAS  Google Scholar 

  73. Kelly LK, Porta NFM, Goodman DH, et al. Inhaled prostacyclin for term infants with PPHN refractory to inhaled nitric oxide. J Pediatr 2002; 141: 830–2

    Article  PubMed  CAS  Google Scholar 

  74. Arnold WP, Mittal CK, Katsuki S, et al. Nitric oxide activates guanylate cyclase and increases 3′ 5′ mono phosphate levels in various tissue preparations. Proc Natl Acad Sci U S A 1977; 74: 3203–7

    Article  PubMed  CAS  Google Scholar 

  75. Travadi JN, Patole SK. Phosphodiesterase inhibitors for persistent pulmonary hypertension of the newborn: a review. Pediatr Pulmonol 2003; 36: 529–35

    Article  PubMed  CAS  Google Scholar 

  76. Rabe KF, Tenor H, Dent G, et al. Identification of PDE isozymes in human pulmonary artery and effect of selective PDE inhibitors. Am J Physiol 1994; 266: 536–43

    Google Scholar 

  77. Hanson KA, Ziegler JW, Rybalkin SD, et al. Chronic pulmonary hypertension increases fetal lung cGMP phosphodiesterase activity. Am J Physiol 1998; 273: 931–41

    Google Scholar 

  78. Dukarm RC, Morin III FC, Russell JA, et al. Pulmonary and systemic effects of the phosphodiesterase inhibitor dipyridamole in newborn lambs with persistent pulmonary hypertension. Pediatr Res 1998; 44: 831–7

    Article  PubMed  CAS  Google Scholar 

  79. Buysse C, Fonteyne C, Dessy H, et al. The use of dipyridamole to wean from inhaled nitric oxide in congenital diaphragmatic henia. J Pediatr Surg 2001; 36: 1864–5

    Article  PubMed  CAS  Google Scholar 

  80. Thusu KG, Morin III FC, Russell JA, et al. The cGMP phosphodiesterase inhibitor zaprinast enhances the effect of nitric oxide. Am J Respir Crit Care Med 1995; 152: 1605–10

    PubMed  CAS  Google Scholar 

  81. Weimann J, Ullrich R, Hromi J, et al. Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension. Anesthesiology 2000; 92: 1702–12

    Article  PubMed  CAS  Google Scholar 

  82. Erickson S, Reyes J, Bohn D, et al. Sildenafil in childhood and neonatal pulmonary hypertension [abstract]. J Am Coll Cardiol Suppl 2002; 39: 402

    Article  Google Scholar 

  83. Atz AM, Wessel DL. Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology 1999; 91: 307–10

    Article  PubMed  CAS  Google Scholar 

  84. Shekerdemian L, Ravn HB, Penny DJ. Interaction between inhaled nitric oxide and intravenous sildenafil in a porcine model of meconium aspiration syndrome. Pediatr Res 2004; 55: 413–8

    Article  PubMed  CAS  Google Scholar 

  85. Kinsella JP, Abman SH. Controversies in the use of inhaled nitric oxide therapy in the newborn. Clin Perinatol 1998; 25: 203–17

    PubMed  CAS  Google Scholar 

  86. The Neonatal Inhaled Nitric Oxide Study Group. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N Engl J Med 1997 Feb 27; 336: 597–604

    Article  Google Scholar 

  87. Sadiq HF, Mantych G, Benawra RS, et al. Inhaled nitric oxide in the treatment of moderate resistant pulmonary hypertension of the newborn: a randomized controlled multicenter trial. J Perinatol 2003; 23: 98–103

    Article  PubMed  CAS  Google Scholar 

  88. Finer NN, Barrington KJ. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev 2001; (4): CD000399

    Google Scholar 

  89. Davidson D, Barefield ES, Kattwinkel J, et al. INO for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized double masked placebo controlled dose response multicenter study. Pediatrics 1998; 101: 325–34

    Article  PubMed  CAS  Google Scholar 

  90. Tworetzky W, Bristow J, Moore P, et al. Inhaled nitric oxide in neonates with persistent pulmonary hypertension. Lancet 2001; 357: 118–20

    Article  PubMed  CAS  Google Scholar 

  91. Cornfield DN, Maynard RC, deRegnier RO, et al. Randomized controlled trial of low dose iNO in the treatment of term and near term infants with respiratory failure and pulmonary hypertension. Pediatrics 1999; 104: 1089–94

    Article  PubMed  CAS  Google Scholar 

  92. Lipkin PH, Davidson D, Spivak L, et al. Neurodevelopmental and medical outcomes of persistent pulmonary hypertension in term newborns treated with nitric oxide. J Pediatr 2002; 140: 306–10

    Article  PubMed  CAS  Google Scholar 

  93. Walker G, Liddel M, Davies C. Extracorporeal life support: state of the art. Pediatr Respir Rev 2003; 4: 147–52

    Article  Google Scholar 

  94. Hansell DR. Extracorporeal membrane oxygenation for perinatal and pediatric patients. Respir Care 2003; 48: 352–62

    PubMed  Google Scholar 

  95. Alpard SK, Zwischenberger JB. Extracorporeal membrane oxygenation for severe respiratory failure. Chest Surg Clin N Am 2002; 12: 355–78

    Article  PubMed  Google Scholar 

  96. Kim ES, Stolar CJ. ECMO in the newborn. Am J Perinatol 2000; 17: 345–56

    Article  PubMed  CAS  Google Scholar 

  97. Walsh MC, Stork EK. Persistent pulmonary hypertension of the newborn. Clin Perinatol 2001; 28: 609–27

    Article  PubMed  CAS  Google Scholar 

  98. Perez-Benavides F, Boynton BR, Desai NS, et al. Persistent pulmonary hypertension of the newborn infant: comparison of conventional versus extracorporeal membrane oxygenation in neonates fulfilling Bartlett’s criteria. J Perinatol 1993; 13: 181–5

    PubMed  CAS  Google Scholar 

  99. Hintz SR, Suttner DM, Sheehan AM, et al. Decreased use of neonatal extracorporeal membrane oxygenation: how new treatment modalities have affected ECMO utilization. Pediatrics 2000; 106: 1339–43

    Article  PubMed  CAS  Google Scholar 

  100. Hoffman GM, Ross GA, Day SE, et al. Inhaled nitric oxide reduces the utilization of extracorporeal membrane oxygenation in persistent pulmonary hypertension of the newborn. Crit Care Med 1997; 25: 352–9

    Article  PubMed  CAS  Google Scholar 

  101. Hui TT, Danielson PD, Anderson KD, et al. The impact of changing respiratory management on extracorporeal membrane oxygenation utilization. J Pediatr Surg 2002; 37: 703–5

    Article  PubMed  CAS  Google Scholar 

  102. Delius R, Anderson III H, Schumacher R, et al. Venovenous compares favorably with venoarterial access for extracorporeal membrane oxygenation in neonatal respiratory failure. J Thorac Cardiovasc Surg 1993; 106: 329–38

    PubMed  CAS  Google Scholar 

  103. Rais-Bahrami K, Short BL. The current status of neonatal extracorporeal membrane oxygenation. Semin Perinatol 2000; 24: 406–17

    Article  PubMed  CAS  Google Scholar 

  104. Zahraa JN, Moler FN, Annich GM, et al. Venovenous versus venoarterial extracorporeal life support for pediatric respiratory failure: are there differences in survival and acute complications? Crit Care Med 2000; 28: 521–5

    Article  PubMed  CAS  Google Scholar 

  105. Kugelman A, Gangitano E, Pincros J, et al. Venovenous and venoarterial extracorporeal membrane oxygenation in congenital diaphragmatic hernia. J Pediatr Surg 2003; 38: 1131–6

    Article  PubMed  Google Scholar 

  106. Dimmit RA, Moss RL, Rhine WD, et al. Venoarterial versus venovenous extracorporeal membrane oxygenation in congenital diaphragmatic hernia: the Extracorporeal Life Support Organization Registry 1990–1999. J Pediatr Surg 2001; 36: 119–204

    Article  Google Scholar 

  107. Fukuda S, Aoyama M, Yamada Y, et al. Comparison of venoarterial versus venovenous access in the cerebral circulation of newborns undergoing extracorporeal membrane oxygenation. Pediatr Surg Int 1999; 15: 78–84

    Article  PubMed  CAS  Google Scholar 

  108. Reickert CA, Shreiner RJ, Bartlett RH, et al. Percutaneous access for venovenous extracorporeal life support in neonates. J Pediatr Surg 1998; 33: 365–9

    Article  PubMed  CAS  Google Scholar 

  109. Somme S, Liu DC. New trends in extracorporeal membrane oxygenation in newborn pulmonary diseases. Artif Organs 2001; 25: 633–7

    Article  PubMed  CAS  Google Scholar 

  110. Jaillard SM, Pierrat V, Truffet P, et al. Two years’ follow-up of newborn infants after extracorporeal membrane oxygenation. Eur J Cardiothorac Surg 2000; 18: 328–33

    Article  PubMed  CAS  Google Scholar 

  111. Elbourne D, Field D, Mugford M. Extracorporeal membrane oxygenation for severe respiratory failure in newborn infants. Cochrane Database Syst Rev 2002; (1): CD001340

    Google Scholar 

  112. Bennett CC, Johnson A, Field DJ, et al. A comparison of clinical variables that predict adverse outcome in term infants with severe respiratory failure randomized to a policy of extracorporeal membrane oxygenation or to conventional intensive care. J Perinat Med 2002; 30: 225–30

    Article  PubMed  Google Scholar 

  113. Davis PJ, Firmin RK, Manktelow B, et al. Long-term outcome following extracorporeal membrane oxygenation for congenital diaphragmatic hernia: the UK experience. J Pediatr 2004; 144: 309–15

    Article  PubMed  Google Scholar 

  114. Wilson Jr BJ, Neiman HS, Butler TJ, et al. A 16-year neonatal/pediatric extracorporeal membrane oxygenation transport experience. Pediatrics 2002; 109: 189–93

    Article  PubMed  Google Scholar 

  115. Kozzel H, Bauer K, Kewitz G, et al. Do we need new indications for ECMO in neonates pretreated with high frequency ventilation and/or inhaled nitric oxide? Intensive Care Med 2000; 26: 1489–95

    Article  Google Scholar 

  116. Foley DS, Pranikoff T, Younger JG, et al. A review of 100 patients transported on extracorporeal life support. ASAIO J 2002; 48: 612–9

    Article  PubMed  Google Scholar 

  117. Fridriksson JH, Helmrath MA, Wessel JJ, et al. Hypercalcemia associated with extracorporeal life support in neonates. J Pediatr Surg 2001; 36: 493–7

    Article  PubMed  CAS  Google Scholar 

  118. Germain JF, Casadeval I, Desplanques L, et al. Thrombosis of the arterial cannula during extracorporeal membrane oxygenation in a full-term newborn infant. Eur J Pediatr Surg 1996; 6: 102–3

    Article  PubMed  CAS  Google Scholar 

  119. O’Neill JM, Schultze GE, Heulitt MJ, et al. Nosocomial infection during extracorporeal membrane oxygenation. Intensive Care Med 2001; 27: 1247–53

    Article  PubMed  Google Scholar 

  120. Downard CD, Betit P, Chang RW, et al. Impact of AMICAR on hemorrhagic complications of ECMO: a ten-year review. J Pediatr Surg 2003; 38: 1212–6

    Article  PubMed  Google Scholar 

  121. Upp Jr JR, Bush PE, Zwischenberger JB. Complications of neonatal extracorporeal membrane oxygentation. Perfusion 1994; 9: 241–56

    Article  PubMed  Google Scholar 

  122. Young TL, Quinn GE, Baumgart S, et al. Extracorporeal membrane oxygenation causing asymmetric vasculopathy in neonatal infants. J AAPOS 1997; 4: 235–40

    Google Scholar 

  123. Beardsmore C, Dundas I, Poole K, et al. Respiratory function in survivors of the United Kingdom Extracorporeal Membrane Oxygenation Trial. Am J Respir Crit Care 2000; 161: 1129–35

    CAS  Google Scholar 

  124. Jaillard SM, Pierrat V, Dubois A, et al. Outcome at 2 years of infants with congenital diaphragmatic hernia: a population-based study. Ann Thorac Surg 2003; 75: 250–6

    Article  PubMed  Google Scholar 

  125. Muratore CA, Kharash V, Lund DP, et al. Pulmonary morbidity in 100 survivors of congenital diaphragmatic hernia monitored in a multidisciplinary clinic. J Pediatr Surg 2001; 36: 133–40

    Article  PubMed  CAS  Google Scholar 

  126. Boykin AR, Quivers ES, Wagenhoffer KL, et al. Cardiopulmonary outcome of neonatal extracorporeal membrane oxygenation at ages 10–15 years. Crit Care Med 2003; 31: 2380–4

    Article  PubMed  Google Scholar 

  127. Wolfson PJ. The development and use of extracorporeal membrane oxygenation in neonates. Ann Thorac Surg 2003; 76: S2224–9

    Article  PubMed  Google Scholar 

  128. Nield TA, Langenbacher D, Poulsen MK, et al. Neurodevelopmental outcome at 3.5 years of age in children treated with extracorporeal life support: relationship with primary diagnosis. J Pediatr 2000; 13: 338–44

    Google Scholar 

  129. Rais-Bahrami K, Wagner AE, Coffman C, et al. Neurodevelopmental outcome in ECMO vs near-miss ECMO patients at 5 years of age. Clin Pediatr 2000; 39: 145–52

    Article  CAS  Google Scholar 

  130. Bernbaum J, Schwartz IP, Gordon M, et al. Survivors of extracorporeal membrane oxygenation at 1 year of age: the relationship of primary diagnosis with health and neurodevelopmental sequelae. Pediatrics 1995; 96: 907–13

    PubMed  CAS  Google Scholar 

  131. Ikle L, Ikle DN, Moreland SG, et al. Survivors of neonatal extracorporeal membrane oxygenation at school age: unusual findings on intelligence testing. Dev Med Child Neurol 1999; 41: 307–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article was supported by grants from the National Institute of Child Health and Human Development (NICHD) [1R01HD039428001A1] and the US Environmental Protection Agency (USEPA) [RFA 2001-STAR-H1] (No. R829395-01-0). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique M. Ostrea Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrea, E.M., Villanueva-Uy, E.T., Natarajan, G. et al. Persistent Pulmonary Hypertension of the Newborn. Pediatr-Drugs 8, 179–188 (2006). https://doi.org/10.2165/00148581-200608030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00148581-200608030-00004

Keywords

Navigation