Skip to main content
Log in

Comparative Pharmacokinetics and Pharmacodynamics of Platelet Adenosine Diphosphate Receptor Antagonists and their Clinical Implications

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Over the last two decades or more, anti-platelet therapy has become established as a cornerstone in the treatment of patients with ischaemic cardiovascular disease, since such drugs effectively reduce arterial thrombotic events. The original agent used in this context was aspirin (acetylsalicylic acid) but, with the advent of adenosine diphosphate (ADP) receptor antagonists, the use of dual anti-platelet therapy has resulted in further improvement in cardiovascular outcomes when compared with aspirin alone. The first group of platelet ADP receptor antagonists to be developed was the thienopyridine class, which comprise inactive pro-drugs that require in vivo metabolism to their active metabolites before exerting their inhibitory effect on the P2Y12 receptor. Clopidogrel has been the principal ADP receptor antagonist in use over the past decade, but is limited by variability in its in vivo inhibition of platelet aggregation (IPA). The pharmacokinetics of clopidogrel are unpredictable due to their vulnerability to multiple independent factors including genetic polymorphisms. Expression of the 3435T/T genetic variant encoding the MDR1 gene for the P-glycoprotein efflux transporter results in a significantly reduced maximum drug concentration and area under the plasma concentration-time curve as intestinal absorption of clopidogrel is reduced; and the expression of the mutant *2 allele of CYP2C19 results in similar pharmacokinetic effects as the two cytochrome P450 (CYP)-mediated steps required for the production of the active metabolite of clopidogrel are impaired. These variable pharmacokinetics lead to erratic pharmacodynamics and cannot reliably be overcome with increased dosing. Both prasugrel, a third-generation thienopyridine, and ticagrelor, a cyto-pentyl-triazolo-pyrimidine, have more predictable pharmacokinetics and enhanced pharmacodynamics than clopidogrel. Neither appears to be affected by the same genetic polymorphisms as clopidogrel; prasugrel requires only a single CYP-mediated step to produce its active metabolite and ticagrelor is not a pro-drug. Enhanced IPA by both prasugrel and ticagrelor is achieved at the expense of increased major bleeding, although this is partially mitigated in the case of ticagrelor due to its reversible IPA. However, the reversible binding of ticagrelor to the P2Y12 receptor requires a twice-daily dosing regimen. Due to limited data from clinical studies, the use of prasugrel is currently restricted to individuals undergoing percutaneous coronary intervention who are ≤75 years old and have a body weight ≥60 kg. The clinical data for ticagrelor are more comprehensive and this drug therefore has a place in the management of patients with acute coronary syndrome at moderate-to-high risk of ischaemic events, irrespective of treatment strategy. Here we review in detail the pharmacokinetics and pharmacodynamics of clopidogrel, prasugrel and ticagrelor, and explore the implications of the differences in these parameters for their clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II
Table III

Similar content being viewed by others

References

  1. ISIS-2 Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet 1988; 2(8607): 349–60

    Google Scholar 

  2. Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest 2004; 113(3): 340–5

    PubMed  CAS  Google Scholar 

  3. Kim S, Kunapuli SP. P2Y12 receptor in platelet activation. Platelets 2011; 22(1): 54–8

    Article  Google Scholar 

  4. Zakarija A, Kwaan HC, Moake JL, et al. Ticlopidine- and clopidogrel-associated thrombotic thrombocytopenic purpura (TTP): review of clinical, laboratory, epidemiological, and pharmacovigilance findings (1989–2008). Kidney Int Suppl 2009; (112): S20–4

    Article  PubMed  CAS  Google Scholar 

  5. Farid NA, Kurihara A, Wrighton SA. Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J Clin Pharmacol 2010; 50(2): 126–42

    Article  PubMed  CAS  Google Scholar 

  6. Combescure C, Fontana P, Mallouk N, et al. Clinical implications of clopidogrel non-response in cardiovascular patients: a systematic review and metaanalysis. J Thromb Haemost 2010; 8(5): 923–33

    PubMed  CAS  Google Scholar 

  7. Hulot JS, Bura A, Villard E, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006; 108(7): 2244–7

    Article  PubMed  CAS  Google Scholar 

  8. Kim KA, Park PW, Hong SJ, et al. The effect of CYP2C19 polymorphism on the pharmacokinetics and pharmacodynamics of clopidogrel: a possible mechanism for clopidogrel resistance. Clin Pharmacol Ther 2008; 84(2): 236–42

    Article  PubMed  CAS  Google Scholar 

  9. Giusti B, Gori AM, Marcucci R, et al. Relation of cytochrome P450 2C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis. Am J Cardiol 2009; 103(6): 806–11

    Article  PubMed  CAS  Google Scholar 

  10. Sibbing D, Stegherr J, Latz W, et al. Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention. Eur Heart J 2009; 30(8): 916–22

    Article  PubMed  CAS  Google Scholar 

  11. Farid NA, Payne CD, Small DS, et al. Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin Pharmacol Ther 2007; 81(5): 735–41

    Article  PubMed  CAS  Google Scholar 

  12. Yun KH, Rhee SJ, Park HY, et al. Effects of omeprazole on the antiplatelet activity of clopidogrel. Int Heart J 2010; 51(1): 13–6

    Article  PubMed  CAS  Google Scholar 

  13. Small DS, Farid NA, Payne CD, et al. Effects of the proton pump inhibitor lansoprazole on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. J Clin Pharmacol 2008; 48(4): 475–84

    Article  PubMed  CAS  Google Scholar 

  14. Gilard M, Arnaud B, Cornily JC, et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J Am Coll Cardiol 2008; 51(3): 256–60

    Article  PubMed  CAS  Google Scholar 

  15. Springthorpe B, Bailey A, Barton P, et al. From ATP to AZD6140: the discovery of an orally active reversible P2Y12 receptor antagonist for the prevention of thrombosis. Bioorg Med Chem Lett 2007; 17(21): 6013–8

    Article  PubMed  CAS  Google Scholar 

  16. Hamm CW, Bassand JP, Agewall S, et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2011; 32(23): 2999–3054

    Article  PubMed  Google Scholar 

  17. National Institute for Health and Clinical Excellence. Technology appraisals TA210: clopidogrel and modified-release dipyridamole for the prevention of occlusive vascular events (review of technology appraisal guidance 90). London: NICE, 2010 Dec

    Google Scholar 

  18. von Kugelgen I, Harden TK. Molecular pharmacology, physiology, and structure of the P2Y receptors. Adv Pharmacol 2011; 61: 373–415

    Article  Google Scholar 

  19. Sanofi-Aventis. Plavix® (clopidogrel bisulphate): package insert [online]. Available from URL: http://products.sanofi.us/plavix/plavix.html [Accessed 2011 Oct 27]

  20. Taubert D, von Beckerath N, Grimberg G, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther 2006; 80(5): 486–501

    Article  PubMed  CAS  Google Scholar 

  21. Mega JL, Close SL, Wiviott SD, et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet 2010; 376(9749): 1312–9

    Article  PubMed  CAS  Google Scholar 

  22. Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 2009; 360(4): 363–75

    Article  PubMed  CAS  Google Scholar 

  23. Tang M, Mukundan M, Yang J, et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases, and clopidogrel is transesterificated in the presence of ethyl alcohol. J Pharmacol Exp Ther 2006; 319(3): 1467–76

    Article  PubMed  CAS  Google Scholar 

  24. Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 2010; 38(1): 92–9

    Article  PubMed  CAS  Google Scholar 

  25. Shuldiner AR, O’Connell JR, Bliden KP, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009; 302(8): 849–57

    Article  PubMed  CAS  Google Scholar 

  26. Holmes Jr DR, Dehmer GJ, Kaul S, et al. ACCF/AHA clopidogrel clinical alert: approaches to the FDA “boxed warning”: a report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents and the American Heart Association endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol 2010; 56(4): 321–41

    Article  PubMed  CAS  Google Scholar 

  27. Clarke TA, Waskell LA. The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metab Dispos 2003; 31(1): 53–9

    Article  PubMed  CAS  Google Scholar 

  28. Farid NA, Small DS, Payne CD, et al. Effect of atorvastatin on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel in healthy subjects. Pharmacotherapy 2008; 28(12): 1483–94

    Article  PubMed  CAS  Google Scholar 

  29. O’Donoghue ML, Braunwald E, Antman EM, et al. Pharmacodynamic effect and clinical efficacy of clopidogrel and prasugrel with or without a proton-pump inhibitor: an analysis of two randomised trials. Lancet 2009; 374(9694): 989–97

    Article  PubMed  Google Scholar 

  30. Hsiao FY, Mullins CD, Wen YW, et al. Relationship between cardiovascular outcomes and proton pump inhibitor use in patients receiving dual antiplatelet therapy after acute coronary syndrome. Pharmacoepidemiol Drug Saf 2011; 20(10): 1043–9

    Article  PubMed  CAS  Google Scholar 

  31. Bhatt DL, Cryer BL, Contant CF, et al. Clopidogrel with or without omeprazole in coronary artery disease. N Engl J Med 2010; 363(20): 1909–17

    Article  PubMed  CAS  Google Scholar 

  32. Small DS, Farid NA, Li YG, et al. Effect of ranitidine on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. Curr Med Res Opin 2008; 24(8): 2251–7

    Article  PubMed  CAS  Google Scholar 

  33. von Beckerath N, Taubert D, Pogatsa-Murray G, et al. Absorption, metabo-lization, and antiplatelet effects of 300-, 600-, and 900-mg loading doses of clopidogrel: results of the ISAR-CHOICE (Intracoronary Stenting and Antithrombotic Regimen: Choose Between 3 High Oral Doses for Immediate Clopidogrel Effect) trial. Circulation 2005; 112(19): 2946–50

    Google Scholar 

  34. Mehta SR, Yusuf S, Peters RJ, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet 2001; 358(9281): 527–33

    Article  PubMed  CAS  Google Scholar 

  35. Silber S, Albertsson P, Aviles FF, et al. Guidelines for percutaneous coronary interventions: the Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur Heart J 2005; 26(8): 804–47

    Article  PubMed  Google Scholar 

  36. Hochholzer W, Trenk D, Frundi D, et al. Time dependence of platelet inhibition after a 600-mg loading dose of clopidogrel in a large, unselected cohort of candidates for percutaneous coronary intervention. Circulation 2005; 111(20): 2560–4

    Article  PubMed  CAS  Google Scholar 

  37. Gurbel PA, Bliden KP, Hiatt BL, et al. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation 2003; 107(23): 2908–13

    Article  PubMed  Google Scholar 

  38. Gurbel PA, Bliden KP, Butler K, et al. Response to ticagrelor in clopidogrel nonresponders and responders and effect of switching therapies: the RESPOND study. Circulation 2010; 121(10): 1188–99

    Article  PubMed  CAS  Google Scholar 

  39. Parodi G, Marcucci R, Valenti R, et al. High residual platelet reactivity after clopidogrel loading and long-term cardiovascular events among patients with acute coronary syndromes undergoing PCI. JAMA 2011; 306(11): 1215–23

    Article  PubMed  CAS  Google Scholar 

  40. Sugunaraj JP, Palaniswamy C, Selvaraj DR, et al. Clopidogrel resistance. Am J Ther 2010; 17(2): 210–5

    Article  PubMed  Google Scholar 

  41. Committee CS. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 1996; 348(9038): 1329–39

    Article  Google Scholar 

  42. Mehta SR, Yusuf S. The Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) trial programme: rationale, design and baseline characteristics including a meta-analysis of the effects of thienopyridines in vascular disease. Eur Heart J 2000; 21(24): 2033–41

    Article  PubMed  CAS  Google Scholar 

  43. Steinhubl SR, Berger PB, Mann 3rd JT, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 2002; 288(19): 2411–20

    Article  PubMed  CAS  Google Scholar 

  44. Sofi F, Marcucci R, Gori AM, et al. Clopidogrel non-responsiveness and risk of cardiovascular morbidity: an updated meta-analysis. Thromb Haemost 2010; 103(4): 841–8

    Article  PubMed  CAS  Google Scholar 

  45. Matetzky S, Shenkman B, Guetta V, et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 2004; 109(25): 3171–5

    Article  PubMed  CAS  Google Scholar 

  46. Snoep JD, Hovens MM, Eikenboom JC, et al. Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis. Am Heart J 2007; 154(2): 221–31

    Article  PubMed  CAS  Google Scholar 

  47. Aleil B, Jacquemin L, De Poli F, et al. Clopidogrel 150 mg/day to overcome low responsiveness in patients undergoing elective percutaneous coronary intervention: results from the VASP-02 (Vasodilator-Stimulated Phosphoprotein-02) randomized study. JACC Cardiovasc Interv 2008; 1(6): 631–8

    Article  PubMed  Google Scholar 

  48. Mehta SR, Bassand JP, Chrolavicius S, et al. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N Engl J Med 2010; 363(10): 930–42

    Article  PubMed  Google Scholar 

  49. Algaier I, Jakubowski JA, Asai F, et al. Interaction of the active metabolite of prasugrel, R-138727, with cysteine 97 and cysteine 175 of the human P2Y12 receptor. J Thromb Haemost 2008; 6(11): 1908–14

    Article  PubMed  CAS  Google Scholar 

  50. Farid NA, Smith RL, Gillespie TA, et al. The disposition of prasugrel, a novel thienopyridine, in humans. Drug Metab Dispos 2007; 35(7): 1096–104

    Article  PubMed  CAS  Google Scholar 

  51. Williams ET, Jones KO, Ponsler GD, et al. The biotransformation of prasugrel, a new thienopyridine prodrug, by the human carboxylesterases 1 and 2. Drug Metab Dispos 2008; 36(7): 1227–32

    Article  PubMed  CAS  Google Scholar 

  52. Rehmel JL, Eckstein JA, Farid NA, et al. Interactions of two major metabolites of prasugrel, a thienopyridine antiplatelet agent, with the cytochromes P450. Drug Metab Dispos 2006; 34(4): 600–7

    Article  PubMed  CAS  Google Scholar 

  53. Paine MF, Hart HL, Ludington SS, et al. The human intestinal cytochrome P450 “pie”. Drug Metab Dispos 2006; 34(5): 880–6

    Article  PubMed  CAS  Google Scholar 

  54. Daiichi Sankyo and Lilly. Effient (prasugrel) box insert [online]. Available from URL: http://pi.liHy.com/us/effient.pdf [Accessed 2011 Oct 28]

  55. Kelly RP, Close SL, Farid NA, et al. Pharmacokinetics and pharmacodynamics following maintenance doses of prasugrel and clopidogrel in Chinese carriers of CYP2C19 variants. Br J Clin Pharmacol 2012; 73(1): 93–105

    Article  PubMed  CAS  Google Scholar 

  56. Brandt JT, Close SL, Iturria SJ, et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 2007; 5(12): 2429–36

    Article  PubMed  CAS  Google Scholar 

  57. Mega JL, Close SL, Wiviott SD, et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation 2009; 119(19): 2553–60

    Article  PubMed  CAS  Google Scholar 

  58. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357(20): 2001–15

    Article  PubMed  CAS  Google Scholar 

  59. Small DS, Wrishko RE, Ernest 2nd CS, et al. Prasugrel pharmacokinetics and pharmacodynamics in subjects with moderate renal impairment and end-stage renal disease. J Clin Pharm Ther 2009; 34(5): 585–94

    Article  PubMed  CAS  Google Scholar 

  60. Small DS, Farid NA, Li YG, et al. Pharmacokinetics and pharmacodynamics of prasugrel in subjects with moderate liver disease. J Clin Pharm Ther, 2009; 34(5): 575–83

    Article  PubMed  CAS  Google Scholar 

  61. Asai F, Jakubowski JA, Naganuma H, et al. Platelet inhibitory activity and pharmacokinetics of prasugrel (CS-747) a novel thienopyridine P2Y12 inhibitor: a single ascending dose study in healthy humans. Platelets 2006; 17(4): 209–17

    Article  PubMed  CAS  Google Scholar 

  62. Matsushima N, Jakubowski JA, Asai F, et al. Platelet inhibitory activity and pharmacokinetics of prasugrel (CS-747) a novel thienopyridine P2Y12 inhibitor: a multiple-dose study in healthy humans. Platelets 2006; 17(4): 218–26

    Article  PubMed  CAS  Google Scholar 

  63. Small DS, Wrishko RE, Ernest 2nd CS, et al. Effect of age on the pharmacokinetics and pharmacodynamics of prasugrel during multiple dosing: an open-label, single-sequence, clinical trial. Drugs Aging 2009; 26(9): 781–90

    Article  PubMed  CAS  Google Scholar 

  64. AstraZeneca. Brilinta™ (tigacrelor): package insert [online]. Available from URL: http://www1.astrazeneca-us.com/pi/brilinta.pdf [Accessed 2011 Oct 4]

  65. Teng R, Butler K. Pharmacokinetics, pharmacodynamics, tolerability and safety of single ascending doses of ticagrelor, a reversibly binding oral P2Y(12) receptor antagonist, in healthy subjects. Eur J Clin Pharmacol 2010; 66(5): 487–96

    Article  PubMed  CAS  Google Scholar 

  66. Butler K, Teng R. Pharmacokinetics, pharmacodynamics, safety and tolerability of multiple ascending doses of ticagrelor in healthy volunteers. Br J Clin Pharmacol 2010; 70(1): 65–77

    Article  PubMed  CAS  Google Scholar 

  67. Brandt JT, Payne CD, Wiviott SD, et al. A comparison of prasugrel and clopidogrel loading doses on platelet function: magnitude of platelet inhibition is related to active metabolite formation. Am Heart J 2007; 153(1): 66.e9–16

    Article  Google Scholar 

  68. Payne CD, Li YG, Brandt JT, et al. Switching directly to prasugrel from clopidogrel results in greater inhibition of platelet aggregation in aspirin-treated subjects. Platelets 2008; 19(4): 275–81

    Article  PubMed  CAS  Google Scholar 

  69. Jernberg T, Payne CD, Winters KJ, et al. Prasugrel achieves greater inhibition of platelet aggregation and a lower rate of non-responders compared with clopidogrel in aspirin-treated patients with stable coronary artery disease. Eur Heart J 2006; 27(10): 1166–73

    Article  PubMed  CAS  Google Scholar 

  70. Wallentin L, Varenhorst C, James S, et al. Prasugrel achieves greater and faster P2Y12receptor-mediated platelet inhibition than clopidogrel due to more efficient generation of its active metabolite in aspirin-treated patients with coronary artery disease. Eur Heart J 2008; 29(1): 21–30

    Article  PubMed  CAS  Google Scholar 

  71. Jakubowski JA, Matsushima N, Asai F, et al. A multiple dose study of prasugrel (CS-747), a novel thienopyridine P2Y12 inhibitor, compared with clopidogrel in healthy humans. Br J Clin Pharmacol 2007; 63(4): 421–30

    Article  PubMed  CAS  Google Scholar 

  72. Gurbel PA, Bliden KP, Butler K, et al. Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study. Circulation 2009; 120(25): 2577–85

    Article  PubMed  CAS  Google Scholar 

  73. Payne CD, Li YG, Small DS, et al. Increased active metabolite formation explains the greater platelet inhibition with prasugrel compared to high-dose clopidogrel. J Cardiovasc Pharmacol 2007; 50(5): 555–62

    Article  PubMed  CAS  Google Scholar 

  74. Sugidachi A, Ogawa T, Kurihara A, et al. The greater in vivo antiplatelet effects of prasugrel as compared to clopidogrel reflect more efficient generation of its active metabolite with similar antiplatelet activity to that of clopidogrel’s active metabolite. J Thromb Haemost 2007; 5(7): 1545–51

    Article  PubMed  CAS  Google Scholar 

  75. van Giezen J, Berntsson P. AZD6140 displays over 100-fold higher affinity for the P2Y12 receptor vs AZ1 1702105, a compound indistinguishable from the active metabolite of prasugrel, and is a more potent inhibitor of ADP-induced platelet aggregation [abstract]. Arterioscler Thromb Vasc Biol 2008; 28: 139–40

    Google Scholar 

  76. Angiolillo DJ, Badimon JJ, Saucedo JF, et al. A pharmacodynamic comparison of prasugrel vs. high-dose clopidogrel in patients with type 2 diabetes mellitus and coronary artery disease: results of the Optimizing anti-Platelet Therapy In diabetes MellitUS (OPTIMUS)-3 trial. Eur Heart J 2011; 32(7): 838–46

    Article  PubMed  CAS  Google Scholar 

  77. van Giezen J, Nilsson L, Berntsson P, et al. Ticagrelor binds to human P2Y(12) independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. J Thromb Haemost 2009; 7(9): 1556–65

    Article  Google Scholar 

  78. Teng R, Oliver S, Hayes MA, et al. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos 2010; 38(9): 1514–21

    Article  PubMed  CAS  Google Scholar 

  79. Tantry US, Bliden KP, Wei C, et al. First analysis of the relation between CYP2C19 genotype and pharmacodynamics in patients treated with ticagrelor versus clopidogrel: the ONSET/OFFSET and RESPOND genotype studies. Circ Cardiovasc Genet 2010; 3(6): 556–66

    Article  PubMed  CAS  Google Scholar 

  80. Wallentin L, James S, Storey RF, et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet 2010; 376(9749): 1320–8

    Article  PubMed  CAS  Google Scholar 

  81. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009; 361(11): 1045–57

    Article  PubMed  CAS  Google Scholar 

  82. Husted S, Emanuelsson H, Heptinstall S, et al. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur Heart J 2006; 27(9): 1038–47

    Article  PubMed  CAS  Google Scholar 

  83. James SK, Roe MT, Cannon CP, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes intended for non-invasive management: substudy from prospective randomised PLATelet inhibition and patient Outcomes (PLATO) trial. BMJ 2011; 342: d3527

    Article  PubMed  Google Scholar 

  84. Cannon CP, Harrington RA, James S, et al. Comparison of ticagrelor with clopidogrel in patients with a planned invasive strategy for acute coronary syndromes (PLATO): a randomised double-blind study. Lancet 2010; 375(9711): 283–93

    Article  PubMed  CAS  Google Scholar 

  85. Steg PG, James S, Harrington RA, et al. Ticagrelor versus clopidogrel in patients with ST-elevation acute coronary syndromes intended for reperfusion with primary percutaneous coronary intervention: a Platelet Inhibition and Patient Outcomes (PLATO) trial subgroup analysis. Circulation 2010; 122(21): 2131–41

    Article  PubMed  Google Scholar 

  86. Mahaffey KW, Wojdyla DM, Carroll K, et al. Ticagrelor compared with clopidogrel by geographic region in the Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation 2011; 124(5): 544–54

    Article  PubMed  CAS  Google Scholar 

  87. Storey RF, Becker RC, Harrington RA, et al. Characterization of dyspnoea in PLATO study patients treated with ticagrelor or clopidogrel and its association with clinical outcomes. Eur Heart J 2011; 32(23): 2945–53

    Article  PubMed  CAS  Google Scholar 

  88. Storey RF, Becker RC, Harrington RA, et al. Pulmonary function in patients with acute coronary syndrome treated with ticagrelor or clopidogrel (from the Platelet Inhibition and Patient Outcomes [PLATO] Pulmonary Function substudy). Am J Cardiol 2011; 108(11): 1542–6

    Article  PubMed  CAS  Google Scholar 

  89. James S, Budaj A, Aylward P, et al. Ticagrelor versus clopidogrel in acute coronary syndromes in relation to renal function: results from the Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation 2010; 122(11): 1056–67

    Article  PubMed  Google Scholar 

  90. James S, Angiolillo DJ, Cornel JH, et al. Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the PLATelet inhibition and patient Outcomes (PLATO) trial. Eur Heart J 2010; 31(24): 3006–16

    Article  PubMed  CAS  Google Scholar 

  91. Chernoguz A, Telem DA, Chu E, et al. Cessation of clopidogrel before major abdominal procedures. Arch Surg 2011; 146(3): 334–9

    Article  PubMed  CAS  Google Scholar 

  92. Latib A, Morici N, Cosgrave J, et al. Incidence of bleeding and compliance on prolonged dual antiplatelet therapy (aspirin+thienopyridine) following drug-eluting stent implantation. Am J Cardiol 2008; 102(11): 1477–81

    Article  PubMed  CAS  Google Scholar 

  93. Claxton AJ, Cramer J, Pierce C. A systematic review of the associations between dose regimens and medication compliance. Clin Ther 2001; 23(8): 1296–310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Ferro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floyd, C.N., Passacquale, G. & Ferro, A. Comparative Pharmacokinetics and Pharmacodynamics of Platelet Adenosine Diphosphate Receptor Antagonists and their Clinical Implications. Clin Pharmacokinet 51, 429–442 (2012). https://doi.org/10.2165/11630740-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11630740-000000000-00000

Keywords

Navigation