The Journal of Physiological Sciences
Online ISSN : 1880-6562
Print ISSN : 1880-6546
ISSN-L : 1880-6546
Regular Papers
Intracellular Mechanism of the Negative Inotropic Effect Induced by α1-Adrenoceptor Stimulation in Mouse Myocardium
Shuta HiranoYoichiro KusakariJin O-UchiSatoshi MorimotoMakoto KawaiKenichi HongoSatoshi Kurihara
Author information
JOURNAL FREE ACCESS

2006 Volume 56 Issue 4 Pages 297-304

Details
Abstract

Alpha1-adrenoceptor stimulation (α1ARS) shows a positive inotropic effect in most mammalian myocardium. In mouse myocardium, however, α1ARS showed the negative inotropic effect, of which intracellular mechanisms are not fully clarified. The purpose of this study is to investigate the intracellular mechanism of the negative inotropic effect by α1ARS in C57BL/6 mouse myocardium. We used isolated ventricular papillary muscles of C57BL/6 strain mouse which is widely used for genetic manipulation. We simultaneously measured isometric tension and intracellular Ca2+ concentration ([Ca2+]i) using the aequorin method. In twitch contraction, phenylephrine concentration-dependently (1–100 μM) decreased tension without significant changes in the Ca2+ transient, and these effects were completely blocked by prazosin (3 μM) or calphostin C (a PKC inhibitor, 1 μM). Phorbol 12-myristate 13-acetate (PMA) (a PKC activator, 1 μM) decreased tension as observed in phenylephrine. After PMA application, the negative inotropic effect of phenylephrine disappeared. To estimate the Ca2+ sensitivity, tetanic contraction was produced, and the relation between [Ca2+]i and tension at a steady state was measured. Phenylephrine (10 μM) decreased the Ca2+ sensitivity, and PMA showed a similar Ca2+ desensitizing effect. These results suggest that the negative inotropic effect of phenylephrine in mouse myocardium can be explained by the decrease in the Ca2+ sensitivity through the activation of PKC. The present result indicates that the effect of α1ARS differs among species and strains of experiment animals. Thus, we should be careful about using the results of mouse myocardium to understand the functions of the human heart.

Content from these authors
© 2006 by The Physiological Society of Japan
Previous article Next article
feedback
Top