An in situ hybridization study of the distribution of the GABA(B2) protein mRNA in the rat CNS

Brain Res Mol Brain Res. 1999 Aug 25;71(2):185-200. doi: 10.1016/s0169-328x(99)00182-5.

Abstract

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system. GABA exerts its actions through two classes of receptors: GABA(A), multimeric ligand-gated Cl(-) ion channels (a class which has been proposed to include the homomeric variant previously called GABA(C), to be designated GABA(A0r)); and GABA(B), G-protein coupled receptors which regulate Ca(2+) and K(+) channels. Currently, within the GABA(B) receptor family two proteins have been identified through molecular cloning techniques and designated GABA(B1) and GABA(B2). Two N-terminal variants of GABA(B1) were isolated and designated GABA(B1a) and GABA(B1b). The distribution of neurons in the rat CNS expressing the mRNA for the GABA(B1) isoforms have been previously described by in situ hybridization histochemistry. The recent isolation and identification of the GABA(B2) protein by homology cloning has enabled the use of radiolabeled oligonucleotides to detect the distribution of the expression of GABA(B2) mRNA in the rat CNS. The expression of GABA(B2) mRNA was observed to be primarily related to neuronal profiles. The highest levels of GABA(B2) mRNA expression were detected in the piriform cortex, hippocampus, and medial habenula. GABA(B2) mRNA was abundant in all layers of the cerebral cortex, the thalamus and in cerebellar Purkinje cells. Moderate expression was observed in several hypothalamic and brainstem nuclei. In contrast to the distribution of GABA(B1) mRNA, only a weak hybridization signal for GABA(B2) was detected over cells of the basal ganglia, including the caudate-putamen, nucleus accumbens, olfactory tubercle and throughout most of the hypothalamus. Moderate-to-heavy GABA(B2) mRNA expression was also seen over dorsal root and trigeminal ganglion cells. In general, the pattern of GABA(B2) mRNA expression in the rat brain overlaps considerably with the distributions described for both GABA(B1) mRNAs, and is concordant with the distribution described for GABA(B) receptor binding sites. However, differences between GABA(B2) expression levels and GABA(B) binding sites were observed in the basal ganglia.

MeSH terms

  • Animals
  • Central Nervous System / chemistry*
  • In Situ Hybridization
  • Male
  • RNA, Messenger / analysis
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, GABA*
  • Receptors, GABA-B / analysis
  • Receptors, GABA-B / genetics*

Substances

  • Gabbr2 protein, rat
  • RNA, Messenger
  • Receptors, GABA
  • Receptors, GABA-B