Interaction of anandamide with the M(1) and M(4) muscarinic acetylcholine receptors

Brain Res. 2001 Oct 5;915(1):70-8. doi: 10.1016/s0006-8993(01)02825-6.

Abstract

The M(1) and M(4) muscarinic acetylcholine receptors are the most abundant muscarinic receptor subtypes in the brain, and are involved in learning and memory. Because cannabinoid receptors are also abundantly expressed in similar brain regions and mediate opposite effects to acetylcholine on cognition, the present study investigated whether the endocannabinoid agonist, anandamide, and its metabolically stable derivative, methanandamide, directly modified the binding properties of the human M(1) and M(4) receptors individually expressed in CHO cell membranes. Experiments utilized the antagonists, [(3)H]N-methylscopolamine and [(3)H]quinuclidinyl benzilate. When acetylcholine was used as the inhibiting ligand, shallow, biphasic isotherms were observed at both receptors, characterised by similar apparent dissociation constants for high and low affinity binding at each receptor but with a greater proportion of high affinity sites at the M(4) (40-45%) than at the M(1) receptor (17-20%). In contrast, anandamide and methanandamide inhibited the binding of both radioligands over a narrow (low micromolar) concentration range, with monophasic isotherms characterized by Hill coefficients significantly greater than 1 at both receptors. These effects were not due to the vehicle used. Further saturation binding analyses found anandamide able to significantly reduce the apparent affinity and maximal density of binding sites labeled by [(3)H]quinuclidinyl benzilate. Interestingly, no significant inhibition of radioligand binding was noted using the synthetic cannabinoid agonist, WIN55212-2, or the cannabinoid CB(1) receptor antagonist, SR141716A. These data thus provide evidence for a direct role of anandamides in modulating muscarinic receptor binding properties through a non-competitive mechanism that is unrelated to their actions on cannabinoid receptors.

MeSH terms

  • Acetylcholine / metabolism*
  • Animals
  • Arachidonic Acids / pharmacology*
  • Binding Sites / drug effects
  • Binding Sites / physiology
  • Binding, Competitive / drug effects
  • Binding, Competitive / physiology
  • Brain / metabolism*
  • CHO Cells / drug effects
  • CHO Cells / metabolism
  • Calcium Channel Blockers / pharmacology*
  • Cannabinoid Receptor Modulators
  • Cannabinoids / metabolism*
  • Cannabinoids / pharmacology
  • Cricetinae
  • Endocannabinoids
  • Memory / drug effects
  • Memory / physiology
  • Muscarinic Antagonists / metabolism
  • N-Methylscopolamine / metabolism
  • Parasympatholytics / metabolism
  • Piperidines / metabolism
  • Polyunsaturated Alkamides
  • Pyrazoles / metabolism
  • Quinuclidinyl Benzilate / metabolism
  • Radioligand Assay
  • Receptor, Muscarinic M1
  • Receptor, Muscarinic M4
  • Receptors, Cannabinoid
  • Receptors, Drug / metabolism
  • Receptors, Muscarinic / drug effects*
  • Receptors, Muscarinic / metabolism
  • Rimonabant
  • Tritium / metabolism

Substances

  • Arachidonic Acids
  • Calcium Channel Blockers
  • Cannabinoid Receptor Modulators
  • Cannabinoids
  • Endocannabinoids
  • Muscarinic Antagonists
  • Parasympatholytics
  • Piperidines
  • Polyunsaturated Alkamides
  • Pyrazoles
  • Receptor, Muscarinic M1
  • Receptor, Muscarinic M4
  • Receptors, Cannabinoid
  • Receptors, Drug
  • Receptors, Muscarinic
  • Tritium
  • methanandamide
  • Quinuclidinyl Benzilate
  • Acetylcholine
  • Rimonabant
  • anandamide
  • N-Methylscopolamine