Mechanisms of molluscan host resistance and of parasite strategies for survival

Parasitology. 2001:123 Suppl:S159-67. doi: 10.1017/s0031182001008137.

Abstract

In parallel with massive research efforts in human schistosomiasis over the past 30 years, persistent efforts have been made to understand the basis for compatibility and incompatibility in molluscan schistosomiasis. Snail plasma contains molecules that are toxic to trematodes, but these seem to kill only species that never parasitize the mollusc used as the source of plasma. A sporocyst will be killed actively by haemocytes alone if they are from a snail that is resistant to the trematode. Oxygen-dependent killing mechanisms play a major role. Enzymes such as NADPH oxidase, superoxide dismutase, myeloperoxidase and nitric oxide synthase are critical components of the putative killing pathways. Metabolic intermediates such as hydrogen peroxide and nitric oxide appear to be more important against trematodes than the shorter-lived intermediates that are more important in anti-microbial defences. Products secreted by trematode larvae influence the physiology of snail haemocytes, implying active counter-defences mounted by the parasite, but these remain largely unexplored. A possible molecular basis for the susceptibility/resistance dichotomy in molluscan schistosomiasis is suggested to be deficient forms of enzymes in the respiratory burst pathway, and a selective disadvantage for schistosome resistance is an integral component of this model.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Biomphalaria / immunology
  • Biomphalaria / parasitology*
  • Biomphalaria / physiology
  • Hemocytes / immunology
  • Hemocytes / physiology
  • Host-Parasite Interactions
  • Humans
  • Hydrogen Peroxide / pharmacology
  • Nitric Oxide / pharmacology
  • Reactive Oxygen Species / pharmacology
  • Schistosoma mansoni / chemistry
  • Schistosoma mansoni / immunology*
  • Schistosoma mansoni / physiology
  • Schistosomiasis mansoni / immunology*
  • Schistosomiasis mansoni / pathology

Substances

  • Reactive Oxygen Species
  • Nitric Oxide
  • Hydrogen Peroxide