Intrinsic regulators of pancreatic beta-cell proliferation

Annu Rev Cell Dev Biol. 2006:22:311-38. doi: 10.1146/annurev.cellbio.22.010305.104425.

Abstract

Once thought incapable of significant proliferation, the pancreatic beta-cell has recently been shown to harbor immense powers of self-renewal. Pancreatic beta-cells, the sole source of insulin in vertebrate animals, can grow facultatively to a degree unmatched by other organs in experimental animals. beta-cell growth matches changes in systemic insulin demand, which increase during common physiologic states such as aging, obesity, and pregnancy. Compensatory changes in beta-cell mass are controlled by beta-cell proliferation. Here we review recent advances in our understanding of the intrinsic factors and mechanisms that control beta-cell cycle progression. Dysregulation of beta-cell proliferation is emerging as a fundamental feature in the pathogenesis of human disease states such as cancer and diabetes mellitus. New experimental observations and studies of these diseases suggest that beta-cell fate and expansion are coordinately regulated. We speculate on how these advances may accelerate the discovery of new strategies for the treatment of diseases characterized by a deficiency or excess of beta-cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Cycle
  • Cell Proliferation
  • Epigenesis, Genetic
  • Humans
  • Insulin-Secreting Cells / cytology*
  • Signal Transduction