The impact of sub-cellular location and intracellular neuronal proteins on properties of GABA(A) receptors

Curr Pharm Des. 2007;13(31):3169-77. doi: 10.2174/138161207782341330.

Abstract

Most studies of GABA(A) receptor accessory proteins have focused on trafficking, clustering and phosphorylation state of the channel-forming subunits and as a result a number of proteins and mechanisms have been identified that can influence the GABA(A) channel expression and function in the cell plasma membrane. In the light of a growing list of intracellular and transmembrane neuronal proteins shown to affect the fate, function and pharmacology of the GABA(A) receptors in neurons, the concept of what constitutes the native GABA(A) receptor complex may need to be re-examined. It is perhaps more appropriate to consider the associated proteins or some of them to be parts of the receptor channel complex in the capacity of ancillary proteins. Here we highlight some of the effects the intracellular environment has on the GABA-activated channel function and pharmacology. The studies demonstrate the need for co-expression of accessory proteins with the GABA(A) channel-forming subunits in heterologous expression systems in order to obtain the full repertoire of GABA(A) receptors characteristics recorded in the native neuronal environment. Further studies e.g. on gene-modified animal models are needed for most of the accessory proteins to establish their significance in normal physiology and in pathophysiology of neurological and psychiatric diseases. The challenge remains to elucidate the effects that the accessory proteins and processes (e.g. phosphorylation) plus the sub-cellular location have on the "fine-tuning" of the functional and pharmacological properties of the GABA(A) receptor channels.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Biological Transport
  • Gene Expression Regulation / physiology
  • Humans
  • Ion Channels / metabolism*
  • Nerve Tissue Proteins / metabolism
  • Neurons / physiology
  • Protein Subunits / metabolism*
  • Receptors, GABA-A / metabolism*
  • Receptors, GABA-A / physiology
  • Subcellular Fractions / metabolism
  • Synaptic Transmission / physiology

Substances

  • Ion Channels
  • Nerve Tissue Proteins
  • Protein Subunits
  • Receptors, GABA-A