Application of fluorescence resonance energy transfer techniques to establish ligand-receptor orientation

Methods Mol Biol. 2009:552:293-304. doi: 10.1007/978-1-60327-317-6_21.

Abstract

Fluorescence resonance energy transfer (FRET) has been utilized to determine distances between a fluorescence donor and a fluorescence acceptor having appropriately overlapping spectra. In this chapter, we utilize this approach to establish distances between a fluorescence donor situated in a distinct position within a docked ligand and a fluorescence acceptor situated in a distinct position within its receptor. This technique is applicable to receptor expressed in the environment of an intact cell containing the full complement of signaling and regulatory proteins. A number of controls are necessary, including those establishing the normal function of the modified ligand and receptor, the absence of energy transfer to non-receptor proteins, and the specificity of transfer between the donor of interest and the acceptor of interest. We have utilized the example of FRET between a secretin peptide incorporating Alexa(488) and a secretin receptor construct derivatized with Alexa(568). The latter was prepared by the derivatization of a mono-cysteine-reactive receptor construct with a fluorescent methanethiosulfonate reagent. This approach can provide important spatial information that can be useful in the meaningful docking of a ligand at its receptor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • Fluorescence Resonance Energy Transfer / methods*
  • Ligands
  • Receptors, Cell Surface / chemistry*
  • Receptors, Cell Surface / metabolism*

Substances

  • Ligands
  • Receptors, Cell Surface