Particle distribution of human serum high density lipoproteins

Biochim Biophys Acta. 1977 Jul 22;493(1):55-68. doi: 10.1016/0005-2795(77)90259-8.

Abstract

Density gradient ultracentrifugation of human serum high density lipoproteins (HDL) from both normolipemic males and females results in a distribution of HDL concentration versus subfraction hydrated density which has three maxima. Gradient gel electrophoresis of total HDL is characterized by three banding maxima, the positions of which suggest the presence of three particle size ranges: I. 10.8-12.0 nm, II. 9.7-10.7 nm, and III. 8.5-9.6 nm. Gradient gel electrophoresis of density gradient subfractions established an inverse relationship between particle size and particle hydrated density which was corroborated by electron microscopy and analytic ultracentrifugation. Comparison of male HDL from size ranges I, II, and III with female HDL from the same size ranges showed only small differences in the mean value of the peak F degrees 1.20 rate, size, molecular weight, protein weight percent, and weight protein/weight phospholipid. Major differences between males and females were seen in the relative amounts of HDL in density gradient subfractions 1-3 (size range I material) and 11-12 (size range III material); the percent total HDL in the group of subfractions 1-3 was greatly increased in female HDL while that of the group of subfractions 11-12 was increased in the male HDL. These studies indicate the presence of at least three major components in HDL instead of two (HDL2 and HDL3) and that peak F degrees 1.20 rate differences in HDL schlieren patterns between males and females are a function of the relative levels of these three components.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Centrifugation, Density Gradient
  • Female
  • Humans
  • Lipoproteins, HDL* / blood
  • Male
  • Microscopy, Electron
  • Molecular Weight
  • Protein Conformation
  • Sex Factors
  • Ultracentrifugation

Substances

  • Lipoproteins, HDL