Estradiol synthesis within the human brain

Neuroscience. 2011 Sep 15:191:139-47. doi: 10.1016/j.neuroscience.2011.02.012. Epub 2011 Feb 12.

Abstract

Estradiol biosynthesis is catalyzed by the enzyme aromatase, the product of the CYP19A1 gene. Aromatase is expressed in the brain, where it is involved not only in the control of neuroendocrine events and reproduction, but also in the regulation of neural development, synaptic plasticity and cell survival. In this review we summarize the existing data related with the detection of aromatase in human brain, with particular emphasis in the so-called "non-primary reproductive" areas. Besides hypothalamus, amygdala and preoptic/septal areas, aromatase is expressed in certain regions of basal forebrain, cerebral cortex, hippocampus, thalamus, cerebellum and brainstem of the human brain. Aromatase in human brain is produced by neurons, but there is also an astrocyte subpopulation that constitutively expresses the enzyme. The use of different methodological approaches, including the in vivo analysis by positron emission tomography of human subjects, has permitted to draw a general map of human brain aromatase, but the detailed distribution map is still far to be completed. On the other hand, despite the fact that there is only one aromatase protein, there are multiple mRNA transcripts that differ in the 5'-untranslated region, where regulatory elements reside. To date, some of the aromatase transcripts characteristic of cerebral cortex, as well as of human cell lines of neural origin, have been identified. This characteristic may confer tissue or even region-specific regulation of the expression and therefore it is conceivable to develop selective aromatase modulators to regulate the expression of the enzyme in the human brain. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aromatase / genetics
  • Aromatase / metabolism*
  • Brain / anatomy & histology
  • Brain / metabolism*
  • Estradiol / metabolism*
  • Humans
  • RNA, Messenger

Substances

  • RNA, Messenger
  • Estradiol
  • Aromatase