Different effects of pentobarbital on two gamma-aminobutyrate receptors from rat brain: channel opening, desensitization, and an additional conformational change

Biochemistry. 1988 Jun 14;27(12):4580-90. doi: 10.1021/bi00412a053.

Abstract

The effect of pentobarbital on the responses of the gamma-aminobutyric acid (GABA) receptor from rat brain was studied in quantitative measurements of GABA-mediated chloride-exchange rates (reflecting channel-opening equilibrium) and receptor desensitization rates by using 36Cl- tracer ion with native membrane vesicles. Pentobarbital effected the two phases of 36Cl- influx in different ways, supporting previous evidence that these are mediated by two different receptors [Cash, D. J., & Subbarao, K. (1987) Biochemistry 26, 7556; Cash, D. J., & Subbarao, K. (1987) Biochemistry 26, 7562]. Both the chloride-exchange rate and the desensitization rate of the faster desensitizing receptor were increased by pentobarbital at concentrations above 20 microM by an allosteric effect shifting the response curve to lower GABA concentrations. A similar enhancement of the responses of the slower desensitizing receptor occurred up to 200 microM pentobarbital. Two pentobarbital effector sites were involved in the allosteric mechanism. Above 500 microM pentobarbital, both the initial chloride-exchange rate and the desensitization rate of the slower desensitizing receptor were decreased. This inhibition, which was immediate, occurred with saturating as well as low GABA concentrations and therefore was not attributed to decreased GABA binding but to inhibitory sites for pentobarbital, different from the allosteric activating sites and the GABA binding sites. The chloride ion exchange activity was seen to recover with time, at concentrations above 1000 microM pentobarbital, in a process with a very steep dependence on pentobarbital concentration. This reactivation was attributed to the conversion of an initial form of the receptor to a final form that was less inhibited by pentobarbital. The similarity of the effects of pentobarbital on the chloride ion exchange with its effects on electrophysiological measurements supports the fact that these different techniques study the same phenomena. Comparisons of the effects of pentobarbital on desensitization and on high-affinity ligand binding measurements suggest that increased GABA binding at equilibrium reflects an increased conversion to the desensitized state.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / drug effects*
  • Chlorides / metabolism*
  • Ion Channels / metabolism*
  • Male
  • Molecular Conformation
  • Pentobarbital / pharmacology*
  • Rats
  • Rats, Inbred Strains
  • Receptors, GABA-A / drug effects*

Substances

  • Chlorides
  • Ion Channels
  • Receptors, GABA-A
  • Pentobarbital