Antisense depletion of beta-subunits modulates the biophysical and pharmacological properties of neuronal calcium channels

J Physiol. 1995 Feb 1;482 ( Pt 3)(Pt 3):481-91. doi: 10.1113/jphysiol.1995.sp020534.

Abstract

1. The role of the voltage-dependent calcium channel (VDCC) beta-subunit has been examined in cultured rat dorsal root ganglion neurones (DRGs). An antipeptide antibody was raised and this recognized proteins corresponding to beta-subunits in a number of preparations. Immunoreactivity for the VDCC beta-subunit in DRGs was concentrated on the internal side of the plasma membrane but was also present in the cytoplasm. 2. A twenty-six-mer antisense oligonucleotide with homology to all published VDCC beta-subunit sequences was microinjected into individual cells, and maximal depletion of VDCC beta-subunit immunoreactivity was observed after 108 h suggesting a half-life for the turnover of the beta-subunit greater than 50 h. No depletion was obtained with nonsense oligonucleotide. 3. The effect of depletion of VDCC beta-subunit immunoreactivity on calcium channel currents in these cells was a reduction in amplitude of the maximum current of about 47%, and a shift in the voltage dependence of current activation of about +7 mV. These effects are the converse of those observed following co-expression of cloned beta- with alpha 1-subunits in oocytes and other expression systems. 4. The ability of the 1,4-dihydropyridine (DHP) agonist Bay K 8644 to enhance calcium channel currents was greatly reduced following depletion of beta-subunit immunoreactivity. This result is in agreement with the finding in several systems that co-expression of the beta-subunit with alpha 1-subunits results in an increased number of DHP binding sites. 5. These results show that calcium channel beta-subunits form part of native neuronal calcium channels and modify their biophysical and pharmacological properties.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester / pharmacology
  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Calcium Channels / drug effects
  • Calcium Channels / metabolism*
  • Cells, Cultured
  • Chromatography, Affinity
  • Electrophysiology
  • Ganglia, Spinal / cytology
  • Ganglia, Spinal / drug effects
  • Ganglia, Spinal / metabolism
  • Immunoblotting
  • Immunohistochemistry
  • Ion Channel Gating / physiology
  • Molecular Sequence Data
  • Muscle, Skeletal / metabolism
  • Neurons / drug effects
  • Neurons / metabolism*
  • Oligonucleotides, Antisense / pharmacology*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Calcium Channels
  • Oligonucleotides, Antisense
  • 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester