Functional modulation of P2X2 receptors by cyclic AMP-dependent protein kinase

J Neurochem. 1998 Jun;70(6):2606-12. doi: 10.1046/j.1471-4159.1998.70062606.x.

Abstract

It is generally believed that protein phosphorylation is an important mechanism through which the functions of voltage- and ligand-gated channels are modulated. The intracellular carboxyl terminus of P2X2 receptor contains several consensus phosphorylation sites for cyclic AMP (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC), suggesting that the function of the P2X2 purinoceptor could be regulated by the protein phosphorylation. Whole-cell voltage-clamp recording was used to record ATP-evoked cationic currents from human embryonic kidney (HEK) 293 cells stably transfected with the cDNA encoding the rat P2X2 receptor. Dialyzing HEK 293 cells with phorbol 12-myristate 13-acetate, a PKC activator, failed to affect the amplitude and kinetics of the ATP-induced cationic current. The role of PKA phosphorylation in modulating the function of the P2X2 receptor was investigated by internally perfusing HEK 293 cells with 8-bromo-cAMP or the purified catalytic subunit of PKA. Both 8-bromo-cAMP and PKA catalytic subunit caused a reduction in the magnitude of the ATP-activated current without affecting the inactivation kinetics and the value of reversal potential. Site-directed mutagenesis was also performed to replace the intracellular PKA consensus phosphorylation site (Ser431) with a cysteine residue. In HEK 293 cells expressing (S431C) mutant P2X2 receptors, intracellular perfusion of 8-bromo-cAMP or purified PKA catalytic subunit did not affect the amplitude of the ATP-evoked current. These results suggest that as with other ligand-gated ion channels, protein phosphorylation by PKA could play an important role in regulating the function of the P2X2 receptor and ATP-mediated physiological effects in the nervous system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Humans
  • Kidney / cytology
  • Kidney / embryology
  • Kidney / metabolism
  • Kinetics
  • Mutagenesis, Site-Directed
  • PC12 Cells
  • Patch-Clamp Techniques
  • Phosphorylation
  • Protein Kinase C / metabolism
  • Rats
  • Receptors, Purinergic P2 / biosynthesis
  • Receptors, Purinergic P2 / genetics
  • Receptors, Purinergic P2 / metabolism
  • Receptors, Purinergic P2 / physiology*
  • Receptors, Purinergic P2X2
  • Serine / metabolism

Substances

  • P2RX2 protein, human
  • P2rx2 protein, rat
  • Receptors, Purinergic P2
  • Receptors, Purinergic P2X2
  • Serine
  • Cyclic AMP-Dependent Protein Kinases
  • Protein Kinase C