Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Pharmacological Reviews
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Pharmacological Reviews

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit Pharm Rev on Facebook
  • Follow Pharm Rev on Twitter
  • Follow ASPET on LinkedIn
Research Article

THE SITE AND MECHANISM OF ACTION OF MERCURIAL DIURETICS

EDWARD J. CAFRUNY
Pharmacological Reviews June 1968, 20 (2) 89-116;
EDWARD J. CAFRUNY
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Mercurial diuretics act primarily on active transport of sodium. The mechanism of action probably involves a firm attachment of mercury to a sulfhydryl group of a renal enzyme that helps to generate energy for sodium transport, or to a sodium carrier. In either case, the transporting system fails. To date, no known enzyme or specific carrier substance has been identified as the receptor for mercurials.

Structure-activity analysis makes it necessary to reject the diuretic structure proposed by Kessler et at. (95), for there are too many exceptions to it (185). Although there is no remaining barrier to acceptance of mercuric ion as the most active form of mercury, the intact molecule hypothesis should not be discarded because there is still reason to believe that a single attachment to a receptor through one valence of mercury may also produce a diuresis.

A better understanding of mechanism of action depends on the acquisition of additional information on: (a) the carrier system that transports sodium; (b) the mechanism whereby acidosis potentiates the diuretic action of mercuric cysteine; (c) renal transport and distribution of mercurials, especially diuretic compounds that do not pile up in large amounts (e.g., mersalyl); (d) the identity of the specific renal receptor to which mercurials bind.

  • 1968 by The Williams & Wilkins Co.

PharmRev articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Pharmacological Reviews
Vol. 20, Issue 2
1 Jun 1968
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Pharmacological Reviews article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
THE SITE AND MECHANISM OF ACTION OF MERCURIAL DIURETICS
(Your Name) has forwarded a page to you from Pharmacological Reviews
(Your Name) thought you would be interested in this article in Pharmacological Reviews.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research Article

THE SITE AND MECHANISM OF ACTION OF MERCURIAL DIURETICS

EDWARD J. CAFRUNY
Pharmacological Reviews June 1, 1968, 20 (2) 89-116;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research Article

THE SITE AND MECHANISM OF ACTION OF MERCURIAL DIURETICS

EDWARD J. CAFRUNY
Pharmacological Reviews June 1, 1968, 20 (2) 89-116;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Pharmacological Reviews
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacology Research & Perspectives
ISSN 1521-0081 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics