Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Pharmacological Reviews
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Pharmacological Reviews

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit Pharm Rev on Facebook
  • Follow Pharm Rev on Twitter
  • Follow ASPET on LinkedIn
Review ArticleReview

International Union of Pharmacology. XXV. Nomenclature and Classification of Adenosine Receptors

Bertil B. Fredholm, Adriaan P. IJzerman, Kenneth A. Jacobson, Karl-Norbert Klotz and Joel Linden
Pharmacological Reviews December 2001, 53 (4) 527-552;
Bertil B. Fredholm
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adriaan P. IJzerman
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth A. Jacobson
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karl-Norbert Klotz
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joel Linden
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Figure 1
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1

    Dendrogram showing sequence similarity between cloned adenosine receptors. The figure is slightly redrawn from that available athttp://www.gpcr.org/7tm/seq/007_001/001_007_001.TREE.html. This phylogenetic tree was automatically calculated by WHAT IF based on a neighbor-joining algorithm.

  • Figure 2
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2

    Protein backbone representations of the structures of bacteriorhodopsin (A) and rhodopsin (B) as retrieved from the Brookhaven Protein Data Bank (1C3W and 1F88, respectively).

  • Figure 3
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3

    Computer modeling of CPA (yellow), human A1 adenosine receptor interactions. Only helices III (left) and VII (right) are shown (both in green) with relevant residues (half-bond colors).

  • Figure 4
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 4

    Structures of reference compounds used to classify adenosine receptors. Panel A, structure of some non-selective and A1 receptor-selective adenosine analogs; panel B, structure of adenosine analogs used to classify A2A and A3 receptors; panel C, structure of selected adenosine receptor antagonists.

Tables

  • Figures
    • View popup
    Table 1

    Current adenosine receptor nomenclature

    ReceptorA1A2AA2BA3
    Receptor Code2.1:ADO:2.1:ADO:2.1:ADO:2.1:ADO:
    Previous namesRi A2a, Rs A2b, Rs
    Structural information7TM; human 326 aa, P30542, chr 1q32.1, rat 326 aa,P25099, mouse 326 aa7TM; human 410 aa, P29274, chr 22g11.2, rat 409 aa, P30543, mouse 409 aa, UO56727TM; human 328 aa, P29275, chr 17p11.2–12; rat 332 aa, P29276 mouse 332 aa, UO56737TM; human 318 aa, P33765, chr 1p21–13, rat 320 aa P28647 (see comments), mouse 320 aa, AF069778
    Selective agonistsCPA, CCPA, CHACGS 21680, HENECA, CV-1808, CV-1674, ATL146eNoneCl-IB-MECA
    Selective antagonistsDPCPX1-a8-cyclopentyl-theophylline, WRC0571selective: SCH 582611-b 1-c moderately selective: ZM241385,1-a KF 17387, CSCMRS1754,1-d enprofylline, alloxazine (historical)MRS 1220,1-eMRE 3008-F20,1-e MRS 1191; MRS 1523
    Tissue functionsBradycardia; inhibition of lipolysis; reduced glomerular filtration; tubero-glomerular feedback, antinociception; reduction of sympathetic and parasympathetic activity; presynaptic inhibition; neuronal hyperpolarization; ischemic preconditioningRegulation of sensorimotor integration in basal ganglia; inhibition of platelet aggregation and polymorphonuclear leukocytes; vasodilatation, protection against ischemic damage, stimulation of sensory nerve activityRelaxation of smooth muscle in vasculature and intestine; inhibition of monocyte and macrophage function, stimulation of mast cell mediator release (some species)Enhancement of mediator release from mast cells (some species). Preconditioning (some species)
    PhenotypesTissue functions above confirmed in knockout mouseTissue functions above confirmed in knockout mouseTissue functions above confirmed in knockout mouse
    CommentsAlso cloned from dog,1-fcow,1-grabbit1-i 1-j Also cloned from e.g. dog,1-h guinea pig.1-k Variations in structure among humansAlternative splicing in rat can yield product with 337 aa.1-l Also cloned from sheep1-m 317 aa, rabbit1-j 320 aa
    • ↵1-a  DPCPX and ZM241385 also have nanomolar affinity for the adenosine A2B receptor.

    • ↵1-b  Dionisotti et al., 1997.

    • ↵1-c  Ongini et al., 1999.

    • ↵1-d  Kim et al., 2000.

    • ↵1-e   Li et al., 1999;Baraldi et al., 2000b.

    • ↵1-f   Libert et al., 1989,1991.

    • ↵1-g  Tucker et al., 1992.

    • ↵1-h  Maenhaut et al., 1990.

    • ↵1-i   Bhattacharya et al., 1993.

    • ↵1-j   Hill et al., 1997.

    • ↵1-k  Meng et al., 1994.

    • ↵1-l   Sajjadi et al., 1996.

    • ↵1-m Linden et al., 1993.

    • View popup
    Table 2

    Mutational analysis of the adenosine A1 with respect to ligand binding

    Mutation2-aSpeciesHelix/position2-bEffect on Ligand Binding and Signal TransductionReference
    G14TH1.37Increased agonist affinity Rivkees et al., 1999a
    E16A/QH1.39Agonist affinity reduced 4- to 40-fold; little change in antagonist affinity Barbhaiya et al., 1996
    P25LH1.48Modest reduction of agonist affinity Rivkees et al., 1999a
    I31CH1.54No changes in radioligand binding Rivkees et al., 1999a
    C46A/SH2.41No changes in radioligand binding Scholl and Wells, 2000
    S50AH2.45No changes in radioligand binding Barbhaiya et al., 1996
    D55AH2.50Increase in agonist affinity with no change in antagonist affinity; disrupted regulation of agonist binding by sodium ions Barbhaiya et al., 1996
    L65FH2.60No changes in radioligand binding Rivkees et al., 1999a
    C80A/SH3.25No detectable radioligand binding Scholl and Wells, 2000
    M82FH3.27No changes in radioligand binding Rivkees et al., 1999a
    C85AH3.30No changes in radioligand binding Scholl and Wells, 2000
    C85SAgonist affinity reduced 4- to 13-fold; no change in antagonist affinity Scholl and Wells, 2000
    P86FH3.31Substantial reduction of agonist binding Rivkees et al., 1999a
    V87AH3.32No change in ligand affinity Rivkees et al., 1999a
    L88AH3.33Substantial reduction of agonist binding, but also of N-0840 antagonist binding Rivkees et al., 1999a
    T91AH3.36Substantial reduction of agonist binding, but also of N-0840 antagonist binding Rivkees et al., 1999a
    Q92AH3.37Substantial reduction of agonist binding, but also of N-0840 antagonist binding Rivkees et al., 1999a
    S93AH3.38No changes in radioligand binding Barbhaiya et al., 1996
    S94AH3.39No detectable agonist or antagonist binding Barbhaiya et al., 1996
    S94TMinor changes in ligand binding Barbhaiya et al., 1996
    A125KH4.43No changes in radioligand binding Rivkees et al., 1999a
    C131A/SH4.49No changes in radioligand binding Scholl and Wells, 2000
    S135AH4.53No changes in radioligand binding Barbhaiya et al., 1996
    T141AH4.59No changes in radioligand binding Barbhaiya et al., 1996
    F144LH4.62No changes in radioligand binding Rivkees et al., 1999a
    C169A/SHNo detectable radioligand binding Scholl and Wells, 2000
    H251LB6.52Antagonist affinity reduced 4-fold; no change in agonist affinity Olah et al., 1992
    C255A/SH6.56No changes in radioligand binding Scholl and Wells, 2000
    C260A/SHNo changes in radioligand binding Scholl and Wells, 2000
    C263A/SHNo changes in radioligand binding Scholl and Wells, 2000
    I270M M270IB, C7.35Amino acid in position 270 contributes to canine/bovine A1 AR binding selectivity Tucker et al., 1994
    T277AH7.42400-fold decrease in affinity of NECA with modest changes in affinity for R-PIA andS-PIA (intact cells); substantial decrease in affinity of all agonists (membranes); no change in antagonist affinity Townsend-Nicholson and Schofield, 1994;Dalpiaz et al., 1998
    T277SModest decrease in agonist affinity; no change in antagonist affinity; nature of residue in position 277 also involved in canine/bovine A1 AR binding specificity Tucker et al., 1994; Townsend-Nicholson and Schofield, 1994
    H278LB7.43Negligible agonist and antagonist binding Olah et al., 1992
    C309A/SHNo changes in radioligand binding Scholl and Wells, 2000
    • The results were obtained from site-directed mutagenesis studies of the A1 AR (species; H, human; B, bovine; C, canine).

    • ↵2-a  Amino acids are represented in single-letter code with position number shown. The first amino acid is that of the wild-type receptor, with the second residue being that used for substitution.

    • ↵2-b  Position on helix, using notation of van Rhee and Jacobson (1996).

    • View popup
    Table 3

    Mutational analysis of the human A2A AR with respect to ligand binding

    Mutation3-aHelix/Position3-bEffect on Ligand Binding and Signal TransductionReference
    E13Q1.39Slight reduction of agonist, but not antagonist, affinity IJzerman et al., 1996
    T88A/S/R3.36Substantial decrease in agonist, but not antagonist, affinity Jiang et al., 1996
    Q89A3.37Slight increase in agonist and antagonist affinity Jiang et al., 1996
    Q89N/S/LMarginal changes in ligand binding
    Q89H/RAntagonist binding affected
    S90A3.38Marginal changes in ligand binding Jiang et al., 1996
    S91A3.39Marginal changes in ligand binding Jiang et al., 1996
    E151A/Q/DLoss of agonist and antagonist radioligand binding Jiang et al., 1996
    E169A∼1000-fold decrease in agonist potency Kim et al., 1996
    E169AGain inN 6-substituted agonist affinity Kim et al., 1996
    D170KNo change in (radio)ligand binding Kim et al., 1996
    P173R
    F180A5.41Minor changes in ligand binding Kim et al., 1995
    N181S5.42Modest reduction of agonist binding Kim et al., 1995
    F182A5.43Loss of agonist and antagonist radioligand binding Kim et al., 1995
    F182YModest reduction of agonist binding Kim et al., 1995
    F182WModest reduction of agonist binding Kim et al., 1995
    H250A6.52Loss of agonist and antagonist radioligand binding; no agonist activity in functional assays Kim et al., 1995
    H250F/YModest reduction of agonist binding; no effect on antagonist binding Kim et al., 1995
    N253A6.55Loss of agonist and antagonist radioligand binding Kim et al., 1995
    C254A6.56Minor changes in ligand binding Kim et al., 1995
    F257A6.59Loss of agonist and antagonist radioligand binding Kim et al., 1995
    C262G6.64No change in radioligand binding Kim et al., 1996
    I274A7.39Loss of agonist and antagonist radioligand binding; ∼30-fold decrease in agonist potency Kim et al., 1995
    S277A7.42Substantial decrease in agonist affinity and potency, but antagonist radioligand binding not altered Kim et al., 1995
    S277T/C/NMarginal changes in ligand binding Jiang et al., 1996
    H278A7.43Loss of agonist and antagonist radioligand binding; ∼300-fold decrease in agonist potency Kim et al., 1995
    H278YModest reduction of agonist binding; no effect on antagonist binding Gao et al., 2000
    S281A7.46Loss of agonist and antagonist radioligand binding; no agonist activity in functional assays Kim et al., 1995
    S281TEnhanced affinity for most agonists Kim et al., 1995
    S281NMarginal changes in ligand binding Gao et al., 2000
    • ↵3-a  Amino acids are represented in single-letter code with position number shown. The first amino acid is that of the wild-type receptor, with the second and further residues those used for substitution.

    • ↵3-b  Position on helix, using notation of van Rhee and Jacobson (1996).

    • View popup
    Table 4

    Mutational analysis of the human A2B AR with respect to ligand binding

    Mutation4-aHelix/Position4-bEffect on Ligand Binding and Signal TransductionReference
    V11I1.36No changes in (radio)ligand binding Beukers et al., 2000
    A12T1.37No changes in (radio)ligand binding Beukers et al., 2000
    L58V2.55No changes in (radio)ligand binding Beukers et al., 2000
    F59L2.56No specific radioligand binding and no cAMP production Beukers et al., 2000
    N273Y7.36Up to 60-fold increase in affinity of 2-substituted adenosines Beukers et al., 2000
    • ↵4-a  Amino acids are represented in single-letter code with position number shown. The first amino acid is that of the wild-type receptor, and the second is the one used for substitution, based on the corresponding amino acid in the human A2A receptor.

    • ↵4-b  Position on helix, using notation of van Rhee and Jacobson (1996).

    • View popup
    Table 5

    Summary of the distribution of adenosine receptors

    A1 ReceptorA2AReceptorA2B ReceptorA3 Receptor
    High expression High expression High expression High expression
     Brain (cortex, cerebellum, hippocampus). Dorsal horn of spinal cord. Eye, adrenal gland, atria  Spleen, thymus, leukocytes (both lymphocytes and granulocytes), blood platelets. Striatopallidal GABAergic neurons (in caudate-putamen, nucleus accumbens, tuberculum olfactorium), olfactory bulb  Cecum, colon, bladder Testis (rat), mast cells (rat)
    Intermediate levels Intermediate levels Intermediate levels Intermediate levels
     Other brain regions. Skeletal muscle, liver, kidney, adipose tissue, salivary glands, esophagus, colon, antrum, testis  Heart, lung, blood vessels Lung, blood vessels, eye, median eminence, mast cells  Cerebellum (human?), hippocampus (human?), lung, spleen (sheep), pineal
    Low levels Low levels Low levels Low levels
     Lung (but probably higher in bronchi), pancreas  Other brain regions  Adipose tissue, adrenal gland, brain, kidney, liver, ovary, pituitary gland Thyroid, most of brain, adrenal gland, spleen (human), liver, kidney, heart, intestine, testis (human)

    Data where there is correspondence between mRNA distribution and receptor distribution are given in bold. Data based mainly or exclusively on distribution of mRNA are given in ordinary letters. Ambiguous data (including major species differences) are given in italics.

      • View popup
      Table 6

      Pharmacological tools used for classification of adenosine receptors

      AbbreviationsChemical Names
      AB-MECA4-aminobenzyl-5′-N-methylcarboxamidoadenosine
      ATL146e4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester
      BW-A14331,3-dipropyl-8-(4-acrylate)phenylxanthine
      CGS 159435-amino-9-chloro-2-(2-furyl)-[1,2,4]-triazolo[1,5-c]quinazoline
      CGS 216802-[p-(2-carbonyl-ethyl)-phenylethylamino]-5′-N-ethylcarboxamidoadenosine
      CP 667134-amino-8-chloro-1-phenyl-[1,2,4]-triazolo-[4,3-a] quinoxaline
      CPA N 6-cyclopentyladenosine
      CPX8-cyclopentyl-1,3-dipropylxanthine (see also DPCPX)
      CSC8-(3-chlorostyryl)caffeine
      CV-18082-phenylaminoadenosine
      DPCPX1,3-dipropyl-8-cyclopentylxanthine
      HENECA2-hex-1-ynyl-5′-N-ethylcarboxamidoadenosine
      I-ABA N 6-(4-amino-3-iodobenzyl)adenosine
      I-ABOPX3-(3-iodo-4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propylxanthine
      IB-MECA N 6-(3-iodobenzyl)adenosine-5′-N-methyluronamide
      KF 178371,3-dipropyl-8-(3,4-dimethoxystyryl)-7-methylxanthine
      KW 6002(E)-8-[2-(3,4-dimethoxyphenyl)ethenyl]-1,3-diethyl-3,7-dihydro-7-methyl-1h-purine-2,6-dione
      MRE 3008-F205-[[(4-methoxyphenyl)amino]carbonyl]amino-8-ethyl-2-(2-furyl)-pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine
      MRS11913-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate
      MRS12209-chloro-2-(2-furanyl)-5-[(phenylacetyl)amino][1,2,4]-triazolo[1,5-c]quinazoline
      MRS15232,3-diethyl-4,5-dipropyl-6-phenylpyridine-3-thiocarboxylate-5-carboxylate
      MRS1754 N-(4-cyano-phenyl)-2-[4-(2,6-dioxo-1,3-dipropyl-2,3,4,5,6,7-hexahydro-1H-purin-8-yl)-phenoxy]acetamide
      NECA5′-N-ethyl-carboxamidoadenosine
      PAPA-APEC2-(4-[2-[(4-aminophenyl)methylcarbonyl]ethyl]phenyl)ethylamino-5′-N-ethylcarboxamidoadenosine
      PD 81723(2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluoromethyl)-phenyl]-methanone
      R-PIA R-N 6-(phenylisopropyl)-adenosine
      SCH 582615-amino-2-(2-furyl)-7-phenylethyl-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine
      S-PIA S-N 6-(phenylisopropyl)-adenosine
      VUF-85044-methoxy-N-[2-(2-pyridinyl)quinazolin-4-yl]benzamide
      XACxanthine amine congener; 8-[4-[[[[(2-aminoethyl)amino]-carbonyl]methyl]oxy]phenyl]-1,3-dipropylxanthine
      ZM2413854-(2-[7-amino-2-[2-furyl]-[1,2,4]triazolo[2,3-a]{1,3,5}triazin-5-yl-amino]ethyl)phenol
      • View popup
      Table 7

      Binding affinity of agonists and antagonists at human adenosine receptor subtypes (K i values with 95% confidence intervals or ± S.E.M. in parentheses)

      A1A2AA2BA3Reference
      Agonists with unmodified ribose
       R-PIA2.0  (1–4.2)860  (480–1,540)16  (9.3–29)—7-a
      33,700  (±6,800)—7-c
      3,800  (±1,700)—7-e
       S-PIA75  (42–134)7,800  (7,000–8,640)45  (33–61)—7-a
      62,800  (±21,600)—7-c
       CPA2.3  (1.5–3.4)790  (470–1,360)43  (30–61)—7-a
      34,400  (±11,100)—7-c
      21,000  (±4,300)—7-e
       CCPA0.8  (0.55–1.25)2,300  (2,000–2,700)42  (32–56)—7-a
      40,100  (±16,400)—7-c
       2-Cl-adenosine1.39 (1.28–1.51)180  (150–220)19  (14–28)—7-i
      Agonists with 5′-modified ribose
       NECA14  (6.4–29)207-150  (12–35)6.27-150  (3.5–11)—7-a
      330  (±60)—7-c
      360  (±120)—7-e
       CGS 21680290  (230–360)27  (12–59)67  (50–90)—7-a
      361,000  (±21,000)—7-c
       HENECA60  (50–72)6.4  (3.8–11)2.4  (2.0–2.9)—7-b
       PENECA560  (480–650)620  (300–1,300)6.2  (5.1–7.5)—7-b
       PHPNECA2.7  (1.7–7.1)3.1  (2.4–3.9)0.42  (0.17–1.0)—7-b
       AB-MECA1,500  (1,300–1,800)3,600  (2,700–4,700)22  (20–24)—7-a
       IB-MECA3.7  (1.8–7.7)2,500  (1,900–3,400)1.2  (0.96–1.5)—7-a
      54,000  (±5,600)—7-c
       IAB-MECA8.5  (4.8–15)470  (300–740)0.64  (0.58–0.70)—7-a
       Cl-IB-MECA115  (114–116)2,100  (1,700–2,500)11  (9.4–13)—7-b
      Antagonists: xanthines
       DPCPX3.97-150  (3.5–4.2)129  (35–260)4,000  (2,600–6,000)—7-a
      50  (±3.7)—7-c
      51  (±6.1)—7-e
       XAC29  (24–35)1  (0.58–1.7)92  (64–130)—7-a
      7.3  (±2.8)—7-c
      12  (±4.6)—7-e
       MRS1754400  (±190)500  (±11)2.0  (±0.31)570  (±180)—7-f
       MSX-22,500  (1,700–3,600)5.0  (±0.6)>10,000—7-h
       Theophylline6,800  (4,100–11,000)1,700  (1,000–2,900)86,000  (74,000–101,000)—7-a
      Antagonists: non-xanthines
       CGS 159433.5  (1.7–7.3)4.2  (2.6–6.6)51  (43–60)—7-a
      16  (±3.6)—7-e
       SCH 58261290  (210–410)0.6  (0.5–0.7)>10,000—7-d
       ZM 241385260  (190–390)0.8  (0.7–1.0)>10,000—7-d
      32  (±6)—7-c
       MRE 3008F201,100  (±1,100)140  (±15)2,100  (±300)0.29  (±0.03)—7-g
      • ↵7-150  Values are from saturation experiments.

      • ↵7-a  Klotz et al., 1998, transfected CHO cells; radioligands [3H]CCPA (A1), [3H]NECA (A2A and A3).

      • ↵7-b  Klotz et al., 1999, transfected CHO cells; radioligands [3H]CCPA (A1), [3H]NECA (A2A and A3).

      • ↵7-c  Linden et al., 1999, transfected HEK 293 cells; radioligand 125I-ABOPX.

      • ↵7-d  Ongini et al., 1999, transfected CHO cells (A1 and A2A) or HEK 293 cells (A2A and A3); radioligands [3H]DPCPX (A1), [3H]SCH 58261 (A2A), 125I-AB-MECA (A3).

      • ↵7-e  Ji and Jacobson, 1999, transfected HEK 293 cells; radioligand [3H]ZM 241685.

      • ↵7-f  Kim et al., 2000, transfected HEK 293 cells; radioligands 125I-ABA (A1), 125I-ZM 241685 (A2A),125I-ABOPX (A2B), 125I-AB-MECA (A3).

      • ↵7-g  Varani et al., 2000, transfected CHO cells; radioligands [3H]DPCPX (A1 and A2B), [3H]SCH 58261 (A2A), 125I-AB-MECA (A3).

      • ↵7-h  Sauer et al., 2000, transfected CHO cells; radioligand [3H]CHA (A1), [3H]CGS 21680 (A2A), [3H]NECA (A3).

      • ↵7-i  K.-N. Klotz and S. Kachler, unpublished, transfected CHO cells; radioligand [3H]NECA.

      • View popup
      Table 8

      Binding affinity of agonists and antagonists at rat adenosine receptor subtypes (K i values with 95% confidence intervals or ±S.E.M. in parentheses)

      A1A2AA3Reference
      Agonists with unmodified ribose
       R-PIA1.2  (±0.16)124  (±9)—8-a
      1.3  (1.1–1.6)730  (690–770)—8-b
      0.51—8-c
      220  (±43)—8-d
      160  (±52)—8-e
       S-PIA49  (±2.4)1,800  (±380)—8-a
      29—8-f
      920  (±310)—8-e
       CPA0.59  (±0.02)460  (±15)—8-a
      0.8  (0.6–1.0)2,000  (1,400–2,900)—8-b
      240  (±36)—8-e
       CCPA0.4  (0.2–0.7)3,900  (2,500–4,700)—8-b
      0.23—8-c
      240  (±71)—8-e
       ADAC0.85  (±0.35)—8-w
       2-Cl-adenosine9.3  (±0.58)63  (±7.5)—8-a
      1,900  (±900)—8-e
       DPMA140  (±23)4.4  (±0.2)—8-u
      3,600  (±1,700)—8-e
       (S)-ENBA0.3  (±0.02)1,400  (±150)—8-v
      Agonists with 5′-modified ribose
       NECA6.3  (±0.52)10  (±0.5)—8-a
      11  (7.0–17)22  (20–25)—8-f
      3.7—8-c
      260  (±36)—8-d
       CGS 216803100  (±470)22  (±4.3)—8-g
      580  (±32)—8-e
       HENECA136  (95–195)3.8  (1.5–9.9)—8-f
       PENECA698  (611–798)120  (112–128)—8-h
       PHPNECA2.5  (2.2–2.9)0.9  (0.7–1.3)—8-i
       AB-MECA430  (±45)1,600  (±180)14  (±3)—8-j
       IB-MECA54  (±5)56  (±8)1.1  (±0.3)—8-j
       IAB-MECA18  (±5)200  (±84)1.3  (±0.18)—8-j
       Cl-IB-MECA820  (±570)470  (±370)0.33  (±0.08)—8-k
      Antagonists: xanthines
       DPCPX0.3340—8-l
      0.188-150  (0.16–0.20)—8-l
      >10,000—8-e
       XAC2.8  (1.9–4.2)—8-m
      3.524—8-l
      450—8-n
      >100,000—8-o
       MRS 175417  (±3.6)610  (±290)—8-o
       MSX-2900  (±10)8  (±3)—8-p
       Theophylline11,00032,000—8-b
      >100,000—8-o
      Antagonists: non-xanthines
       CGS 1594321  (±3.5)3.3  (±1.8)—8-q
      223—8-n
      6.4  (6.2–6.6)1.2  (1.1–1.3)—8-r
      >100,000—8-o
       SCH 58261120  (100–140)2.3  (2.0–2.7)—8-r
       ZM 2413852,000  (1,500–2,700)0.30  (0.10–0.95)150,000  (87,000–210,000)—8-s
       MRE 3008F20>10,0002,000  (±220)>10,000—8-t
      • ↵8-150  Data from saturation experiments; where confidence limits are missing, they are within 0.15 log units.

      • ↵8-a  Bruns et al., 1986; brain membranes (A1), striatum (A2A); radioligands [3H]CHA (A1), [3H]NECA (A2A).

      • ↵8-b  Lohse et al., 1988; brain membranes (A1), striatum (A2A); radioligands [3H]PIA (A1), [3H]NECA (A2A).

      • ↵8-c  Klotz et al., 1991; brain membranes; radioligand [3H]DPCPX.

      • ↵8-d  Olah et al., 1994; transfected CHO cells; radioligand 125I-AB-MECA.

      • ↵8-e  van Galen et al., 1994; transfected CHO cells; radioligand125I-APNEA.

      • ↵8-f  Cristalli et al., 1992; brain membranes (A1), striatum (A2A); radioligands [3H]DPCPX (A1), [3H]NECA (A2A).

      • ↵8-g  Hutchison et al., 1989; rat brain; radioligands [3H]CHA (A1), [3H]NECA (A2A). Given are IC50 values; based on the experimental conditionsK i values should be about 0.5–0.7 and 0.9 times the IC50 values for A1 and A2A, respectively.

      • ↵8-h  Cristalli et al., 1995; brain membranes (A1), striatum (A2A); radioligands [3H]CHA (A1), [3H]CGS 21680 (A2A).

      • ↵8-i  Camaioni et al., 1997; brain membranes (A1), striatum (A2A); radioligands [3H]CHA (A1), [3H]CGS 21680 (A2A).

      • ↵8-j  Gallo-Rodriguez et al., 1994; rat brain (A1), rat striatum (A2A), transfected CHO cells (A3); radioligand [3H]PIA (A1), [3H]CGS 21680 (A2A), 125I-AB-MECA (A3).

      • ↵8-k  Kim et al., 1994; rat brain (A1), rat striatum (A2A), transfected CHO cells (A3); radioligand [3H]PIA (A1), [3H]CGS 21680 (A2A),125I-AB-MECA (A3).

      • ↵8-l  Lohse et al., 1987; brain membranes (A1), striatum (A2A); radioligands [3H]PIA (A1), [3H]NECA (A2A).

      • ↵8-m  Jacobson et al., 1986; rat brain, radioligand [3H]XAC.

      • ↵8-n  Jarvis et al., 1989; rat brain; radioligands [3H]CHA (A1), [3H]CGS 21680 (A2A).

      • ↵8-o  Kim et al., 2000; transfected HEK 293 cells (A1), rat striatum (A2A); radioligands [3H]PIA (A1), [3H]CGS 21680 (A2A).

      • ↵8-p  Sauer et al., 2000; brain cortex (A1), striatum (A2A); radioligand [3H]CHA (A1), [3H]CGS 21680 (A2A).

      • ↵8-q  Williams et al., 1987; brain (A1), striatum (A2A); radioligands [3H]CHA (A1), [3H]NECA (A2A). Given are IC50values; based on the experimental conditions K ivalues should be about 0.5–0.7 and 0.9 times the IC50values for A1 and A2A, respectively.

      • ↵8-r  Baraldi et al., 1994; rat brain (A1), rat striatum (A2A); radioligand [3H]CHA (A1), [3H]CGS 21680 (A2A).

      • ↵8-s  Poucher et al., 1995; brain cortex (A1), PC 12 cells (A2A), transfected CHO cells (A3); radioligands [3H]PIA (A1), [3H]NECA (A2A) 125I-AB-MECA (A3). Given are IC50 values; based on the experimental conditionsK i values should be about 0.1, 0.2, and 0.5 times the IC50 values for A1, A2A, and A3, respectively.

      • ↵8-t  Varani et al., 2000; brain cortex (A1), striatum (A2A), transfected CHO cells (A3); radioligands [3H]DPCPX (A1), [3H]SCH 58261 (A2A),125I-AB-MECA (A3).

      • ↵8-u  Bridges et al., 1988; brain (A1), striatum (A2A); radioligand [3H]CHA (A1), [3H]NECA (A2A); DPMA or PD 125944 is compound 16 in this paper.

      • ↵8-v  Trivedi et al., 1989; brain (A1), striatum (A2A); radioligand [3H]CHA (A1), [3H]NECA (A2A).

      • ↵8-w  Jacobson et al., 1987; brain (A1), radioligand [3H]PIA (A1).

      • View popup
      Table 9

      G protein coupling of the four adenosine receptor subtypes

      Adenosine Receptor SubtypeG ProteinEffects of G Protein CouplingCellular SystemReference
      A1 Gi1/2/3 ↓ cAMP
      ↑ IP3/DAG (PLC)
      ↑ Arachidonate (PLA2)
      General, CHO cells9-a Freissmuth et al., 1991; Akbar et al., 1994; Freund et al., 1994; Jockers et al., 1994;Gerwins and Fredholm, 1995a,b
      ↑ PEtOH (PLD)DDT1MF-2
      Go Jockers et al., 1994;Matovcik et al., 1994
      A2A Gs ↑ cAMPGeneral Olah, 1997
      Golf ↑ cAMP Kull et al., 2000a; Corvol et al., 2001
      G15/16 ↑ IP3 COS-79-a Offermanns and Simon, 1995
      A2B Gs ↑ cAMPGeneral Pierce et al., 1992
      Gq/11 ↑ IP3/DAG (PLC)HMC-1, HEK 2939-a Gao et al., 1999; Linden et al., 1999 9-b
      A3 Gi2,3 ↓ cAMPGeneral, CHO cells9-a Palmer et al., 1995
      Gq/11 ↑ IP3/DAG (PLC)CHO cells9-a Palmer et al., 1995
      • ↵9-a  Receptor transfected cell system.

      • ↵9-b  References propose Gq/11 coupling without direct evidence for Gq/11 activation.

    PreviousNext
    Back to top

    In this issue

    Pharmacological Reviews: 53 (4)
    Pharmacological Reviews
    Vol. 53, Issue 4
    1 Dec 2001
    • Table of Contents
    • About the Cover
    • Index by author
    Download PDF
    Article Alerts
    Sign In to Email Alerts with your Email Address
    Email Article

    Thank you for sharing this Pharmacological Reviews article.

    NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

    Enter multiple addresses on separate lines or separate them with commas.
    International Union of Pharmacology. XXV. Nomenclature and Classification of Adenosine Receptors
    (Your Name) has forwarded a page to you from Pharmacological Reviews
    (Your Name) thought you would be interested in this article in Pharmacological Reviews.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Citation Tools
    Review ArticleReview

    International Union of Pharmacology. XXV. Nomenclature and Classification of Adenosine Receptors

    Bertil B. Fredholm, Adriaan P. IJzerman, Kenneth A. Jacobson, Karl-Norbert Klotz and Joel Linden
    Pharmacological Reviews December 1, 2001, 53 (4) 527-552;

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero

    Share
    Review ArticleReview

    International Union of Pharmacology. XXV. Nomenclature and Classification of Adenosine Receptors

    Bertil B. Fredholm, Adriaan P. IJzerman, Kenneth A. Jacobson, Karl-Norbert Klotz and Joel Linden
    Pharmacological Reviews December 1, 2001, 53 (4) 527-552;
    del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Jump to section

    • Article
      • Abstract
      • I. Introduction
      • II. Molecular Basis for Receptor Nomenclature
      • III. Formation and Levels of the Endogenous Agonist Adenosine
      • IV. Structure
      • V. Gene Structure
      • VI. Binding Sites As Revealed by Site-Directed Mutagenesis
      • VII. Distribution
      • VIII. Classification of Adenosine Receptors Using Pharmacological Tools
      • IX. Signaling
      • X. Receptor Regulation
      • XI. Assay Systems
      • XII. Physiological Roles—Therapeutic Potential
      • Footnotes
      • Abbreviations
      • References
    • Figures & Data
    • Info & Metrics
    • eLetters
    • PDF

    Related Articles

    Cited By...

    More in this TOC Section

    • Induction of Drug Metabolism: The Role of Nuclear Receptors
    • International Union of Pharmacology. XXXIX. Compendium of Voltage-Gated Ion Channels: Sodium Channels
    • International Union of Pharmacology. XL. Compendium of Voltage-Gated Ion Channels: Calcium Channels
    Show more REVIEW

    Similar Articles

    Advertisement
    • Home
    • Alerts
    Facebook   Twitter   LinkedIn   RSS

    Navigate

    • Current Issue
    • Latest Articles
    • Archive
    • Search for Articles
    • Feedback
    • ASPET

    More Information

    • About Pharmacological Reviews
    • Editorial Board
    • Instructions to Authors
    • Submit a Manuscript
    • Customized Alerts
    • RSS Feeds
    • Subscriptions
    • Permissions
    • Terms & Conditions of Use

    ASPET's Other Journals

    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacology Research & Perspectives
    ISSN 1521-0081 (Online)

    Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics