Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Pharmacological Reviews
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Pharmacological Reviews

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit Pharm Rev on Facebook
  • Follow Pharm Rev on Twitter
  • Follow ASPET on LinkedIn
Research ArticleArticle

Low-Dose Methotrexate: A Mainstay in the Treatment of Rheumatoid Arthritis

Bruce N. Cronstein
Pharmacological Reviews June 2005, 57 (2) 163-172; DOI: https://doi.org/10.1124/pr.57.2.3
Bruce N. Cronstein
Pathology and Pharmacology, Division of Clinical Pharmacology, Department of Medicine, New York University School of Medicine, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Methotrexate administered weekly in low doses is a mainstay in the therapy of rheumatoid arthritis. Although originally developed as a folate antagonist for the treatment of cancer, its mechanism of action in the therapy of rheumatoid arthritis remains less clear. Several mechanisms have been proposed including inhibition of T cell proliferation via its effects on purine and pyrimidine metabolism, inhibition of transmethylation reactions required for the prevention of T cell cytotoxicity, interference with glutathione metabolism leading to alterations in recruitment of monocytes and other cells to the inflamed joint, and promotion of the release of the endogenous anti-inflammatory mediator adenosine. These mechanisms of action and the role of methotrexate in the suppression of rheumatoid arthritis are reviewed.

I. The Use of Methotrexate in the Therapy of Rheumatoid Arthritis

Although the first reported use of methotrexate in the treatment of rheumatoid arthritis was in the early 1950s, soon after its development (Gubner et al., 1951) it did not come into common use in the treatment of rheumatoid arthritis until over 30 years later (Weinblatt et al., 1985; Williams et al., 1985). As an antirheumatic agent, methotrexate is administered intermittently (weekly) in doses two or three log orders lower than those required for the treatment of malignancy (5–25 mg/week versus 5000 mg/week). Surprisingly, started early in the course of the disease, methotrexate is nearly as effective as the biologic agents recently introduced for the treatment of rheumatoid arthritis (see Bathon et al., 2000) and is commonly administered in combination with either biological agents or other small molecule antirheumatic drugs. As currently used, low-dose methotrexate is safe and well tolerated. Because of its efficacy and safety, low-dose methotrexate is now first-line therapy for the treatment of rheumatoid arthritis not responsive to nonsteroidal anti-inflammatory drugs alone (American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines, 2002).

A. Pharmacology of Low-Dose Methotrexate

Methotrexate is generally administered to patients with rheumatoid arthritis as a single weekly dose given either intramuscularly or orally. In the treatment of rheumatoid arthritis, the usual dose of methotrexate is in the range of 15 to 17.5 mg/week, although early studies utilized much lower doses and others have reported using higher doses. At the doses commonly used for the treatment of rheumatoid arthritis, the bioavailability of oral methotrexate varies considerably between individuals, but in general is in the range of 70%, and food does not significantly affect uptake of the drug (Fossa et al., 1988; Kozloski et al., 1992; Oguey et al., 1992; Jundt et al., 1993; Lebbe et al., 1994; Bannwarth et al., 1996). There is some evidence that at higher doses oral bioavailability declines, a phenomenon most likely due to the fact that uptake of methotrexate from the gastrointestinal tract is mediated by a saturable transporter, reduced folate carrier 1 (RFC11) (Matherly and Goldman, 2003). A modest fraction of the methotrexate dose is converted to 7-hydroxymethotrexate in the liver. Both methotrexate and 7-hydroxymethotrexate are primarily excreted in the urine, although there is some biliary excretion. The half-life of methotrexate in the serum is in the range of 6 to 8 h after administration of the drug and is undetectable in the serum by 24 h (Fossa et al., 1988; Kozloski et al., 1992; Oguey et al., 1992; Jundt et al., 1993; Lebbe et al., 1994; Bannwarth et al., 1996). By decreasing glomerular filtration rate, nonsteroidal anti-inflammatory drugs may increase the time required to eliminate methotrexate, although this interaction is of little clinical significance (Furst, 1995). Methotrexate is taken up by cells and polyglutamated and methotrexate polyglutamates, likely the active compounds, are long-lived (days to months) in the tissues (Kremer et al., 1986; Dervieux et al., 2003). Indeed, the concentration of methotrexate polyglutamates in erythrocytes roughly correlates with the therapeutic efficacy of the drug (Dervieux et al., 2004).

B. Efficacy of Methotrexate in the Therapy of Rheumatoid Arthritis

The first report of the use of methotrexate in the therapy of rheumatoid arthritis was in 1951 (Gubner et al., 1951), although over the next 30 years there were only scattered reports of methotrexate's use for the treatment of RA. Results of open label trials performed in the early 1980s suggested that methotrexate could be useful in the treatment of rheumatoid arthritis refractory to other available agents (Wilke et al., 1980; Willkens et al., 1980; Hoffmeister, 1983). During the last half of the 1980s, placebo-controlled trials were carried out and demonstrated that low dose, weekly pulse methotrexate was an effective therapy for rheumatoid arthritis, although the criteria for response varied considerably among the studies (Thompson et al., 1984; Andersen et al., 1985; Weinblatt et al., 1985; Williams et al., 1985; Willkens, 1985; Furst et al., 1989). As experience with methotrexate in the therapy of rheumatoid arthritis increased, it quickly became apparent that this drug was more effective and better tolerated than the other agents then available for the treatment of RA. A greater percentage of patients continued to take methotrexate for their rheumatoid arthritis for longer than any other second-line agent (Kremer and Lee, 1986; Weinblatt et al., 1988, 1992, 1994, 1998; Alarcon et al., 1989; Hanrahan et al., 1989; Mielants et al., 1991; Sany et al., 1991; Kremer and Phelps, 1992; Bologna et al., 1997; Rau et al., 1997). Indeed, some of these studies lasted as long as 11 years. More recent studies in patients with early rheumatoid arthritis indicate that methotrexate compares favorably to biological agents, a finding that clearly surprised many, although longer follow-up of the patients enrolled in these trials suggests that the biologic agents may better prevent bone destruction than methotrexate in rheumatoid arthritis (Bathon et al., 2000; Genovese et al., 2002; Bathon and Genovese, 2003; Baumgartner et al., 2004).

In all of the trials with methotrexate, the drug has been well tolerated, although toxicities were encountered. Gastrointestinal toxicity, stomatitis, alopecia, marrow suppression, and liver function abnormalities were commonly encountered, although more recently folic acid or folinic acid supplementation has diminished the frequency of liver function test abnormalities, stomatitis, and marrow suppression (see below). Interstitial pulmonary inflammation and fibrosis occur in as many as 1% of the patients studied and necessitates termination of the drug. The frequency with which low-dose methotrexate causes clinically significant liver fibrosis has been debated but does not appear to be a great risk (Lanse et al., 1985; Weinstein et al., 1985; Kevat et al., 1988; Shergy et al., 1988; Brick et al., 1989; Kremer et al., 1989; Furst et al., 1990; Whiting-O'Keefe et al., 1991; Bjorkman et al., 1993; Ruderman et al., 1997; Richard et al., 2000). Although the use of methotrexate in patients with pre-existing liver disease is not recommended and patients are advised not to drink alcoholic beverages while taking the drug, it is not currently recommended that patients undergo regular liver biopsies while taking methotrexate for rheumatoid arthritis.

C. Concomitant Use of Methotrexate with Other Anti-Inflammatory Drugs

It has probably been more than 50 years since patients with rheumatoid arthritis were treated with only a single drug. Aspirin, nonsteroidal anti-inflammatory drugs, corticosteroids, and various other second-line agents are generally taken by almost all patients with active RA. More recently, combinations of methotrexate with other second-line agents (sulfasalazine, hydroxychloroquine, anti-tumor necrosis factor agents, and other biologicals) have been reported to have greater efficacy than methotrexate alone without greater toxicity (O'Dell et al., 1996, 2002; Maini et al., 1998; Lipsky et al., 2000; Ferraccioli et al., 2002; Hochberg et al., 2003; Schroder et al., 2004; St Clair et al., 2004). Nonsteroidal anti-inflammatory agents modestly diminish renal clearance of methotrexate and its major metabolite 7-hydroxymethotrexate, although this interaction is generally not clinically significant (Ahern et al., 1988; Weinblatt, 1989; Stewart et al., 1990, 1991; Tracy et al., 1992, 1994; Kremer and Hamilton, 1995; Kremer et al., 1995). Hydroxychloroquine alters the pharmacokinetics of methotrexate; there is slower clearance and uptake with a greater area under the curve for methotrexate in patients taking the combination (Carmichael et al., 2002), and this interaction may account for the greater efficacy of the combination of hydroxychloroquine and methotrexate than methotrexate alone (O'Dell et al., 2002). Leflunomide, a second-line small molecule therapy for rheumatoid arthritis which inhibits pyrimidine synthesis, has been safely used in combination with methotrexate, although severe liver and bone marrow toxicity have been reported with the combination (Mroczkowski et al., 1999; Weinblatt et al., 1999, 2000; Kremer et al., 2002, 2004; Hill et al., 2003).

D. Use of Folic Acid to Prevent Methotrexate-Induced Toxicity

Methotrexate, the product of one of the first attempts at rational drug design, was originally developed as an antagonist of folic acid. At the doses commonly used to treat patients with cancer, methotrexate blocks folic acid-dependent steps in the synthesis of purines and pyrimidines and thereby blocks the proliferation of malignant cells (Fig. 1). This effect on purine and pyrimidine biosynthesis is also responsible for many of the drug's toxicities, including bone marrow suppression and stomatitis. Based on the literature detailing methotrexate use in the therapy of cancer and leukemia, most patients were advised not to take concomitant folic acid while taking methotrexate. Indeed, an early study (Tishler et al., 1988) suggested that folinic acid, when administered concomitantly with methotrexate at 3-fold higher doses than the methotrexate, reversed the anti-inflammatory effects of the drug. However, blinded and controlled trials of the concomitant administration of either folinic acid or folic acid to patients with rheumatoid arthritis taking methotrexate demonstrated no difference in therapeutic efficacy of the methotrexate and prevention of methotrexate-mediated toxicity (Morgan et al., 1990, 1994, 1998; Morgan et al., 1993; Dijkmans, 1995; Cooper, 1996; Kavanaugh and Kavanaugh, 1996; Shiroky, 1996, 1997; Hunt et al., 1997; Ortiz et al., 1998, 2000; Pincus, 1998; Ravelli et al., 1999; Endresen and Husby, 2001; van Ede et al., 2001b). Indeed, although regular use of folic acid or folinic acid supplements during methotrexate therapy are not explicitly recommended, the most recent guidelines issued by the American College of Rheumatology for the therapy of rheumatoid arthritis include the suggestion that folic acid or folinic acid may be useful in the prevention of complications of methotrexate therapy (American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines, 2002). Because folinic acid and methotrexate compete for the same transporter for absorption from the gastrointestinal tract and for cellular uptake (Matherly and Goldman, 2003), it is likely that the reversal of methotrexate's anti-inflammatory effects by high doses of folinic acid results from diminished methotrexate uptake in those patients, so patients taking folinic acid are advised to skip their folinic acid doses for a period around the day that they take their methotrexate.

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

Methotrexate inhibits cellular synthesis of purines, pyrimidines, and methionine. MTX, methotrexate; MTXGlu, methotrexate polyglutamate; RFC1, reduced folate carrier 1; DHFR, dihydrofolate reductase; THF, tetrahydrofolate; TS, thymidylate synthase; MTHFR, methylene tetrahydrofolate reductase; FPGS, folyl polyglutamate synthase; AICAR, 5-aminoimidazole-4-carboxamide ribonucleotide; AICAR T'ASE, AICAR transformylase.

II. Mechanism of Action of Methotrexate As an Anti-Inflammatory Agent

Methotrexate was introduced for the therapy of rheumatoid arthritis without any clear understanding of its mechanism of action. Thus, initial efforts at dissecting methotrexate's pharmacologic effects on inflammation were carried out in patients taking the drug, and interpretation of these clinically derived observations are difficult. Although there is a clear change in the levels of many of the mediators of inflammation measurable in the serum or synovial fluid in patients with rheumatoid arthritis, the absence of any evidence for a link between the metabolic effects of methotrexate and the observed changes raises the possibility that the observed changes in inflammatory mediators are not primary but due to some other more basic effect of the drug.

Because of the difficulty of interpreting the clinical observations in vitro and in vivo, experiments have been performed to dissect out the biochemical mechanisms responsible for methotrexate's effects. Extrapolation from studies performed in cell culture is always difficult because of the differences among cell lines and the questionable relevance of a particular measure to the pathogenesis of the disease under study. With methotrexate, these studies are even more difficult to interpret because the effects of methotrexate are observed over weeks to months in patients but over hours to days in tissue culture or days to weeks in animals. Similarly, studies in animals may be misleading because the doses of the drug used are not similar to those used in patients. Thus, for a drug such as methotrexate in which different doses of the drug have very different clinical uses, high doses to prevent proliferation of malignant cells and very low doses over prolonged periods to treat inflammatory diseases, the concentration of the drug used in a given in vitro experiment or the dose of the drug administered in vivo is critical. These considerations would suggest that many of the publications cited in favor of one or another mechanism may not be relevant to the effects of methotrexate in patients with rheumatoid arthritis.

Despite these caveats, there are currently several proposed mechanisms for the anti-inflammatory effects of methotrexate. The first hypothesis, based on methotrexate's known antifolate properties, posits that methotrexate inhibits proliferation of the cells responsible for synovial inflammation in RA. The second biochemical explanation is that methotrexate inhibits the synthesis of potentially toxic compounds (the transmethylation products spermine and spermidine) that accumulate in chronically inflamed tissues. A third proposed mechanism, most recently propounded, is that methotrexate reduces intracellular glutathione levels by an oxidant-associated mechanism leading to diminished macrophage recruitment and function. A fourth mechanism has been proposed, supported by in vitro, in vivo, and clinical data, in which adenosine, released in high concentrations from cells and tissues after treatment with methotrexate, mediates the anti-inflammatory effects of methotrexate. It is most likely that some combination of these mechanisms is responsible for the potent anti-inflammatory effects of methotrexate.

A. Folate Antagonism

The initial rationale for the use of low-dose methotrexate for the treatment of inflammatory arthritis was that methotrexate, by preventing synthesis of purines and pyrimidines required for cellular proliferation, inhibits proliferation of the most rapidly dividing lymphocytes or other cells responsible for the synovial inflammation. Thus, some workers have reported that methotrexate diminishes pyrimidine synthesis by T cells and prevents antigen-dependent proliferation (Genestier et al., 1998; Paillot et al., 1998; Izeradjene et al., 2001; Quemeneur et al., 2003). Indeed, T cells taken from patients taking methotrexate exhibit diminished antigen-dependent proliferation of T cells that is folate-reversible (Genestier et al., 1998), although this effect is only detectable for 24 h after a dose of methotrexate. Despite the in vitro and clinical data, the observation that neither folic acid nor folinic acid reverses the anti-inflammatory effects of methotrexate in patients with rheumatoid arthritis (see above) is strong evidence that other mechanisms must account for the anti-inflammatory effects of the drug (Morgan et al., 1990, 1993, 1994, 1998; Dijkmans, 1995; Cooper, 1996; Kavanaugh and Kavanaugh, 1996; Shiroky, 1996, 1997; Hunt et al., 1997; Ortiz et al., 1998, 2000; Pincus, 1998; Ravelli et al., 1999; Endresen and Husby, 2001; van Ede et al., 2001b).

B. Inhibition of Spermine and Spermidine Production

Increased polyamine concentrations are found in urine, synovial fluid, synovial tissue, and peripheral blood mononuclear cells from patients with rheumatoid arthritis (Hawkes et al., 1994), and the accumulated polyamines may be metabolized by monocytes to form, among other molecules, NH3 and H2O2, which may be toxic to lymphocytes (Talal et al., 1988; Flescher et al., 1989, 1992; Nesher and Moore, 1990; Yukioka et al., 1992; Furumitsu et al., 1993; Nesher et al., 1996). By inhibiting dihydrofolate reductase, methotrexate inhibits the formation of tetrahydrofolate which donates a methyl group during the synthesis of methionine from homocysteine (Fig. 1). Methionine can be further converted to S-adenosyl-methionine, which serves as a methyl donor in a large number of cellular reactions, including the synthesis of the polyamines spermine and spermidine. Thus, methotrexate may inhibit the accumulation of polyamines that contribute to tissue injury in rheumatoid arthritis. The hypothesis that inhibition of transmethylation reactions is anti-inflammatory in the treatment of rheumatoid arthritis has been tested in patients; an agent that inhibits transmethylation reactions, 3-deazaadenosine, showed some promise as an anti-inflammatory drug in in vitro and in vivo studies (Leonard et al., 1978; Zimmerman et al., 1978; Medzihradsky, 1984; Sung and Silverstein, 1985; Krenitsky et al., 1986; Yagawa et al., 1986; Fantone et al., 1989; Jurgensen et al., 1989, 1990; Prus et al., 1989; Prytz et al., 1989; Smith et al., 1991; Jeong et al., 1996). The drug was administered to patients with rheumatoid arthritis, and despite inhibition of transmethylation reactions measured in the cells of the patients taking the drug (Smith et al., 1991), 3-deazaadenosine did not affect the course of rheumatoid arthritis (M. Weinblatt, personal communication).

C. Methotrexate Alters Cellular Redox State

Based on in vitro studies, it has recently been reported that methotrexate reduces intracellular glutathione concentrations, and this leads to reversible inhibition of macrophage and lymphocyte function (Phillips et al., 2003). Although this is an interesting hypothesis and the in vitro data reported in this article generally support this conclusion, it is unlikely to explain the anti-inflammatory actions of methotrexate in patients with rheumatoid arthritis since intracellular glutathione levels are reduced to well below the methotrexate-induced levels already in the synovial cells of these patients (Maurice et al., 1997). In addition, the inflamed synovium is filled with cells that generate reactive oxygen metabolites (neutrophils and macrophages), and prior studies have clearly shown evidence of oxygen radical-mediated injury in synovial cells from patients with rheumatoid arthritis before any therapy; methotrexate has been shown to suppress, either directly or indirectly, the generation of toxic oxygen metabolites (Sung et al., 2000).

D. Methotrexate Increases Extracellular Adenosine Concentrations

Methotrexate and its major metabolite 7-hydroxymethotrexate are taken up by cells and polyglutamated (Chabner et al., 1985). Methotrexate polyglutamates have been shown to be even more active than the parent drug as inhibitors of a variety of folate-dependent enzymes, but the enzyme inhibited most effectively by methotrexate polyglutamates is AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) transformylase (Allegra et al., 1985; Baggott et al., 1986). The inhibition of AICAR transformylase by methotrexate would be expected to lead to intracellular AICAR accumulation (Fig. 2). Because AICAR inhibits AMP deaminase and AICAR's dephosphorylated metabolite AICARiboside directly inhibits adenosine deaminase, AICAR accumulation could lead to the release of AMP (which may be dephosphorylated to adenosine) and/or adenosine (Barankiewicz et al., 1990; Vincent et al., 1996) which is a potent endogenous anti-inflammatory mediator (reviewed in (Hasko and Cronstein, 2004).

There is clear evidence that methotrexate treatment leads to AICAR accumulation; patients taking large doses of methotrexate for the treatment of cancer excrete increased concentrations of aminoimidazole carboxamide, a metabolite of AICAR, in their urine, consistent with the notion that AICAR accumulates intracellularly in patients treated with even high-dose methotrexate (Luhby and Cooperman, 1962). More relevant to its anti-inflammatory action, patients taking low-dose methotrexate for psoriasis also excrete increased aminoimidazole carboxamide in their urine, further confirming the hypothesis that methotrexate promotes AICAR accumulation (Baggott et al., 1999). AICAR accumulation causing adenosine release was first suggested by Gruber and colleagues (Gruber et al., 1989) who showed that intracellular AICAR accumulation (induced by infusion of AICARiboside) is associated with increased adenosine release in vivo.

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

Methotrexate increases extracellular adenosine concentrations. MTX, methotrexate; MTXGlu, methotrexate polyglutamate; DHFGlu, dihydrofolate polyglutamate; AICAR, aminoimidazole carboxamidoribonucleotide; FAICAR, formyl AICAR; AMPDA, AMP deaminase; AICAside, aminoimidazole carboxamidoribonucleoside; ADA, adenosine deaminase; AK, adenosine kinase; RFC1, reduced folate carrier 1; NTPDase, nucleoside triphosphate dephosphorylase; Ecto-5′NT, ecto-5′-nucleotidase; NT1, nucleoside transporter 1.

The initial studies to test the hypothesis that adenosine release mediates the anti-inflammatory effects of methotrexate were performed in vitro. In these studies, methotrexate treatment increased adenosine release from cultured endothelial cells and fibroblasts and the adenosine released diminished stimulated neutrophil adhesion to the monolayers of cultured cells (Cronstein et al., 1991). Subsequent in vivo studies confirmed the hypothesis that adenosine mediates the anti-inflammatory effects of methotrexate; pharmacologically relevant doses of methotrexate induce intracellular AICAR accumulation in splenocytes, increase adenosine concentrations in inflammatory exudates, and diminish leukocyte accumulation at an inflamed site (Cronstein et al., 1993). Moreover, the increase in exudate adenosine concentration was responsible for the anti-inflammatory effects of the drug since adenosine receptor antagonists or adenosine deaminase, an enzyme which converts adenosine to the receptor-inactive nucleoside inosine, completely reversed the effect of methotrexate on leukocyte accumulation (Cronstein et al., 1993). Identical observations on the effects of methotrexate-induced adenosine release on leukocyte extravasation were made by Asako and colleagues in a different animal model of acute inflammation (Asako et al., 1993). More recent studies in an animal model of rheumatoid arthritis further support the role of adenosine, acting at its receptors, as the mediator of the anti-inflammatory effects of methotrexate (Montesinos et al., 2000). In these studies, adenosine receptor antagonists theophylline and caffeine reverse the effects of methotrexate on the development of adjuvant arthritis (Montesinos et al., 2000). Recent studies using adenosine receptor knockout mice provide further corroborative evidence in support of the hypothesis that adenosine, acting at A2A and possibly A3 receptors, mediates the anti-inflammatory effects of methotrexate and a methotrexate analog (Montesinos et al., 2003). Perhaps of greatest clinical significance are the recent reports that the antirheumatic effects of methotrexate are diminished in patients ingesting an adenosine receptor antagonist caffeine in coffee (Silke et al., 2001; Nesher et al., 2003). Thus, the evidence strongly supports the hypothesis that the anti-inflammatory effects of methotrexate are mediated by adenosine acting at adenosine receptors on inflammatory cells in in vivo models of both acute and chronic inflammation and, most likely, in patients with rheumatoid arthritis.

Interestingly, it was originally assumed, based on mechanistic considerations, that methotrexate induced direct release of adenosine. However, studies by Morabito and colleagues demonstrate that the adenosine released from methotrexate-treated cells is derived from adenine nucleotides converted extracellularly to adenosine by the action of the enzyme ecto-5′nucleotidase (Morabito et al., 1998). Thus, the relatively specific inhibitor of ecto-5′nucleotidase, α,β-methyleneadenosine-5-diphosphate completely abrogated the methotrexate-induced increase in extracellular adenosine in supernates of cultured endothelial cells exposed to a noxious stimulus (stimulated neutrophils). Strikingly, cells deficient in ecto-5′nucleotidase did not release adenosine, whether treated with methotrexate or exposed to a noxious stimulus (H2O2), but transfection and expression of ecto-5′nucleotidase in the deficient cells permitted methotrexate to induce adenosine release following a noxious stimulus. When studied in an in vivo model of inflammation, the inhibitor of ecto-5′nucleotidase completely blocked the methotrexate-induced increment in exudate adenosine and reversed the anti-inflammatory effect of methotrexate. Thus, methotrexate, presumably via its capacity to increase intracellular AICAR concentrations, promotes release of adenine nucleotides that are converted at inflamed sites to adenosine.

Corroborating evidence that methotrexate therapy induces adenosine release in patients and that adenosine mediates some of the anti-inflammatory effects of methotrexate have been published by other groups as well. As noted above, patients treated with high-dose methotrexate excrete increased quantities of aminoimidazole carboxamide in their urine, a finding that is consistent with the notion that AICAR accumulates after methotrexate therapy (Luhby and Cooperman, 1962). Bernini et al. (1995) have reported that children treated with methotrexate for leukemia had higher adenosine concentrations in their cerebrospinal fluid, and the highest adenosine concentrations were observed in those patients who exhibited central nervous system toxicity (lethargy and coma). In those patients with central nervous system toxicity, administration of an adenosine receptor antagonist rapidly reversed the toxicity, indicating that the adenosine released into the central nervous system is sufficient to occupy adenosine receptors and dramatically alter central nervous system function. Two studies in patients provide evidence that methotrexate increases adenosine release (Laghi Pasini et al., 1997; Baggott et al., 1999).

Evidence against the hypothesis that adenosine mediates the anti-inflammatory effects of methotrexate was first provided by Andersson and colleagues (Andersson et al., 2000) who found that adenosine receptor antagonists do not reverse the anti-inflammatory effects of methotrexate in a model of arthritis in rats. The variance between the results of this study and the prior studies is most likely due to the very high (3- to 5-fold higher) dose of methotrexate required to inhibit arthritis in the model studied. Moreover, methotrexate-mediated suppression of inflammation was completely reversed by folic acid supplementation in the rats studied by Andersson and colleagues, whereas folic acid administration does not affect the therapeutic effects of methotrexate in patients with rheumatoid arthritis (see above).

Other evidence against the hypothesis that methotrexate promotes adenosine release and adenosine mediates the anti-inflammatory effects were provided by two recent clinical studies (Egan et al., 1999; Smolenska et al., 1999). In the work by Smolenska et al. (1999), a single dose of methotrexate significantly reduced purine synthesis for a day without any concomitant increase in erythrocyte AICAR concentration. The observation that purine synthesis is inhibited for a day after a dose of methotrexate is consistent with and probably accounts for the methotrexate-mediated reduction in antigen-induced proliferation of T cells, although the clinical importance of reduced cellular proliferation 1 day a week is unknown. The observation that AICAR does not accumulate in the erythrocytes of these patients 1 day after a single dose of methotrexate is expected, since AICAR accumulation in erythrocytes should not be detectable for weeks after starting methotrexate therapy because red blood cells do not actively synthesize purines, and any intracellular accumulations of AICAR must result from metabolic changes in bone marrow precursors. Because the half-life of erythrocytes is measured in months, only a minuscule percentage of the circulating red cells would have had an opportunity to accumulate AICAR. The work by Egan and colleagues (Egan et al., 1999) was not designed in such a way that any conclusions could conceivably be drawn; patients were administered a single parenteral dose of methotrexate followed several minutes later by sigmoidoscopic sampling for rectal adenosine. Even when administered parenterally, methotrexate reaches peak serum concentrations 4 to 6 h after the dose, and accumulation of methotrexate polyglutamates (with resulting enhanced adenosine release) takes hours to days.

III. Pharmacogenetics of Methotrexate in the Treatment of Rheumatoid Arthritis

As technology has progressed, it has become possible to pinpoint genetic factors that modulate response to various drugs, and methotrexate has received its share of attention. Identifying a genetic predisposition to a toxic reaction to a drug such as methotrexate is much easier than pinpointing the factors that may predispose to a better response to the drug. Toxic reactions are discrete and easily identifiable, whereas therapeutic responses to methotrexate are often difficult to define; drug response in rheumatoid arthritis is generally a composite measure comprised of findings on physical examination (tender and swollen joints), laboratory results (C-reactive protein or erythrocyte sedimentation rates), and subjective responses (e.g., Modified Health Assessment Questionnaire, Physician's Global Response). Moreover, response to drug therapy in rheumatoid arthritis is clearly much better when the drug is started early in the course of the disease, regardless of the drug (see Baumgartner et al., 2004). Thus, defining genetic factors that predispose to a better response to the drug is complex, and the genetic contribution may be different depending on when the drug is started in the course of the disease. Because of these problems, there is much more data available on the genetic factors that may predispose to methotrexate's toxicity than to its efficacy.

A. Genetic Factors Predicting Increased Risk of Drug Toxicity

Methotrexate was developed as an analog of folic acid, and many of the factors governing cellular handling of methotrexate are identical to those involved in folate metabolism. Methotrexate is taken up by specific transporters into the cell where it interferes with the synthesis of purines and pyrimidines as well as blocking the conversion of homocysteine to methionine (Fig. 1). Once inside the cell, methotrexate is polyglutamated which confers both longevity on the polyglutamated metabolites and alters the spectrum of enzymes inhibited by the drug (Chabner et al., 1985); methotrexate polyglutamates inhibit AICAR transformylase, an enzyme involved in the de novo synthesis of purines, most potently (Allegra et al., 1985). The inhibition of AICAR transformylase by methotrexate polyglutamates is associated with the accumulation of AICARiboside and increased release of adenosine, which mediates many of the anti-inflammatory effects of methotrexate (Cronstein et al., 1991, 1993; Montesinos et al., 2000, 2003).

To date, most of the attention on the pharmacogenetics of methotrexate has focused on methylene tetrahydrofolate reductase (MTHFR), a folate-dependent enzyme that catalyzes the conversion of homocysteine to methionine. Severe deficiency of MTHFR is associated with homocysteinemia and homocysteinuria, neuropathy and encephalopathy, and coagulopathy and vasculopathy. However, there are common variants in the enzyme that are associated with a modest decrease in MTHFR activity; 40% of the population is heterozygous for the C677T polymorphism and 8 to 10% are homozygous for this polymorphism. Heterozygosity for the C677T polymorphism leads to a 30 to 40% reduction in enzyme activity, and homozygosity is associated with a 70% reduction in activity. The A1298C polymorphism is in linkage disequilibrium with the C677T polymorphism so that 50 to 100% of those with the minority polymorphism at position 677 will also have the minority polymorphism at position 1298. Recent studies have elucidated the role of genetic polymorphisms in the enzyme involved in the conversion of homocysteine to methionine, MTHFR, in excess methotrexate marrow toxicity in patients with rheumatoid arthritis (van Ede et al., 2001a; Urano et al., 2002; Kumagai et al., 2003). Thus, the results of these studies demonstrate that the C677T polymorphism is associated with enhanced methotrexate-mediated marrow toxicity.

B. Genetic Factors Predicting Increased Drug Efficacy

Clearly, a genetic test that predicted response to methotrexate would be greatly welcome in the rheumatology community. One recent report has indicated that the A1298C polymorphism is associated with diminished efficacy of methotrexate (defined as requiring >10 mg/week methotrexate), although this was not confirmed in a subsequent study (Urano et al., 2002; Kumagai et al., 2003). In another recent study, an additive effect on methotrexate efficacy was demonstrated for polymorphisms in thymidylate synthase (involved in folate-dependent pyrimidine synthesis), AICAR transformylase, and RFC1 (the protein that transports methotrexate into the cell). Individuals with a polymorphism in more than one of these genes had a better response to methotrexate than those with none. This was a small study, however, and the role of these polymorphisms in methotrexate response requires further study (Dervieux et al., 2003).

Acknowledgments

This work was supported by grants from the National Institutes of Health (AA13336, AR41911, and GM56268), Scleroderma Foundation, King Pharmaceuticals, the General Clinical Research Center (M01RR00096), and by the Kaplan Cancer Center of New York University School of Medicine.

Footnotes

  • ↵1 Abbreviations: RFC1, reduced folate carrier 1; RA, rheumatoid arthritis; AICAR, 5-aminoimidazole-4-carboxamide ribonucleotide; MTHFR, methylene tetrahydrofolate reductase.

  • Article, publication date, and citation information can be found at http://pharmrev.aspetjournals.org.

  • doi:10.1124/pr.57.2.3.

  • The American Society for Pharmacology and Experimental Therapeutics

References

  1. ↵
    Ahern M, Booth J, Loxton A, McCarthy P, Meffin P, and Kevat S (1988) Methotrexate kinetics in rheumatoid arthritis: is there an interaction with nonsteroidal antiinflammatory drugs? J Rheumatol 15: 1356-1360.
    OpenUrlPubMed
  2. ↵
    Alarcon GS, Tracy IC, and Blackburn WD Jr (1989) Methotrexate in rheumatoid arthritis. Toxic effects as the major factor in limiting long-term treatment. Arthritis Rheum 32: 671-676.
    OpenUrlCrossRefPubMed
  3. ↵
    Allegra CJ, Drake JC, Jolivet J, and Chabner BA (1985) Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc Natl Acad Sci USA 82: 4881-4885.
    OpenUrlAbstract/FREE Full Text
  4. ↵
    American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines (2002) Guidelines for the management of rheumatoid arthritis: 2002 update. Arthritis Rheum 46: 328-346.
    OpenUrlCrossRefPubMed
  5. ↵
    Andersen PA, West SG, O'Dell JR, Via CS, Claypool RG, and Kotzin BL (1985) Weekly pulse methotrexate in rheumatoid arthritis. Clinical and immunologic effects in a randomized, double-blind study. Ann Intern Med 103: 489-496.
    OpenUrlPubMed
  6. ↵
    Andersson SE, Johansson LH, Lexmuller K, and Ekstrom GM (2000) Anti-arthritic effect of methotrexate: is it really mediated by adenosine? Eur J Pharm Sci 9: 333-343.
    OpenUrlCrossRefPubMed
  7. ↵
    Asako H, Wolf RE, and Granger DN (1993) Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate. Gastroenterology 104: 31-37.
    OpenUrlPubMed
  8. ↵
    Baggott JE, Morgan SL, Sams WM, and Linden J (1999) Urinary adenosine and aminoimidazolecarboxamide excretion in methotrexate-treated patients with psoriasis. Arch Dermatol 135: 813-817.
    OpenUrlCrossRefPubMed
  9. ↵
    Baggott JE, Vaughn WH, and Hudson BB (1986) Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5′-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide. Biochem J 236: 193-200.
    OpenUrlAbstract/FREE Full Text
  10. ↵
    Bannwarth B, Pehourcq F, Schaeverbeke T, and Dehais J (1996) Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet 30: 194-210.
    OpenUrlCrossRefPubMed
  11. ↵
    Barankiewicz J, Ronlov G, Jimenez R, and Gruber HE (1990) Selective adenosine release from human B but not T lymphoid cell line. J Biol Chem 265: 15738-15743.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    Bathon JM and Genovese MC (2003) The Early Rheumatoid Arthritis (ERA) trial comparing the efficacy and safety of etanercept and methotrexate. Clin Exp Rheumatol 21: S195-S197.
    OpenUrlPubMed
  13. ↵
    Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, Genovese MC, Wasko MC, Moreland LW, Weaver AL, et al. (2000) A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med 343: 1586-1593.
    OpenUrlCrossRefPubMed
  14. ↵
    Baumgartner SW, Fleischmann RM, Moreland LW, Schiff MH, Markenson J, and Whitmore JB (2004) Etanercept (Enbrel) in patients with rheumatoid arthritis with recent onset versus established disease: improvement in disability. J Rheumatol 31: 1532-1537.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    Bernini JC, Fort DW, Griener JC, Kane BJ, Chappell WB, and Kamen BA (1995) Aminophylline for methotrexate-induced neurotoxicity. Lancet 345: 544-547.
    OpenUrlCrossRefPubMed
  16. ↵
    Bjorkman DJ, Boschert M, Tolman KG, Clegg DO, and Ward JR (1993) The effect of long-term methotrexate therapy on hepatic fibrosis in rheumatoid arthritis. Arthritis Rheum 36: 1697-1701.
    OpenUrlPubMed
  17. ↵
    Bologna C, Viu P, Picot MC, Jorgensen C, and Sany J (1997) Long-term follow-up of 453 rheumatoid arthritis patients treated with methotrexate: an open, retrospective, observational study. Br J Rheumatol 36: 535-540.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    Brick JE, Moreland LW, Al-Kawas F, Chang WW, Layne RD, and DiBartolomeo AG (1989) Prospective analysis of liver biopsies before and after methotrexate therapy in rheumatoid patients. Semin Arthritis Rheum 19: 31-44.
    OpenUrlCrossRefPubMed
  19. ↵
    Carmichael SJ, Beal J, Day RO, and Tett SE (2002) Combination therapy with methotrexate and hydroxychloroquine for rheumatoid arthritis increases exposure to methotrexate. J Rheumatol 29: 2077-2083.
    OpenUrlAbstract/FREE Full Text
  20. ↵
    Chabner BA, Allegra CJ, Curt GA, Clendeninn NJ, Baram J, Koizumi S, Drake JC, and Jolivet J (1985) Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Investig 76: 907-912.
    OpenUrlCrossRefPubMed
  21. ↵
    Cooper BA (1996) Folic acid and methotrexate in rheumatoid arthritis. Ann Intern Med 124: 73; discussion 74.
    OpenUrlPubMed
  22. ↵
    Cronstein BN, Eberle MA, Gruber HE, and Levin RI (1991) Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA 88: 2441-2445.
    OpenUrlAbstract/FREE Full Text
  23. ↵
    Cronstein BN, Naime D, and Ostad E (1993) The antiinflammatory mechanism of methotrexate: increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Investig 92: 2675-2682.
    OpenUrlCrossRefPubMed
  24. ↵
    Dervieux T, Furst D, Lein DO, Capps R, Smith K, Walsh M, and Kremer J (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 50: 2766-2774.
    OpenUrlCrossRefPubMed
  25. ↵
    Dervieux T, Orentas Lein D, Marcelletti J, Pischel K, Smith K, Walsh M, and Richerson R (2003) HPLC determination of erythrocyte methotrexate polyglutamates after low-dose methotrexate therapy in patients with rheumatoid arthritis. Clin Chem 49: 1632-1641.
    OpenUrlAbstract/FREE Full Text
  26. ↵
    Dijkmans BA (1995) Folate supplementation and methotrexate (Review). Br J Rheumatol 34: 1172-1174.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    Egan LJ, Sandborn WJ, Mays DC, Tremaine WJ, and Lipsky JJ (1999) Plasma and rectal adenosine in inflammatory bowel disease: effect of methotrexate. Inflamm Bowel Dis 5: 167-173.
    OpenUrlPubMed
  28. ↵
    Endresen GK and Husby G (2001) Folate supplementation during methotrexate treatment of patients with rheumatoid arthritis. An update and proposals for guidelines. Scand J Rheumatol 30: 129-134.
    OpenUrlCrossRefPubMed
  29. ↵
    Fantone JC, Duque RE, Davis BH, and Phan SH (1989) 3-Deaza-adenosine inhibition of stimulus-response coupling in human polymorphonuclear leukocytes. J Leukoc Biol 45: 121-128.
    OpenUrlAbstract
  30. ↵
    Ferraccioli GF, Assaloni R, Di Poi E, Gremese E, De Marchi G, and Fabris M (2002) Rescue of combination therapy failures using infliximab, while maintaining the combination or monotherapy with methotrexate: results of an open trial. Rheumatology (Oxford) 41: 1109-1112.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    Flescher E, Bowlin TL, Ballester A, Houk R, and Talal N (1989) Increased polyamines may downregulate interleukin 2 production in rheumatoid arthritis. J Clin Investig 83: 1356-1362.
    OpenUrlCrossRefPubMed
  32. ↵
    Flescher E, Bowlin TL, and Talal N (1992) Regulation of IL-2 production by mononuclear cells from rheumatoid arthritis synovial fluids. Clin Exp Immunol 87: 435-437.
    OpenUrlPubMed
  33. ↵
    Fossa SD, Tveit K, Bormer O, Moxnes A, Jorgensen NP, Orjaseter H, and Kristoffersen DT (1988) Relative bioavailability of oral low dose methotrexate. A comparison of two different formulations. Eur J Clin Pharmacol 34: 517-519.
    OpenUrlCrossRefPubMed
  34. ↵
    Furst DE (1995) Practical clinical pharmacology and drug interactions of low-dose methotrexate therapy in rheumatoid arthritis (Review). Br J Rheumatol 34 (Suppl 2): 20-25.
    OpenUrlPubMed
  35. ↵
    Furst DE, Erikson N, Clute L, Koehnke R, Burmeister LF, and Kohler JA (1990) Adverse experience with methotrexate during 176 weeks of a long-term prospective trial in patients with rheumatoid arthritis. J Rheumatol 17: 1628-1635.
    OpenUrlPubMed
  36. ↵
    Furst DE, Koehnke R, Burmeister LF, Kohler J, and Cargill I (1989) Increasing methotrexate effect with increasing dose in the treatment of resistant rheumatoid arthritis. J Rheumatol 16: 313-320.
    OpenUrlPubMed
  37. ↵
    Furumitsu Y, Yukioka K, Kojima A, Yukioka M, Shichikawa K, Ochi T, Matsui-Yuasa I, Otani S, Nishizawa Y, and Morii H (1993) Levels of urinary polyamines in patients with rheumatoid arthritis. J Rheumatol 20: 1661-1665.
    OpenUrlPubMed
  38. ↵
    Genestier L, Paillot R, Fournel S, Ferraro C, Miossec P, and Revillard JP (1998) Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Investig 102: 322-328.
    OpenUrlCrossRefPubMed
  39. ↵
    Genovese MC, Bathon JM, Martin RW, Fleischmann RM, Tesser JR, Schiff MH, Keystone EC, Wasko MC, Moreland LW, Weaver AL, et al. (2002) Etanercept versus methotrexate in patients with early rheumatoid arthritis: two-year radiographic and clinical outcomes. Arthritis Rheum 46: 1443-1450.
    OpenUrlCrossRefPubMed
  40. ↵
    Gruber HE, Hoffer ME, McAllister DR, Laikind PK, Lane TA, Schmid-Schoenbein GW, and Engler RL (1989) Increased adenosine concentration in blood from ischemic myocardium by AICA riboside: effects on flow, granulocytes and injury. Circulation 80: 1400-1411.
    OpenUrlAbstract/FREE Full Text
  41. ↵
    Gubner R, August S, and Ginsberg V (1951) Therapeutic suppression of tissue reactivity. II. Effect of aminopterin in rheumatoid arthritis and psoriasis. Am J Med Sci 221: 176-182.
    OpenUrlCrossRefPubMed
  42. ↵
    Hanrahan PS, Scrivens GA, and Russell AS (1989) Prospective long term follow-up of methotrexate therapy in rheumatoid arthritis: toxicity, efficacy and radiological progression. Br J Rheumatol 28: 147-153.
    OpenUrlAbstract/FREE Full Text
  43. ↵
    Hasko G and Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25: 33-39.
    OpenUrlCrossRefPubMed
  44. ↵
    Hawkes JS, Cleland LG, Proudman SM, and James MJ (1994) The effect of methotrexate on ex vivo lipoxygenase metabolism in neutrophils from patients with rheumatoid arthritis. J Rheumatol 21: 55-58.
    OpenUrlPubMed
  45. ↵
    Hill RL, Topliss DJ, and Purcell PM (2003) Pancytopenia associated with leflunomide and methotrexate. Ann Pharmacother 37: 149.
    OpenUrlFREE Full Text
  46. ↵
    Hochberg MC, Tracy JK, Hawkins-Holt M, and Flores RH (2003) Comparison of the efficacy of the tumour necrosis factor alpha blocking agents adalimumab, etanercept and infliximab when added to methotrexate in patients with active rheumatoid arthritis. Ann Rheum Dis 62 (Suppl 2): ii13-ii16.
    OpenUrlAbstract/FREE Full Text
  47. ↵
    Hoffmeister RT (1983) Methotrexate therapy in rheumatoid arthritis: 15 years experience. Am J Med 75: 69-73.
    OpenUrlCrossRefPubMed
  48. ↵
    Hunt PG, Rose CD, McIlvain-Simpson G, and Tejani S (1997) The effects of daily intake of folic acid on the efficacy of methotrexate therapy in children with juvenile rheumatoid arthritis. A controlled study. J Rheumatol 24: 2230-2232.
    OpenUrlPubMed
  49. ↵
    Izeradjene K, Revillard JP, and Genestier L (2001) Inhibition of thymidine synthesis by folate analogues induces a Fas-Fas ligand-independent deletion of superantigen-reactive peripheral T cells. Int Immunol 13: 85-93.
    OpenUrlAbstract/FREE Full Text
  50. ↵
    Jeong SY, Lee JH, Kim HS, Hong SH, Cheong CH, and Kim IK (1996) 3-Deazaadenosine analogues inhibit the production of tumour necrosis factor-alpha in RAW264.7 cells stimulated with lipopolysaccharide. Immunology 89: 558-562.
    OpenUrlCrossRefPubMed
  51. ↵
    Jundt JW, Browne BA, Fiocco GP, Steele AD, and Mock D (1993) A comparison of low dose methotrexate bioavailability: oral solution, oral tablet, subcutaneous and intramuscular dosing. J Rheumatol 20: 1845-1849.
    OpenUrlPubMed
  52. ↵
    Jurgensen CH, Huber BE, Zimmerman TP, and Wolberg G (1990) 3-Deazaadenosine inhibits leukocyte adhesion and ICAM-1 biosynthesis in tumor necrosis factor-stimulated human endothelial cells. J Immunol 144: 653-661.
    OpenUrlAbstract
  53. ↵
    Jurgensen CH, Wolberg G, and Zimmerman TP (1989) Inhibition of neutrophil adherence to endothelial cells by 3-deazaadenosine. Agents Actions 27: 398-400.
    OpenUrlCrossRefPubMed
  54. ↵
    Kavanaugh A and Kavanaugh D (1996) Folic acid and methotrexate in rheumatoid arthritis. Ann Intern Med 124: 73; discussion 74.
    OpenUrlPubMed
  55. ↵
    Kevat S, Ahern M, and Hall P (1988) Hepatotoxicity of methotrexate in rheumatic diseases. Med Toxicol Adverse Drug Exp 3: 197-208.
    OpenUrlPubMed
  56. ↵
    Kozloski GD, De Vito JM, Kisicki JC, and Johnson JB (1992) The effect of food on the absorption of methotrexate sodium tablets in healthy volunteers. Arthritis Rheum 35: 761-764.
    OpenUrlPubMed
  57. ↵
    Kremer J, Genovese M, Cannon GW, Caldwell J, Cush J, Furst DE, Luggen M, Keystone E, Bathon J, Kavanaugh A, et al. (2004) Combination leflunomide and methotrexate (MTX) therapy for patients with active rheumatoid arthritis failing MTX monotherapy: open-label extension of a randomized, double-blind, placebo controlled trial. J Rheumatol 31: 1521-1531.
    OpenUrlAbstract/FREE Full Text
  58. ↵
    Kremer JM, Galivan J, Streckfuss A, and Kamen B (1986) Methotrexate metabolism analysis in blood and liver of rheumatoid arthritis patients. Association with hepatic folate deficiency and formation of polyglutamates. Arthritis Rheum 29: 832-835.
    OpenUrlPubMed
  59. ↵
    Kremer JM, Genovese MC, Cannon GW, Caldwell JR, Cush JJ, Furst DE, Luggen ME, Keystone E, Weisman MH, Bensen WM, et al. (2002) Concomitant leflunomide therapy in patients with active rheumatoid arthritis despite stable doses of methotrexate. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 137: 726-733.
    OpenUrlPubMed
  60. ↵
    Kremer JM and Hamilton RA (1995) The effects of nonsteroidal antiinflammatory drugs on methotrexate (MTX) pharmacokinetics: impairment of renal clearance of MTX at weekly maintenance doses but not at 7.5 mg. J Rheumatol 22: 2072-2077.
    OpenUrlPubMed
  61. ↵
    Kremer JM and Lee JK (1986) The safety and efficacy of the use of methotrexate in long-term therapy for rheumatoid arthritis. Arthritis Rheum 29: 822-831.
    OpenUrlCrossRefPubMed
  62. ↵
    Kremer JM, Lee RG, and Tolman KG (1989) Liver histology in rheumatoid arthritis patients receiving long-term methotrexate therapy. A prospective study with base-line and sequential biopsy samples. Arthritis Rheum 32: 121-127.
    OpenUrlCrossRefPubMed
  63. ↵
    Kremer JM, Petrillo GF, and Hamilton RA (1995) Examination of pharmacokinetic variables in a cohort of patients with rheumatoid arthritis beginning therapy with methotrexate compared with a cohort receiving the drug for a mean of 81 months. J Rheumatol 22: 41-44.
    OpenUrlPubMed
  64. ↵
    Kremer JM and Phelps CT (1992) Long-term prospective study of the use of methotrexate in the treatment of rheumatoid arthritis. Update after a mean of 90 months. Arthritis Rheum 35: 138-145.
    OpenUrlPubMed
  65. ↵
    Krenitsky TA, Rideout JL, Chao EY, Koszalka GW, Gurney F, Crouch RC, Cohn NK, Wolberg G, and Vinegar R (1986) Imidazo[4,5-c]pyridines (3-deazapurines) and their nucleosides as immunosuppressive and antiinflammatory agents. J Med Chem 29: 138-143.
    OpenUrlCrossRefPubMed
  66. ↵
    Kumagai K, Hiyama K, Oyama T, Maeda H, and Kohno N (2003) Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med 11: 593-600.
    OpenUrlPubMed
  67. ↵
    Laghi Pasini F, Capecchi PL, and Di Perri T (1997) Adenosine plasma levels after low dose methotrexate administration. J Rheumatol 24: 2492-2493.
    OpenUrl
  68. ↵
    Lanse SB, Arnold GL, Gowans JD, and Kaplan MM (1985) Low incidence of hepatotoxicity associated with long-term, low-dose oral methotrexate in treatment of refractory psoriasis, psoriatic arthritis and rheumatoid arthritis. An acceptable risk/benefit ratio. Dig Dis Sci 30: 104-109.
    OpenUrlCrossRefPubMed
  69. ↵
    Lebbe C, Beyeler C, Gerber NJ, and Reichen J (1994) Intraindividual variability of the bioavailability of low dose methotrexate after oral administration in rheumatoid arthritis. Ann Rheum Dis 53: 475-477.
    OpenUrlAbstract/FREE Full Text
  70. ↵
    Leonard EJ, Skeel A, Chiang PK, and Cantoni GL (1978) The action of the adenosylhomocysteine hydrolase inhibitor, 3-deazaadenosine, on phagocytic function of mouse macrophages and human monocytes. Biochem Biophys Res Commun 84: 102-109.
    OpenUrlCrossRefPubMed
  71. ↵
    Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, Smolen JS, Weisman M, Emery P, Feldmann M, et al. (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 343: 1594-1602.
    OpenUrlCrossRefPubMed
  72. ↵
    Luhby AL and Cooperman JH (1962) Aminoimidazole carboxamide excretion in vitamin B12 and folic acid deficiencies. Lancet 2: 1381-1382.
    OpenUrlPubMed
  73. ↵
    Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, Antoni C, Leeb B, Elliott MJ, Woody JN, et al. (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41: 1552-1563.
    OpenUrlCrossRefPubMed
  74. ↵
    Matherly LH and Goldman DI (2003) Membrane transport of folates. Vitam Horm 66: 403-456.
    OpenUrlCrossRefPubMed
  75. ↵
    Maurice MM, Nakamura H, van der Voort EA, van Vliet AI, Staal FJ, Tak PP, Breedveld FC, and Verweij CL (1997) Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. J Immunol 158: 1458-1465.
    OpenUrlAbstract
  76. ↵
    Medzihradsky JL (1984) Regulatory role for the immune complex in modulation of phagocytosis by 3-deazaadenosine. J Immunol 133: 946-949.
    OpenUrlAbstract
  77. ↵
    Mielants H, Veys EM, Van der Straeten C, Ackerman C, and Goemaere S (1991) The efficacy and toxicity of a constant low dose of methotrexate as a treatment for intractable rheumatoid arthritis: an open prospective study. J Rheumatol 18: 978-983.
    OpenUrlPubMed
  78. ↵
    Montesinos MC, Desai A, Delano D, Chen JF, Fink JS, Jacobson MA, and Cronstein BN (2003) Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum 48: 240-247.
    OpenUrlCrossRefPubMed
  79. ↵
    Montesinos MC, Yap JS, Desai A, Posadas I, McCrary CT, and Cronstein BN (2000) Reversal of the antiinflammatory effects of methotrexate by the nonselective adenosine receptor antagonists theophylline and caffeine: evidence that the anti-inflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. Arthritis Rheum 43: 656-663.
    OpenUrlCrossRefPubMed
  80. ↵
    Morabito L, Montesinos MC, Schreibman DM, Balter L, Thompson LF, Resta R, Carlin G, Huie MA, and Cronstein BN (1998) Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. J Clin Investig 101: 295-300.
    OpenUrlCrossRefPubMed
  81. ↵
    Morgan S, Alarcon GS, and Krumdieck CL (1993) Folic acid supplementation during methotrexate therapy: it makes sense. J Rheumatol 20: 929-930.
    OpenUrlPubMed
  82. ↵
    Morgan SL, Baggott JE, Lee JY, and Alarcon GS (1998) Folic acid supplementation prevents deficient blood folate levels and hyperhomocysteinemia during long-term, low dose methotrexate therapy for rheumatoid arthritis: implications for cardiovascular disease prevention. J Rheumatol 25: 441-446.
    OpenUrlPubMed
  83. ↵
    Morgan SL, Baggott JE, Vaughn WH, Austin JS, Veitch TA, Lee JY, Koopman WJ, Krumdieck CL, and Alarcon GS (1994) Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis. A double-blind, placebo-controlled trial. Ann Intern Med 121: 833-841.
    OpenUrlCrossRefPubMed
  84. ↵
    Morgan SL, Baggott JE, Vaughn WH, Young PK, Austin JV, Krumdieck CL, and Alarcon GS (1990) The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 33: 9-18.
    OpenUrlCrossRefPubMed
  85. ↵
    Mroczkowski PJ, Weinblatt ME, and Kremer JM (1999) Methotrexate and leflunomide combination therapy for patients with active rheumatoid arthritis. Clin Exp Rheumatol 17: S66-S68.
    OpenUrlPubMed
  86. ↵
    Nesher G, Mates M, and Zevin S (2003) Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis. Arthritis Rheum 48: 571-572.
    OpenUrlCrossRefPubMed
  87. ↵
    Nesher G and Moore TL (1990) The in vitro effects of methotrexate on peripheral blood mononuclear cells. Modulation by methyl donors and spermidine. Arthritis Rheum 33: 954-959.
    OpenUrlPubMed
  88. ↵
    Nesher G, Osborn TG, and Moore TL (1996) In vitro effects of methotrexate on polyamine levels in lymphocytes from rheumatoid arthritis patients. Clin Exp Rheumatol 14: 395-399.
    OpenUrlPubMed
  89. ↵
    O'Dell JR, Haire CE, Erikson N, Drymalski W, Palmer W, Eckhoff PJ, Garwood V, Maloley P, Klassen LW, Wees S, et al. (1996) Treatment of rheumatoid arthritis with methotrexate alone, sulfasalazine and hydroxychloroquine, or a combination of all three medications. N Engl J Med 334: 1287-1291.
    OpenUrlCrossRefPubMed
  90. ↵
    O'Dell JR, Leff R, Paulsen G, Haire C, Mallek J, Eckhoff PJ, Fernandez A, Blakely K, Wees S, Stoner J, et al. (2002) Treatment of rheumatoid arthritis with methotrexate and hydroxychloroquine, methotrexate and sulfasalazine, or a combination of the three medications. Results of a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46: 1164-1170.
    OpenUrlCrossRefPubMed
  91. ↵
    Oguey D, Kolliker F, Gerber NJ, and Reichen J (1992) Effect of food on the bioavailability of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 35: 611-614.
    OpenUrlCrossRefPubMed
  92. ↵
    Ortiz Z, Shea B, Suarez Almazor M, Moher D, Wells G, and Tugwell P (2000) Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. Cochrane Database Syst Rev 2: CD000951.
    OpenUrlCrossRefPubMed
  93. ↵
    Ortiz Z, Shea B, Suarez-Almazor ME, Moher D, Wells GA, and Tugwell P (1998) The efficacy of folic acid and folinic acid in reducing methotrexate gastrointestinal toxicity in rheumatoid arthritis. A metaanalysis of randomized controlled trials. J Rheumatol 25: 36-43.
    OpenUrlPubMed
  94. ↵
    Paillot R, Genestier L, Fournel S, Ferraro C, Miossec P, and Revillard JP (1998) Activation-dependent lymphocyte apoptosis induced by methotrexate. Transplant Proc 30: 2348-2350.
    OpenUrlCrossRefPubMed
  95. ↵
    Phillips DC, Woollard KJ, and Griffiths HR (2003) The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species. Br J Pharmacol 138: 501-511.
    OpenUrlCrossRefPubMed
  96. ↵
    Pincus T (1998) Folic and folinic acid supplementation reduces methotrexate gastrointestinal side effects in rheumatoid arthritis. Clin Exp Rheumatol 16: 667-668.
    OpenUrlPubMed
  97. ↵
    Prus KL, Wolberg G, Keller PM, Fyfe JA, Stopford CR, and Zimmerman TP (1989) 3-Deazaadenosine 5′-triphosphate: a novel metabolite of 3-deazaadenosine in mouse leukocytes. Biochem Pharmacol 38: 509-517.
    OpenUrlCrossRefPubMed
  98. ↵
    Prytz S, Loennechen T, Johansson A, Larsen LB, Slordal L, and Aarbakke J (1989) Effects of 3-deazaadenosine, an inducer of HL-60 cell differentiation, on human blood cells in vitro. Pediatr Hematol Oncol 6: 173-179.
    OpenUrlPubMed
  99. ↵
    Quemeneur L, Gerland LM, Flacher M, Ffrench M, Revillard JP, and Genestier L (2003) Differential control of cell cycle, proliferation and survival of primary T lymphocytes by purine and pyrimidine nucleotides. J Immunol 170: 4986-4995.
    OpenUrlAbstract/FREE Full Text
  100. ↵
    Rau R, Schleusser B, Herborn G, and Karger T (1997) Long-term treatment of destructive rheumatoid arthritis with methotrexate. J Rheumatol 24: 1881-1889.
    OpenUrlPubMed
  101. ↵
    Ravelli A, Migliavacca D, Viola S, Ruperto N, Pistorio A, and Martini A (1999) Efficacy of folinic acid in reducing methotrexate toxicity in juvenile idiopathic arthritis. Clin Exp Rheumatol 17: 625-627.
    OpenUrlPubMed
  102. ↵
    Richard S, Guerret S, Gerard F, Tebib JG, and Vignon E (2000) Hepatic fibrosis in rheumatoid arthritis patients treated with methotrexate: application of a new semi-quantitative scoring system. Rheumatology (Oxford) 39: 50-54.
    OpenUrlAbstract/FREE Full Text
  103. ↵
    Ruderman EM, Crawford JM, Maier A, Liu JJ, Gravallese EM, and Weinblatt ME (1997) Histologic liver abnormalities in an autopsy series of patients with rheumatoid arthritis. Br J Rheumatol 36: 210-213.
    OpenUrlAbstract/FREE Full Text
  104. ↵
    Sany J, Anaya JM, Lussiez V, Couret M, Combe B, and Daures JP (1991) Treatment of rheumatoid arthritis with methotrexate: a prospective open long-term study of 191 cases. J Rheumatol 18: 1323-1327.
    OpenUrlPubMed
  105. ↵
    Schroder O, Blumenstein I, Schulte-Bockholt A, and Stein J (2004) Combining infliximab and methotrexate in fistulizing Crohn's disease resistant or intolerant to azathioprine. Aliment Pharmacol Ther 19: 295-301.
    OpenUrlCrossRefPubMed
  106. ↵
    Shergy WJ, Polisson RP, Caldwell DS, Rice JR, Pisetsky DS, and Allen NB (1988) Methotrexate-associated hepatotoxicity: retrospective analysis of 210 patients with rheumatoid arthritis. Am J Med 85: 771-774.
    OpenUrlPubMed
  107. ↵
    Shiroky JB (1996) Folic acid and methotrexate in rheumatoid arthritis. Ann Intern Med 124: 73-74.
    OpenUrlPubMed
  108. ↵
    Shiroky JB (1997) The use of folates concomitantly with low-dose pulse methotrexate. Rheum Dis Clin N Am 23: 969-980.
    OpenUrlCrossRefPubMed
  109. ↵
    Silke C, Murphy MS, Buckley T, Busteed S, Molloy MG, and Phelan M (2001) The effects of caffeine ingestion on the efficacy of methotrexate. Rheumatology (Oxford) 40 (Suppl 1): 34.
    OpenUrl
  110. ↵
    Smith DM, Johnson JA, and Turner RA (1991) Biochemical perturbations of BW 91Y (3-deazaadenosine) on human neutrophil chemotactic potential and lipid metabolism. Int J Tissue React 13: 1-18.
    OpenUrlPubMed
  111. ↵
    Smolenska Z, Kaznowska Z, Zarowny D, Simmonds HA, and Smolenski RT (1999) Effect of methotrexate on blood purine and pyrimidine levels in patients with rheumatoid arthritis. Rheumatology (Oxford) 38: 997-1002.
    OpenUrlAbstract/FREE Full Text
  112. ↵
    St Clair EW, van der Heijde DM, Smolen JS, Maini RN, Bathon JM, Emery P, Keystone E, Schiff M, Kalden JR, Wang B, et al. (2004) Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum 50: 3432-3443.
    OpenUrlCrossRefPubMed
  113. ↵
    Stewart CF, Fleming RA, Arkin CR, and Evans WE (1990) Coadministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis. Clin Pharmacol Ther 47: 540-546.
    OpenUrlPubMed
  114. ↵
    Stewart CF, Fleming RA, Germain BF, Seleznick MJ, and Evans WE (1991) Aspirin alters methotrexate disposition in rheumatoid arthritis patients. Arthritis Rheum 34: 1514-1520.
    OpenUrlPubMed
  115. ↵
    Sung JY, Hong JH, Kang HS, Choi I, Lim SD, Lee JK, Seok JH, Lee JH, and Hur GM (2000) Methotrexate suppresses the interleukin-6 induced generation of reactive oxygen species in the synoviocytes of rheumatoid arthritis. Immunopharmacology 47: 35-44.
    OpenUrlCrossRefPubMed
  116. ↵
    Sung SSJ and Silverstein SC (1985) Inhibition of macrophage phagocytosis by methylation inhibitors: lack of correlation of protein carboxymethylation and phospholipid methylation with phagocytosis. J Biol Chem 260: 546-554.
    OpenUrlAbstract/FREE Full Text
  117. ↵
    Talal N, Tovar Z, Dauphinee MJ, Flescher E, Dang H, and Galarza D (1988) Abnormalities of T cell activation in the rheumatoid synovium detected with monoclonal antibodies to CD3. Scand J Rheumatol Suppl 76: 175-182.
    OpenUrlPubMed
  118. ↵
    Thompson RN, Watts C, Edelman J, Esdaile J, and Russell AS (1984) A controlled two-centre trial of parenteral methotrexate therapy for refractory rheumatoid arthritis. J Rheumatol 11: 760-763.
    OpenUrlPubMed
  119. ↵
    Tishler M, Caspi D, Fishel B, and Yaron M (1988) The effects of leucovorin (folinic acid) on methotrexate therapy in rheumatoid arthritis patients. Arthritis Rheum 31: 906-908.
    OpenUrlCrossRefPubMed
  120. ↵
    Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, and Brater DC (1992) The effects of a salicylate, ibuprofen and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol 42: 121-125.
    OpenUrlCrossRefPubMed
  121. ↵
    Tracy TS, Worster T, Bradley JD, Greene PK, and Brater DC (1994) Methotrexate disposition following concomitant administration of ketoprofen, piroxicam and flurbiprofen in patients with rheumatoid arthritis. Br J Clin Pharmacol 37: 453-456.
    OpenUrlPubMed
  122. ↵
    Urano W, Taniguchi A, Yamanaka H, Tanaka E, Nakajima H, Matsuda Y, Akama H, Kitamura Y, and Kamatani N (2002) Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics 12: 183-190.
    OpenUrlCrossRefPubMed
  123. ↵
    van Ede AE, Laan RF, Blom HJ, Huizinga TW, Haagsma CJ, Giesendorf BA, de Boo TM, and van de Putte LB (2001a) The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum 44: 2525-2530.
    OpenUrlCrossRefPubMed
  124. ↵
    van Ede AE, Laan RF, Rood MJ, Huizinga TW, van de Laar MA, van Denderen CJ, Westgeest TA, Romme TC, de Rooij DJ, Jacobs MJ, et al. (2001b) Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 44: 1515-1524.
    OpenUrlCrossRefPubMed
  125. ↵
    Vincent MF, Bontemps F, and Van den Berghe G (1996) Substrate cycling between 5-amino-4-imidazolecarboxamide riboside and its monophosphate in isolated rat hepatocytes. Biochem Pharmacol 52: 999-1006.
    OpenUrlCrossRefPubMed
  126. ↵
    Weinblatt ME (1989) Drug interactions with non steroidal anti-inflammatory drugs (NSAIDs). Scand J Rheumatol Suppl 83: 7-10.
    OpenUrlPubMed
  127. ↵
    Weinblatt ME, Coblyn JS, Fox DA, Fraser PA, Holdsworth DE, Glass DN, and Trentham DE (1985) Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 312: 818-822.
    OpenUrlCrossRefPubMed
  128. ↵
    Weinblatt ME, Dixon JA, and Falchuk KR (2000) Serious liver disease in a patient receiving methotrexate and leflunomide. Arthritis Rheum 43: 2609-2611.
    OpenUrlCrossRefPubMed
  129. ↵
    Weinblatt ME, Kaplan H, Germain BF, Block S, Solomon SD, Merriman RC, Wolfe F, Wall B, Anderson L, Gall E, et al. (1994) Methotrexate in rheumatoid arthritis. A five-year prospective multicenter study. Arthritis Rheum 37: 1492-1498.
    OpenUrlPubMed
  130. ↵
    Weinblatt ME, Kremer JM, Coblyn JS, Maier AL, Helfgott SM, Morrell M, Byrne VM, Kaymakcian MV, and Strand V (1999) Pharmacokinetics, safety and efficacy of combination treatment with methotrexate and leflunomide in patients with active rheumatoid arthritis. Arthritis Rheum 42: 1322-1328.
    OpenUrlCrossRefPubMed
  131. ↵
    Weinblatt ME, Maier AL, Fraser PA, and Coblyn JS (1998) Long-term prospective study of methotrexate in rheumatoid arthritis: conclusion after 132 months of therapy. J Rheumatol 25: 238-242.
    OpenUrlPubMed
  132. ↵
    Weinblatt ME, Trentham DE, Fraser PA, Holdsworth DE, Falchuk KR, Weissman BN, and Coblyn JS (1988) Long-term prospective trial of low-dose methotrexate in rheumatoid arthritis. Arthritis Rheum 31: 167-175.
    OpenUrlCrossRefPubMed
  133. ↵
    Weinblatt ME, Weissman BN, Holdsworth DE, Fraser PA, Maier AL, Falchuk KR, and Coblyn JS (1992) Long-term prospective study of methotrexate in the treatment of rheumatoid arthritis. 84-Month update. Arthritis Rheum 35: 129-137.
    OpenUrlCrossRefPubMed
  134. ↵
    Weinstein A, Marlowe S, Korn J, and Farouhar F (1985) Low-dose methotrexate treatment of rheumatoid arthritis. Long-term observations. Am J Med 79: 331-337.
    OpenUrlCrossRefPubMed
  135. ↵
    Whiting-O'Keefe QE, Fye KH, and Sack KD (1991) Methotrexate and histologic hepatic abnormalities: a meta-analysis. Am J Med 90: 711-716.
    OpenUrlPubMed
  136. ↵
    Wilke WS, Calabrese LH, and Scherbel AL (1980) Methotrexate in the treatment of rheumatoid arthritis; pilot study. Cleve Clin Q 47: 305-339.
    OpenUrlPubMed
  137. ↵
    Williams HJ, Willkens RF, Samuelson CO Jr, Alarcon GS, Guttadauria M, Yarboro C, Polisson RP, Weiner SR, Luggen ME, Billingsley LM, et al. (1985) Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum 28: 721-730.
    OpenUrlCrossRefPubMed
  138. ↵
    Willkens RF (1985) Methotrexate treatment of rheumatoid arthritis. Ann Intern Med 103: 612-613.
    OpenUrlCrossRefPubMed
  139. ↵
    Willkens RF, Watson MA, and Paxson CS (1980) Low dose pulse methotrexate therapy in rheumatoid arthritis. J Rheumatol 7: 501-505.
    OpenUrlPubMed
  140. ↵
    Yagawa K, Nakanishi M, Hayashi S, Kaku M, Ichinose Y, Itoh T, Tomoda A, Yoneyama Y, and Shigematsu N (1986) Abolishment of inhibitory effects of 3′-deazaadenosine on superoxide generation of guinea pig phagocytes by pre-exposure to phorbol myristate acetate. FEBS Lett 201: 287-290.
    OpenUrlCrossRefPubMed
  141. ↵
    Yukioka K, Wakitani S, Yukioka M, Furumitsu Y, Shichikawa K, Ochi T, Goto H, Matsui-Yuasa I, Otani S, Nishizawa Y, et al. (1992) Polyamine levels in synovial tissues and synovial fluids of patients with rheumatoid arthritis. J Rheumatol 19: 689-692.
    OpenUrlPubMed
  142. ↵
    Zimmerman TP, Wolberg G, and Duncan GS (1978) Inhibition of lymphocyte-mediated cytolysis by 3-deazaadenosine: evidence for a methylation reaction essential for cytolysis. Proc Natl Acad Sci USA 75: 6220-6224.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Pharmacological Reviews: 57 (2)
Pharmacological Reviews
Vol. 57, Issue 2
1 Jun 2005
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Pharmacological Reviews article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Low-Dose Methotrexate: A Mainstay in the Treatment of Rheumatoid Arthritis
(Your Name) has forwarded a page to you from Pharmacological Reviews
(Your Name) thought you would be interested in this article in Pharmacological Reviews.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Low-Dose Methotrexate: A Mainstay in the Treatment of Rheumatoid Arthritis

Bruce N. Cronstein
Pharmacological Reviews June 1, 2005, 57 (2) 163-172; DOI: https://doi.org/10.1124/pr.57.2.3

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Low-Dose Methotrexate: A Mainstay in the Treatment of Rheumatoid Arthritis

Bruce N. Cronstein
Pharmacological Reviews June 1, 2005, 57 (2) 163-172; DOI: https://doi.org/10.1124/pr.57.2.3
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • I. The Use of Methotrexate in the Therapy of Rheumatoid Arthritis
    • II. Mechanism of Action of Methotrexate As an Anti-Inflammatory Agent
    • III. Pharmacogenetics of Methotrexate in the Treatment of Rheumatoid Arthritis
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Heterodimerization of G Protein-Coupled Receptors: Specificity and Functional Significance
  • Stem Cell Approaches for the Treatment of Renal Failure
  • Gastrointestinal Function Regulation by Nitrergic Efferent Nerves
Show more Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Pharmacological Reviews
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacology Research & Perspectives
ISSN 1521-0081 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics