Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Pharmacological Reviews
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Pharmacological Reviews

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit Pharm Rev on Facebook
  • Follow Pharm Rev on Twitter
  • Follow ASPET on LinkedIn
OtherIUPHAR Nomenclature Report

International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family

Richard D. Ye, François Boulay, Ji Ming Wang, Claes Dahlgren, Craig Gerard, Marc Parmentier, Charles N. Serhan and Philip M. Murphy
Pharmacological Reviews June 2009, 61 (2) 119-161; DOI: https://doi.org/10.1124/pr.109.001578
Richard D. Ye
Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois (R.D.Y); Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biochimie et de Biophysique des Systèmses Intégrés, Grenoble, France (F.B.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5092, Grenoble, France (F.B.); Université Joseph Fourier, Grenoble, France (F.B.); Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (J.M.W.); Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden (C.D.); Department of Pediatrics, Harvard Medical School and Children's Hospital, Boston, Massachusetts (C.G.); Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium (M.P.); Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (C.N.S); and Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (P.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
François Boulay
Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois (R.D.Y); Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biochimie et de Biophysique des Systèmses Intégrés, Grenoble, France (F.B.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5092, Grenoble, France (F.B.); Université Joseph Fourier, Grenoble, France (F.B.); Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (J.M.W.); Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden (C.D.); Department of Pediatrics, Harvard Medical School and Children's Hospital, Boston, Massachusetts (C.G.); Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium (M.P.); Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (C.N.S); and Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (P.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ji Ming Wang
Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois (R.D.Y); Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biochimie et de Biophysique des Systèmses Intégrés, Grenoble, France (F.B.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5092, Grenoble, France (F.B.); Université Joseph Fourier, Grenoble, France (F.B.); Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (J.M.W.); Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden (C.D.); Department of Pediatrics, Harvard Medical School and Children's Hospital, Boston, Massachusetts (C.G.); Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium (M.P.); Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (C.N.S); and Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (P.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claes Dahlgren
Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois (R.D.Y); Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biochimie et de Biophysique des Systèmses Intégrés, Grenoble, France (F.B.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5092, Grenoble, France (F.B.); Université Joseph Fourier, Grenoble, France (F.B.); Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (J.M.W.); Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden (C.D.); Department of Pediatrics, Harvard Medical School and Children's Hospital, Boston, Massachusetts (C.G.); Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium (M.P.); Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (C.N.S); and Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (P.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Craig Gerard
Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois (R.D.Y); Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biochimie et de Biophysique des Systèmses Intégrés, Grenoble, France (F.B.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5092, Grenoble, France (F.B.); Université Joseph Fourier, Grenoble, France (F.B.); Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (J.M.W.); Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden (C.D.); Department of Pediatrics, Harvard Medical School and Children's Hospital, Boston, Massachusetts (C.G.); Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium (M.P.); Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (C.N.S); and Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (P.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc Parmentier
Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois (R.D.Y); Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biochimie et de Biophysique des Systèmses Intégrés, Grenoble, France (F.B.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5092, Grenoble, France (F.B.); Université Joseph Fourier, Grenoble, France (F.B.); Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (J.M.W.); Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden (C.D.); Department of Pediatrics, Harvard Medical School and Children's Hospital, Boston, Massachusetts (C.G.); Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium (M.P.); Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (C.N.S); and Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (P.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles N. Serhan
Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois (R.D.Y); Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biochimie et de Biophysique des Systèmses Intégrés, Grenoble, France (F.B.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5092, Grenoble, France (F.B.); Université Joseph Fourier, Grenoble, France (F.B.); Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (J.M.W.); Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden (C.D.); Department of Pediatrics, Harvard Medical School and Children's Hospital, Boston, Massachusetts (C.G.); Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium (M.P.); Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (C.N.S); and Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (P.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip M. Murphy
Department of Pharmacology, College of Medicine, University of Illinois, Chicago, Illinois (R.D.Y); Commissariat à l'Energie Atomique, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biochimie et de Biophysique des Systèmses Intégrés, Grenoble, France (F.B.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5092, Grenoble, France (F.B.); Université Joseph Fourier, Grenoble, France (F.B.); Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland (J.M.W.); Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden (C.D.); Department of Pediatrics, Harvard Medical School and Children's Hospital, Boston, Massachusetts (C.G.); Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium (M.P.); Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts (C.N.S); and Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (P.M.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Fig. 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 1.

    Predicted transmembrane disposition of the human FPR1. The protein sequence of the FPR-98 isoform (Leu110, Ala346) is shown (Boulay et al., 1990a). The transmembrane domains (TMs) are predicted based on hydrophobicity of the amino acid sequence and on similarities to the rhodopsin structure. The amino acids that form the boundaries of the transmembrane domains are numbered. One-letter amino acid code is used. The square blocks in reverce color represent positions at which amino acid substitutions result from polymorphisms, including amino acids 11 (Ile/Thr), 47 (Val/Ala), 101 (Leu/Val), 190 (Arg/Trp), 192 (Asn/Lys) and 346 (Ala/Glu). The circle blocks in reverse color indicate amino acids with known functions as follows. Arg84, Lys85, and Asp284 are critical for high-affinity binding of fMLF (Mills et al., 1998; Quehenberger et al., 1997). Asp122, Arg123, and Cys124 are the signature sequence for G protein interaction (DRY in many GPCRs). NPMLY in the TM7 are known signature sequence (NPXXY) for receptor internalization (Gripentrog et al., 2000; He et al., 2001). The 11 Ser and Thr residues in the cytoplasmic tail are potential phosphorylation sites for GRK2 and GRK3 (Prossnitz et al., 1995). CHO, carbohydrate, marks the identified and potential (in parenthesis) sites for N-glycosylation. The predicted disulfide bond between Cys98 and Cys176 is marked with double-line (=).

  • Fig. 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 2.

    Alignment of the protein sequences of the human FPRs. The putative transmembrane domains (I to VII) are shaded. Sequence of the FPR-98 isoform is shown. Comparison of the three receptors has identified highly conserved regions, including most of TM-I and TM-II, and the short intracellular loop connecting TM-I and TM-II. The second intracellular loops from these receptors, known for G protein interaction, are nearly identical. TM-VII, including the NPXXY motif and a stretch of ∼25 amino acids extending toward the C-terminal tail, are also conserved among these receptors. Major differences are found in the extracellular domains between FPR1 and the other two receptors, especially in the amino termini (∼50% different), the second extracellular loops (56% different), and the third extracellular loops (∼50% different). The two putative N-glycosylation sites in the N-terminal domains are conserved among all three receptors. Most of the serines and threonines in the C-terminal tail, along with charged residues that constitute consensus GRK phosphorylation sites, are also conserved among these receptors.

  • Fig. 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 3.

    Alignment of the predicted receptor sequence of the mouse Fpr genes. The putative transmembrane domains (TM-I–TM-VII) are shaded. Dashes indicate gaps in sequence created for alignment purposes. It is noteworthy that there is an eight-residue insertion in the N-terminal region of Fpr-1, just before TM-I. A three-residue insertion is found in the second extracellular loop in Fpr-1. The positively charged residues Arg84 and Lys85, found in human FPR1 and known for the interaction with fMLF, are missing from Fpr-1 and other mouse Fpr-related sequences. In its place are the noncharged residues Ser92 and Met93. The predicted Fpr-rs5 sequence is truncated at amino acid 246, resulting in a putative protein with only five TMs. Fpr-rs4 encodes a protein of 323 residues with a short C-terminal tail. In Fpr-rs1, there is a four-residue deletion in TM-IV, whereas the cloned mouse LXA4 receptor gene encodes a protein with the sequence of ARNV in its place. Polymorphisms exist in the Fpr-rs1 gene that result in amino acid substitutions at positions 3 (Thr/Ser), 8 (Pro/His), 13 (Asp/Glu), 16 (Ile/Val), 222 (Thr/Tyr), 236 (Phe/Ser), 296 (Ile/Met), and 318 (Gln/Pro) (Takano et al., 1997; Gao et al., 1998; Wang et al., 2002). The highest sequence identity (81%) is found between Fpr-rs1 and Fpr-rs2, and between Fpr-rs3 and Fpr-rs4.

  • Fig. 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 4.

    Sequence homology between the FPR family members and their tissue distribution. The predicted protein sequences of the three human (h) FPR genes, the eight mouse (m) Fpr genes, and the rabbit (r) FPR1 gene were compared (Boulay et al., 1990a,b; Ye et al., 1993; Gao et al., 1998; Wang et al., 2002). Based on sequence homology, the hFPR1, mFpr1, and rFPR1 are in the same cluster. The mFpr-rs1, mFpr-rs2 (also termed mFpr2), and mFpr-rs8 are in another cluster closely related to hFPR2/ALX and hFPR3. The mFpr-rs3, mFpr-rs4, mFpr-rs6, and mFpr-rs7 (and, to a lesser extent, mFpr-rs5) are closely related based on their protein sequences (see Table 4 for sequence identity between the gene products). Note that some of these genes are not expressed in neutrophils and monocytes. The tissue expression profiles for mFpr-rs4, mFpr-rs5, and mFpr-rs8 have not been determined. Mo, monocytes; PMN, polymorphnuclear leukocytes; iDC, immature dendritic cells; astro, astrocytes; T, T lymphocytes.

  • Fig. 5.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 5.

    Chemical structures of selected ligands for the formyl peptide receptors. Despite their abilities to bind to FPR1 and/or FPR2/ALX, these ligands have quite different structures. Of the ligands shown, t-Boc-FLFLF and CsH are antagonists and others are agonists. Note that the N-formyl group that defines agonistic activities in peptides such as fMLF is replaced with a bulky t-butyloxycarbonyl group that defines antagonistic activities in peptides such as t-Boc-FLFLF. LXA4, Quin-C1, and compound 43 are highly selective agonists for FPR2/ALX, whereas AG-14 and fMLF are selective for FPR1. t-Boc-FLFLF is selective for FPR1 at low concentrations but the selectivity is lost at high micromolar concentrations (e.g., 100 μM).

  • Fig. 6.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 6.

    The fMLF-induced signaling events leading to the activation of phagocyte NADPH oxidase (Nox2). Depicted schematically are major signaling pathways activated by fMLF that results in NADPH oxidase activation in neutrophils. Upon activation of the Gαi proteins, the released Gβγ subunits trigger PI3K activation, resulting in the production PIP3 and its degradation products. The Gβγ and PIP3-mediated p-Rex1 activation is key to the conversion of GDP-bound Rac small GTPase to GTP-bound Rac, which translocates to membrane and associates with gp91phox.Gβγ is also responsible for PLCβ2 activation, leading to the production of the second mesengers diacyl glycerol and 1,4,5-inositol trisphosphate (IP3), which stimulate PKC activation. Isoforms of PKC (PKCδ, PKCζ, PKCβII, and PKCα), MAPK (p38, ERK), and Akt are known to catalyze the phosphorylation of p47phox in fMLF-stimulated neutrophils, prompting membrane translocation of the cytosolic factors. The PX domain in p47phox also facilitates its membrane association. Assembly of a membrane complex of NADPH oxidase is key to its conversion of molecular oxygen to superoxide. Omitted in this drawing is the phospholipase D (PLD) activation pathway, which is reported to contribute to fMLF-induced superoxide generation.

Tables

  • Figures
    • View popup
    TABLE 1

    N-terminal modifications of selected formyl peptides and effects on agonistic activity Most of the early studies were conducted using neutrophils from rabbits and humans. Note that the concentration of formyl peptides required for superoxide production and enzyme release is 10- to 50-fold higher than the concentration needed for maximal chemotaxis. Therefore, caution should be taken when comparing potency using different assays. Some variations may also exist between assays conducted in different laboratories.

    Ligand Assay Effects Potency References
    N-formyl-Met-Leu-Phe Chemotaxis Agonistic pEC50 = 10.15 Freer et al. (1980); Showell et al. (1976)
    Met-Leu-Phe Chemotaxis Agonistic pEC50 = 6.17 Showell et al. (1976)
    N-acetyl-Met-Leu-Phe Chemotaxis Agonistic pEC50 = 6.70 Freer et al. (1980)
    N-p-tolylurea-Met-Leu-Phe Embedded Image production Agonistic pEC50 = 8.70 Higgins et al. (1996)
    N-tert-butyloxycarbonyl-Met-Leu-Phe Enzyme release Antagonistic pIC50 = 6.19 Freer et al. (1980)
    N-iso-butyloxycarbonyl-Met-Leu-Phe Embedded Image production Antagonistic pIC50 = 6.60 Derian et al. (1996)
    N-formyl-Met-Phe-Leu Chemotaxis Agonistic pEC50 = 7.27 Showell et al. (1976)
    Met-Phe-Leu Chemotaxis Agonistic pEC50 = 3.62 Showell et al. (1976)
    N-acetyl-Met-Nle-Leu-Phe-Phe Ca2+ flux Agonistic pEC50 = 10.00 Gao et al. (1994)
    N-formyl-Met-Nle-Leu-Phe-Phe Ca2+ flux Agonistic pEC50 = 10.00 Gao et al. (1994)
    Met-Nle-Leu-Phe-Phe Ca2+ flux Agonistic pEC50 = 9.00 Gao et al. (1994)
    • pIC50, negative logarithm of the IC50; pEC50, negative logarithm of the EC50; pKd, negative logarithm of Kd

    • View popup
    TABLE 2

    Binding affinity and potency of bacterial and mitochondrial formyl peptides pEC50 is defined as the negative logarithm of the EC50. HL-60 cells transfected to express FPR1 or FPR2/ALX, and Chinese hamster ovary cells transfected to express FPR1 were used in some studies

    Ligand Origin Assay Potency Cells (Receptors) Reference
    N-formyl-Met-Leu-Phe E. coli Chemotaxis pEC50 = 10.15 Neutrophils Showell et al. (1976); Freer et al. (1980)
    Lysozyme release pEC50 = 7.49 Neutrophils Freer et al. (1980)
    Embedded Image production pEC50 = 7.00 Neutrophils Boxer et al. (1979)
    Binding pKd = 9.28–7.61 Neutrophils Koo et al. (1982)
    pKd = 6.37 Transfected cells (FPR2/ALX) Quehenberger et al (1993)
    N-formyl-Met-Ile-Phe-Leu S. aureus Chemotaxis pEC50 = 7.51 Monocytes Rot et al. (1987)
    Competitive binding pIC50 = 8.01 Monocytes Rot et al. (1987)
    Embedded Image production pEC50 = 8.00 Neutrophils (mFpr1) Southgate et al. (2008)
    N-formyl-Met-Ile-Val-Ile-Leu L. monocytogenes Ca2+ flux pEC50 = 8.66 HL-60 (FPR1) Rabiet et al. (2005)
    pEC50 = 6.80 HL-60 (FPR2/ALX) Rabiet et al. (2005)
    Embedded Image production pEC50 = 7.82 Neutrophils (mFpr1) Southgate et al. (2008)
    N-formyl-Met-Ile-Gly-Trp-Ile L. monocytogenes Ca2+ flux pEC50 = 7.70 HL-60 (FPR1) Rabiet et al. (2005)
    pEC50 = 6.68 HL-60 (FPR2/ALX) Rabiet et al. (2005)
    N-formyl-Met-Ile-Val-Thr-Leu-Phe L. monocytogenes Ca2+ flux pEC50 = 8.57 HL-60 (FPR1) Rabiet et al. (2005)
    pEC50 = 6.70 HL-60 (FPR2/ALX) Rabiet et al. (2005)
    N-formyl-Met-Ile-Gly-Trp-Ile-Ile L. monocytogenes Ca2+ flux pEC50 = 7.40 HL-60 (FPR1) Rabiet et al. (2005)
    N-formyl-Met-Phy-Glu-Asp-Ala-Val-Ala-Trp-Phy M. avium Chemotaxis pEC50 = 6.00 CHO (FPR1) Gripentrog et al. (2008)
    N-formyl-Met-Met-Tyr-Ala-Leu-Phe Mitochondria, ND6 Ca2+ flux pEC50 = 7.92 HL-60 (FPR1) Rabiet et al. (2005)
    pEC50 = 7.82 HL-60 (FPR2/ALX) Rabiet et al. (2005)
    N-formyl-Met-Leu-Lys-Leu-Ile-Val Mitochondria, ND4 Ca2+ flux pEC50 = 7.92 HL-60 (FPR1) Rabiet et al. (2005)
    pEC50 = 7.26 HL-60 (FPR2/ALX) Rabiet et al. (2005)
    N-formyl-Met-Tyr-Phe-Ile-Asn-Ile-Leu-Thr-Leu Mitochondria, ND1 Binding pKd = 9.00 CHO (FPR2/ALX) Chiang et al. (2000)
    N-formyl-Met-Phe-Ala-Asp-Arg-Trp Cytochrome c oxidase subunit Ca2+ flux pEC50 = 6.80 HL-60 (FPR1) Rabiet et al. (2005)
    pEC50 = 6.68 HL-60 (FPR2/ALX) Rabiet et al (2005)
    • CHO, Chinese hamster ovary; pIC50, negative logarithm of the IC50; pEC50, negative logarithm of the EC50

    • View popup
    TABLE 3

    IUPHAR-recommended nomenclature for human FPRs and previously used names

    IUPHAR-Recommended Nomenclature Other Names Used Gene Location GenBank Accession Number
    FPR1 FPR, NFPR, FMLP, FMLPR 19q13.41 M60627 (cDNA); NM_002029 (gene)
    FPR2/ALX FPRL1, FPRH1, RFP, LXA4R, ALXR, HM63, FMLPX, FPR2A 19q13.3-q13.4 M88107 (cDNA); NM_001005738 (gene)
    FPR3 FPRL2, FPRH2, FMLPY 19q13.3-q13.4 NM_002030 (gene)
    • View popup
    TABLE 4

    Sequence identity between the human and mouse FPRs Shown in the table are percent of identical amino acids between the receptors, based on pairwise comparison of the entire sequence of each receptor using the ALIGN program (Scientific & Educational Software, ver. 1.02). The FPR1–98 sequence (Boulay et al. 1990a) is used for the comparison. Note that the gene product of Fpr-rs5 used in sequence comparison is 246 amino acids. The size of each receptor is indicated in the first column

    Size (a.a.) Name FPR1 (98) FPR2/ALX FPR3 Fpr1 Fpr-rs1 Fpr2 Fpr-rs3 Fpr-rs4 Fpr-rs5 Fpr-rs6 Fpr-rs7
    350 FPR1 (98) 100 68 58 77 59 64 55 51 54 51 51
    351 FPR2/ALX 100 72 68 73 76 65 61 64 59 58
    353 FPR3 100 56 60 63 54 52 58 52 52
    364 Fpr1 100 57 62 53 51 55 51 50
    347 Fpr-rs1 100 82 65 61 63 58 59
    351 Fpr2 100 66 64 64 59 60
    343 Fpr-rs3 100 77 78 74 73
    323 Fpr-rs4 100 74 73 73
    246 Fpr-rs5 100 64 62
    339 Fpr-rs6 100 95
    338 Fpr-rs7 100
    • a.a., amino acids

    • View popup
    TABLE 5

    Agonists for the human FPRs The agonists are listed in the order of their potency within each group. The mitochondrial N-formylated peptides, listed in the first group, are also host-derived peptides. A more detailed list of N-formyl peptides is given in Table 2. Ligands that have been isolated from living organisms in the forms listed, and those generated by the actions of physiologically relevant enzymes, are indicated with an asterisk (*)

    Ligand Origin/Description Potency Selectivity Reference
    N-formyl peptides
       fMLF and other bacterial formyl peptides* Bacteria (see Table 2) FPR1 > FPR2/ALX (see Table 2)
       Mitochondrial formyl peptides* Mitochondria (see Table 2) FPR1 ≈ FPR2/ALX (see Table 2)
       N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys Synthetic pKd = 9.22 FPR1 ≫ FPR2/ALX Sklar et al. (1984)
       Microbe-derived nonformyl peptides
       T20 (DP178) HIV-1 gp41 aa. 643–678 pEC50 = 8.30 FPR1 Su et al. (1999c)
       Hp (2–20) H. pylori pEC50 = 6.52 FPR2/ALX ≫ FPR3 Betten et al. (2001)
       T21 (DP107) HIV-1 gp41 aa. 558–595 pEC50 = 6.30 FPR2/ALX Su et al. (1999a)
       V3 peptide HIV-1 gp120, V3 loop pEC50 = 5.82 FPR2/ALX Shen et al. (2000)
       N36 peptide HIV-1 gp41 aa. 546–581 pEC50 = 5.00 FPR2/ALX Le et al. (2000b)
       F peptide HIV-1 gp120 aa. 414–434 pEC50 = 5.00 FPR2/ALX Deng et al. (1999)
    Host-derived peptides
       CKβ8–1 (human CCL23)* Chemokine pEC50 = 9.00–7.82 FPR2/ALX ≈ CCR1 Elagoz et al. (2004)
       SHAAGtide* CCL23 N-terminal 18 aa. pEC50 = 7.72 FPR2/ALX > CCR1 Miao et al. (2007)
       Humanin* Neuroprotective peptide pEC50 = 8.46 FPR2/ALX Harada et al. (2004); Ying et al. (2004)
       F2L* Heme binding protein pEC50 = 8.00 FPR3 ≫ FPR2/ALX Migeotte et al. (2005)
       SAA* Acute-phase protein pEC50 = 7.35 FPR2/ALX, others Su et al. (1999b)
       Annexin 1 / lipocortin 1* pIC50 = 6.82 FPR1 Walther et al. (2000)
       Ac2–26* Annexin 1 pEC50 = 6.05–5.77 FPR1, FPR2/ALX Perretti et al. (2002); Hayhoe et al. (2006)
       Ac9–25 Annexin 1 pEC50 = 4.70 FPR1, FPR2/ALX Karlsson et al. (2005)
       Aβ (1–42)* Amyloid precursor pEC50 = 7.00 FPR2/ALX Le et al. (2001a); Tiffany et al. (2001)
       D2D3* uPAR (88–274) pEC50 = 7.08 FPR2/ALX Resnati et al. (2002)
       LL-37* Cathelicidin pEC50 = 6.00 FPR2/ALX Yang et al. (2000)
       PrP (106–126)* Prion protein pEC50 = 4.60 FPR2/ALX Le et al. (2001b)
       Temporin (from Rana temporaria)* Anti-microbial peptide pEC50 = 6.60 FPR2/ALX Chen et al. (2004)
    Pituitary adenylate cyclase activating polypeptide pEC50 = 6.00 FPR2/ALX Kim et al. (2006)
    Host-derived nonpeptide agonists
       Lipoxin A4 and aspirin-triggered lipoxins* Eicosanoids pKd = 8.77 FPR2/ALX, AhR Fiore et al. (1994)
    Agonists from peptide library
       WKYMVm Peptide library pEC50 = 10.13 FPR2/ALX > FPR ≫ FPR3 Le et al. (1999); Christophe et al. (2001)
       WKYMVM Peptide library pEC50 = 8.70 FPR2/ALX ≫ FPR3 Christophe et al. (2001)
       MMK-1 Peptide library pEC50 = 8.70 FPR2/ALX Klein et al. (1998); Hu et al. (2001)
       MMWLL, formyl-MMWLL Peptide library pEC50 = 8.96 FPR1 Chen et al. (1995)
    Agonists from nonpeptide library
       Quinazolinone derivative (Quin-C1) Combinatorial library pEC50 = 5.72 FPR2/ALX ≫ FPR1 Nanamori et al. (2004)
       Pyrazolone, 4-iodo-substituted, no. 43 Combinatorial library pIC50 = 7.36 FPR2/ALX ≫ FPR1 Bürli et al. (2006)
       AG-14 Drug-like molecule library pEC50 = 7.38 FPR1 Schepetkin et al. (2007)
    • aa., amino acid; pIC50, negative logarithm of the IC50; pEC50, negative logarithm of the EC50; pKd, negative logarithm of Kd

    • View popup
    TABLE 6

    Antagonists for the human formyl peptide receptors Antagonists for the FPRs are listed in the order of their approximate potency, except that antagonists of same types are listed together.

    Ligand Assay Potency Selectivity References
    Chemotaxis inhibitory protein of S. aureus (CHIPS) Binding pKd = 7.46 FPR1 Haas et al. (2004)
    FPRL1-inhibitor protein (FLIPr) Binding, Ca2+ flux N.D. FPR2/ALX ≫ FPR1 Prat et al. (2006)
    Trp-Arg-Trp-Trp-Trp-Trp (WRW4) Ca2+ flux pIC50 = 6.64 FPR2/ALX ≫ FPR1 ≈ FPR3 Bae et al. (2004)
    CsH Binding pKi = 7.00 FPR1 Wenzel-Seifert et al. (1991)
    CsA Enzyme release pKi = 6.22 FPR1 Yan et al. (2006)
    i-Boc-Met-Leu-Phe O2– generation pIC50 = 6.60 FPR1 Derian et al. (1996)
    t-Boc-Met-Leu-Phe Enzyme release pIC50 = 6.19 FPR1 Freer et al. (1980)
    t-Boc-Phe-Leu-Phe-Leu-Phe Enzyme release pIC50 = 6.59 FPR1 ≫ FPR2/ALX Freer et al. (1980)
    Quin-C7 Binding pKi = 5.19 FPR2/ALX Zhou et al. (2007)
    CDCA Binding pKi = 4.76–4.52 FPR1 > FPR2/ALX Chen et al. (2000)
    DCA Binding pKi = 4.00 FPR1 Chen et al. (2002)
    Spinorphin O2– generation pIC50 = 4.30 FPR1 Yamamoto et al. (1997); Liang et al. (2000)
    • t-Boc, N-tert-butoxycarbonyl group; i-Boc, -butoxycarbonyl group; pIC50, negative logarithm of the IC50; pKi, negative logarithm of Ki; N.D., binding affinity or potency was not determined

PreviousNext
Back to top

In this issue

Pharmacological Reviews: 61 (2)
Pharmacological Reviews
Vol. 61, Issue 2
1 Jun 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Pharmacological Reviews article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family
(Your Name) has forwarded a page to you from Pharmacological Reviews
(Your Name) thought you would be interested in this article in Pharmacological Reviews.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherIUPHAR Nomenclature Report

International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family

Richard D. Ye, François Boulay, Ji Ming Wang, Claes Dahlgren, Craig Gerard, Marc Parmentier, Charles N. Serhan and Philip M. Murphy
Pharmacological Reviews June 1, 2009, 61 (2) 119-161; DOI: https://doi.org/10.1124/pr.109.001578

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
OtherIUPHAR Nomenclature Report

International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family

Richard D. Ye, François Boulay, Ji Ming Wang, Claes Dahlgren, Craig Gerard, Marc Parmentier, Charles N. Serhan and Philip M. Murphy
Pharmacological Reviews June 1, 2009, 61 (2) 119-161; DOI: https://doi.org/10.1124/pr.109.001578
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • I. Introduction and Historical Overview
    • II. The Expanded Family of Formyl Peptide Receptors
    • III. Ligands for the Formyl Peptide Receptor Family of Receptors
    • IV. Structure-Function Relationship of the Formyl Peptide Receptor Family of Receptors
    • V. Regulation of Formyl Peptide Receptors
    • VI. Formyl Peptide Receptor Signal Transduction and Activation of Cell Functions
    • VII. A New IUPHAR-Approved Nomenclature for the Formyl Peptide Receptor Family
    • VIII. Unmet Challenges and Future Perspetives
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Metabotropic Glutamate Receptors
  • 5-HT Receptors
  • EP1–4 and IP Receptors in Human and Rodents
Show more IUPHAR Nomenclature Report

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Pharmacological Reviews
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacology Research & Perspectives
ISSN 1521-0081 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics