Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Pharmacological Reviews
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Pharmacological Reviews

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit Pharm Rev on Facebook
  • Follow Pharm Rev on Twitter
  • Follow ASPET on LinkedIn
Review ArticleReview Article

Insights into the Neurobiology of the Nicotinic Cholinergic System and Nicotine Addiction from Mice Expressing Nicotinic Receptors Harboring Gain-of-Function Mutations

Ryan M. Drenan and Henry A. Lester
Burt M. Sharp, ASSOCIATE EDITOR
Pharmacological Reviews October 2012, 64 (4) 869-879; DOI: https://doi.org/10.1124/pr.111.004671
Ryan M. Drenan
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (R.M.D.); and Division of Biology, California Institute of Technology, Pasadena, California (H.A.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Henry A. Lester
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (R.M.D.); and Division of Biology, California Institute of Technology, Pasadena, California (H.A.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Burt M. Sharp
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (R.M.D.); and Division of Biology, California Institute of Technology, Pasadena, California (H.A.L.)
Roles: ASSOCIATE EDITOR
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated, cation-selective ion channels expressed throughout the brain. Although these channels have been investigated for several decades, it is still challenging 1) to identify the important nAChR subunits in cholinergic transmission and nicotine dependence and 2) to develop nAChR subtype-specific ligands. To overcome these challenges, we and others have studied mice expressing mutant, gain-of-function nAChR subunits. In this review, we discuss this research approach and the results it has yielded to date. Gain-of-function mutations, including those in nAChR subunits, provide an approach that is complementary to loss-of-function studies such as gene knockouts; the former allows one to answer questions of sufficiency and the latter addresses questions of necessity. Mutant mice expressing gain-of-function nAChR subunits are commonly produced using traditional gene targeting in embryonic stem cells, but novel approaches such as bacterial artificial chromosome transgenesis have yielded important insights as well. α7 nAChRs were the first nAChRs to be targeted with a gain-of-function mutation, followed by a pair of α4 nAChR gain-of-function mutant mice. These α4 nAChR gain-of-function mice (α4 L9′S mice, followed by α4 L9′A mice) provided an important system to probe α4 nAChR function in vivo, particularly in the dopamine reward system. α6 nAChR gain-of-function mice provided the first robust system allowing specific manipulation of this receptor subtype. Other targeted mutations in various nAChR subunits have also been produced and have yielded important insights into nicotinic cholinergic biology. As nAChR research advances and more details associated with nAChR expression and function emerge, we expect that existing and new mouse lines expressing gain-of-function nAChR subunits will continue to provide new insights.

Footnotes

  • This article is available online at http://pharmrev.aspetjournals.org.

    http://dx.doi.org/10.1124/pr.111.004671.

  • © 2012 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text

PharmRev articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Pharmacological Reviews: 64 (4)
Pharmacological Reviews
Vol. 64, Issue 4
1 Oct 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Pharmacological Reviews article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Insights into the Neurobiology of the Nicotinic Cholinergic System and Nicotine Addiction from Mice Expressing Nicotinic Receptors Harboring Gain-of-Function Mutations
(Your Name) has forwarded a page to you from Pharmacological Reviews
(Your Name) thought you would be interested in this article in Pharmacological Reviews.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Review ArticleReview Article

MICE EXPRESSING GAIN-OF-FUNCTION NACHRS

Ryan M. Drenan and Henry A. Lester
Pharmacological Reviews October 1, 2012, 64 (4) 869-879; DOI: https://doi.org/10.1124/pr.111.004671

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Review ArticleReview Article

MICE EXPRESSING GAIN-OF-FUNCTION NACHRS

Ryan M. Drenan and Henry A. Lester
Pharmacological Reviews October 1, 2012, 64 (4) 869-879; DOI: https://doi.org/10.1124/pr.111.004671
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • I. Introduction
    • II. Critical Issues in the Production of Useful Nicotinic Acetylcholine Receptor Gain-of-Function Mice
    • III. Critical Molecular, Neurochemical, and Behavioral Observations from Mice Expressing Hypersensitive Nicotinic Acetylcholine Receptor Subunits
    • IV. Conceptual Advances in Understanding Dopamine Reinforcement Circuitry
    • V. Implications for Development of Therapeutics
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Compartmentalized cAMP Signaling
  • Psychedelics in Psychiatry: Therapeutic Mechanisms
  • Hyperkatifeia/Negative Reinforcement in Drug Addiction
Show more Review Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Pharmacological Reviews
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacology Research & Perspectives
ISSN 1521-0081 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics