Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Pharmacological Reviews
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Pharmacological Reviews

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit Pharm Rev on Facebook
  • Follow Pharm Rev on Twitter
  • Follow ASPET on LinkedIn
Review ArticleReview Article
Open Access

5-HT3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface

Gohar Fakhfouri, Reza Rahimian, Jonas Dyhrfjeld-Johnsen, Mohammad Reza Zirak and Jean-Martin Beaulieu
Jeffrey M. Witkin, ASSOCIATE EDITOR
Pharmacological Reviews July 2019, 71 (3) 383-412; DOI: https://doi.org/10.1124/pr.118.015487
Gohar Fakhfouri
Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Reza Rahimian
Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonas Dyhrfjeld-Johnsen
Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mohammad Reza Zirak
Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Martin Beaulieu
Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Laval University, Quebec, Quebec, Canada (G.F., R.R.); Sensorion SA, Montpellier, France (J.D.-J.); Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran (M.R.Z.); and Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada (J.-M.B.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey M. Witkin
Roles: ASSOCIATE EDITOR
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Fig. 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 1.

    Impact of 5-HT3R antagonists on the molecular pathways within different cell populations in the brain. Neural blockade by setrons of 5-HT3R exerts neuroprotection by diminishing calcium influx and subsequent inhibition of the calcium-sensitive phosphatase calcineurin. The latter controls the activation status of transcriptional factors such as NFAT. Such inhibition affects the expression of proteins involved in survival and inflammation. Moreover, activation of 7α nAChR in neurons and glia by tropisetron triggers anti-inflammatory cascades, including JAK/STAT and PI3K/Akt, which potentiate the activity of transcriptional factor Nrf2 and its downstream pathways (HO-1 and CAT), and inhibits the canonical proinflammatory protein NFκB, which governs the production of proinflammatory cytokines (e.g., TNF-α) and enzymes (e.g., iNOS and COX-2) involved in neuroinflammation. Solid arrows indicate activation, blind-ended arrows indicate inhibition, and dashed arrows indicate activation of the target pathways in both cell types. CAT, catalase; COX-2, cyclooxygenase-2; eNOS, endothelial nitric oxide synthase; GSK3β, glycogen synthase kinase 3; HO-1, heme oxygenase-1; iNOS, inducible nitric oxide synthase; JAK, Janus kinase; NFAT, nuclear factor of activated T cells; NFκB, nuclear factor κB; Nrf2, nuclear factor erythroid 2–related factor 2; PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species; STAT, signal transducer and activator of transcription; TNF-α, tumor necrosis factor α.

  • Fig. 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 2.

    Effects of 5HT3R antagonists on neurotransmitter systems and the HPA axis.

  • Fig. 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 3.

    Advantageous therapeutic prolife of 5HT3R antagonists over conventional medications prescribed for psychiatric disorders.

Tables

  • Figures
    • View popup
    TABLE 1

    Compounds modulating 5-HT3Rs

    Drug or CompoundSpeciesReceptor SubtypeKi, IC50, or EC50Main Effect, Application, or Therapeutic UseReference
    Agonist
     5-HT—5-HT3A1.56–3.4 µMNeurotransmitterThompson and Lummis, 2003
    N1E-115a—1.8 µMHussy et al., 1994
    SCG (mouse)—2.6 µMHussy et al., 1994
    NG108-15b 5-HT3A3.5 µMHussy et al., 1994
    Humanc5-HT3A123 nMHope et al., 1996
    Rat—219 nMSteward et al., 1995
     2-Methyl-5-HTN1E-115a—11 µMDerivative of serotoninHussy et al., 1994
    SCG (mouse)—11.8 µMHussy et al., 1994
    NG108-15b5-HT3A13 µMHussy et al., 1994
    Humanc5-HT3A224 nMHope et al., 1996
    Humanc5-HT3A4.1 µMDavies et al., 1999
    Rat—562 nMSteward et al., 1995
     m-CPBGMoused 5-HT3A400 nMPharmacological toolDownie et al., 1994
    Humanc 5-HT3A19.5 nMHope et al., 1996
    Humanc 5-HT3A480 nMDubin et al., 1999
    Rat—1.5 nMKilpatrick et al., 1990
    Rat—4.77 nMSteward et al., 1995
     PhenylbiguanideMoused5-HT3A18 µMPharmacological toolDownie et al., 1994
    NG 108-15b—1.2 µMDukat et al., 1996
    NG 108-15b—1.8 µMDownie et al., 1995
    Humanc5-HT3A2.4 µMHope et al., 1996
    Humanc 5-HT3A10.1 µMDubin et al., 1999
    Rat—135 nMSteward et al., 1995
     VareniclineHumand 5-HT3A5.9 μMUsed for smoking cessationLummis et al., 2011
    Humanc 5-HT3A0.27 μM
    Moused 5-HT3A18.3 μM
    Humanc 5-HT3A4.9 μM
      m-CPPMouse5-HT3A400 nMNonselective agonist with psychoactive propertiesDownie et al., 1994
    Humand 5-HT3A480 nMDubin et al., 1999
    Humand 5-HT3A19.5 nMHope et al., 1996
    Rat—4.77 nMSteward et al., 1995
     QuipazineHumand 5-HT3A27 nMPiperazine analog with antidepressant and oxytocic propertiesDubin et al., 1999
     DopamineHumand 5-HT3A135 μMNeurotransmitterDubin et al., 1999
     2-Chloro-phenylbiguanideNG 108-15b—62 nM—Dukat et al., 1996
     3-Chloro-phenylbiguanideNG 108-15b—17 nM—Dukat et al., 1996
     4-Chloro-phenylbiguanideNG 108-15b—200 nM—Dukat et al., 1996
     2-NaphthylbiguanideNG 108-15b—12 nM—Dukat et al., 1996
     2-Methoxy-5-chloro-phenylpiperazine-NG 108-15b—40 nM—Dukat et al., 1996
     3,4-DichlorophenylguanidineNG 108-15b—3.1 nM—Glennon et al., 2003
     3,4,5-TrichlorophenylbiguanideNG 108-15b—0.7 nM—Glennon et al., 2003
     3,4-DichlorophenylbiguanideNG 108-15b—3.1 nM—Glennon et al., 2003
     N-Methylquipazine dimaleateRat—4.7 nM—Glennon et al., 1989
     RS 56812 hydrochlorideRat———Clark et al., 1995
     SR 57227ARat—2.8 nMPharmacological toolBachy et al., 1993
    NG 108-15b—250 nMBachy et al., 1993
    Competitive antagonists
     GranisetronMoused 5-HT3A0.14 nMAntiemetic used for CINVDownie et al., 1994
    Humanc5-HT3A1.44 nMHope et al., 1996
    N1E-115a—0.23 nMLummis et al., 1993
    Rat—5.13 nMSteward et al., 1995
     TropisetronNG 108-15b—3.85 nMAntiemetic used for CINVDownie et al., 1995
    Rat—4.9 nMSteward et al., 1995
    Rabbit—0.046 nMPeters et al., 1993
     OndansetronMoused 5-HT3A0.44 nMAntiemetic used for CINVGill et al., 1995
    Humanc5-HT3A4.9 nMHope et al., 1996
    N1E-115a—7.4 nMLummis et al., 1990
    Mouse (NCB-20 cells)—0.25 nMLambert et al., 1989
    Rat—46.8 nMSteward et al., 1995
    Rabbit—0.057 nMPeters et al., 1993
     DolasetronNG 108-15b—20.03 nMAntiemeticBoeijinga et al., 1992
     AzasetronRat—2.9 nMAntiemeticSato et al., 1992
     RamosetronHumanc—0.091 nMAntiemetic, also used for IBSHirata et al., 2007
    Rat—0.22 nMHirata et al., 2007
     AlosetronGuinea pig—50 nMUsed for IBS-DZhai et al., 1999
    Humanc—0.29 nMHirata et al., 2007
    Rat—0.71 nMHirata et al., 2007
     CilansetronHumanc—0.56 nMUsed for IBS-DHirata et al., 2007
    Rat—0.64 nMHirata et al., 2007
     Palonosetron (RS 25259-197)Guinea pig—5.01 nMAntiemetic used for delayed CINVThompson and Lummis, 2007
     IndisetronRat—1.82 nMAntiemeticTaniguchi, 2004
     Bemesetron (MDL-72222)N1E-115a—16 nMAntiemeticLummis et al., 1990
    N1E-115a—3.5 nMHussy et al., 1994
    SCG (mouse)—5 nMHussy et al., 1994
    NG108-15b 5-HT3A3.5 nMHussy et al., 1994
    Rat—30.2 nMSteward et al., 1995
    Rabbit—0.33 nMPeters et al., 1993
     MirtazapineHumanc 5-HT3A2.9 nMAtypical antidepressantEisensamer et al., 2003
     ZacoprideHuman—0.38 nMAntiemetic, gastroprokinetic, and anxiolyticNagakura et al., 1999
     (S)-ZacoprideRat—0.95 nMSteward et al., 1995
     (R)-ZacoprideRat—10.9 nMSteward et al., 1995
     RenzaprideRat—67.6 nMAntiemeticSteward et al., 1995
     ClozapineRat—269 nMAtypical antipsychoticSteward et al., 1995
     ChloroquineHumand 5-HT3A24.3 μMAntimalarial agentThompson and Lummis, 2008
     MefloquineHumand5-HT3A0.66 μMThompson and Lummis, 2008
     QuinineHumand5-HT3A1.06 μMThompson and Lummis, 2008
     DiltiazemN1E-115a5-HT3A5.5 nML-type calcium channel blocker, used for hypertension, angina, and some heart arrhythmiasGunthorpe and Lummis, 1999
    Humand5-HT3A21 µMThompson et al., 2011a
     (+)-VerapamilN1E-115a 5-HT3A2.6 nMHargreaves et al., 1996
     (−)-VerapamilN1E-115a5-HT3A13.1 nMHargreaves et al., 1996
     CannabidiolHumand5-HT3A0.6 nMNonpsychotropic cannabinoidYang et al., 2010
     Poria cocos triterpenoidsHumand 5-HT3A3 nMMedicinal plant used for chronic gastritis, edema, nephritis, nausea, and emesisLee et al., 2009
     BoldineHumanc5-HT3A5.5 µMAporphine alkaloid from Peumus boldus leaves with antioxidant propertiesWalstab et al., 2014
    Humanc5-HT3AB35.5 µMWalstab et al., 2014
     MorphineHumanc5-HT3A13 µMOpioid analgesicBaptista-Hon et al., 2012
    Humanc5-HT3AB8 µMBaptista-Hon et al., 2012
     ScopolamineHumanc5-HT3A2.09 μMMuscarinic antagonist used for postoperative nausea and vomiting and motion sicknessLochner and Thompson, 2016
     AtropineHumanc5-HT3A1.74 μMMuscarinic antagonist used as cycloplegic and mydriatic, also for bradycardiaLochner and Thompson, 2016
     QuercetinHumand5-HT3A64.7 μMFlavonoid with analgesic, prokinetic, anticonvulsant, sedative, and anxiolytic propertiesLee et al., 2005a
    Noncompetitive antagonists
     Alisol extractHumand5-HT3A1.7–35 μMTraditional medicine with diuretic, hypolipemic, antiatherosclerotic, and antihepatitis B virus propertiesLee et al., 2010
     AnandamideHumanc5-HT3A129.6 nMEndocannabinoidBarann et al., 2002
     Δ9-THCHumanc 5-HT3A38.4 nMMain psychoactive component of cannabisBarann et al., 2002
     WIN55,212-2Humanc 5-HT3A103.5 nMSynthetic, nonselective cannabinoidBarann et al., 2002
     BilobalideHumand 5-HT3A468 μMNoncompetitive antagonist of GABA and glycine receptorsThompson et al., 2011a
    Humand 5-HT3AB3100 μMThompson et al., 2011a
     Ginkgolide BHumand 5-HT3A727 μMThompson et al., 2011a
    Humand5-HT3AB3900 μMThompson et al., 2011a
     PicrotoxininHumand5-HT3A11 μMThompson et al., 2011a
    Humand5-HT3AB62 μMThompson et al., 2011a
     PicrotoxinMousec5-HT3A41.2 μMGABAA receptor antagonistDas and Dillon, 2005
     CitralHumand5-HT3A120 µMTerpenoid used as flavoring agentJarvis et al., 2016
     LinaloolHumand5-HT3A141 µMJarvis et al., 2016
     EucalyptolHumand5-HT3A258 µMJarvis et al., 2016
     (−)-MentholHumanc5-HT3A179.41 µMMonoterpene from mentha used as flavoring agentWalstab et al., 2014
     Ginger extractHumanc5-HT3A74.9 nMTraditional medicine used for spaWalstab et al., 2013
    Humanc5-HT3AB77.2 nMWalstab et al., 2013
    • Dashes indicate not identified or not applicable. CINV, chemotherapy-induced nausea and vomiting; IBS-D, diarrhea dominant IBS; m-CPP, meta-chlorophenylpiperazine; SCG, superior cervical ganglion.

    • ↵a Mouse neuroblastoma cells.

    • ↵b Mouse neuroblastoma × rat glioma hybrid cells.

    • ↵c Expressed in human embryonic kidney 293 cells.

    • ↵d Expressed in Xenopus laevis oocytes.

    • View popup
    TABLE 2

    Proconvulsant effects reported with 5-HT3R ligands

    CategoryCompound, Dose, Route of AdministrationStudy DesignEffectsProposed MechanismReference
    5-HT3R agonistBemesetron (MDL-72222) (0, 5.6, 10, and 17.0 mg/kg, i.p.)Ethanol withdrawal-induced seizure in micePotentiates severity of seizuresInhibits GABA-activated chloride channelsGrant et al., 1994
    m-CPBG (40 µg, i.c.v.)Kindling model of epilepsy in ratsProlongs the duration of fully kindled seizures, facilitates the development of seizure5-HT3Rs activation mediates a fast excitatory postsynaptic potential in the amygdalaWada et al., 1997
    5-HT3R antagonistGranisetron (10 mg/kg, i.p.)PTZ-induced seizure in miceDecreases seizure thresholdBlockade of 5-HT3R–mediated cation conductance in GABAergic interneurons disinhibits excitatory postsynaptic neuronsGholipour et al., 2010
    Ondansetron (0.13 mg/kg, i.v.)Case report in a childDevelops generalized tonic-clonic seizures, reduces blood glucose level to 10 mg/dl—Patel et al., 2011
    Ondansetron (2 mg/kg, i.p.)PTZ-induced kindling model of epilepsy in micePartially reverses the anticonvulsant action and neuroprotective effect of fluvoxamineAnticonvulsant effect of fluvoxamine, at least in part, depends on enhancement of hippocampal serotoninergic transmission at 5-HT3RsAlhaj et al., 2015
    Tropisetron (1 mg/kg, i.p.)PTZ-induced seizure in miceInhibits the anticonvulsant effect of citalopramBlockade of the 5-HT3R as a calcium-conducting ion channel results in inhibition of early depolarization of inhibitory interneuronsPayandemehr et al., 2012
    Tropisetron (10 mg/kg, i.p.)PTZ-induced seizure in miceOffsets the anticonvulsant effect of genisteinEstrogen and 5-HT3Rs are involved in the anticonvulsant effect of genisteinAmiri Gheshlaghi et al., 2017
    Tropisetron (0.25 and 2 mg/kg, i.p.)PTZ-induced seizure in miceInhibits the anticonvulsant properties of citalopramAnticonvulsive effect of citalopram is mediated at least in part through 5-HT3RsBahremand et al., 2011
    • Dashes indicate not identified or not applicable.

    • View popup
    TABLE 3

    Anticonvulsant effects reported with 5-HT3R ligands

    CategoryCompound, Dose, Route of AdministrationStudy DesignEffectsProposed MechanismsReference
    5-HT3R agonistsm-CPBG (5 and 10 mg/kg, i.p.)PTZ-induced seizure in micePotentiates the anticonvulsant effect of low doses of citalopram5-HT3R activation increases firing of interneurons and subsequent GABA releasePayandemehr et al., 2012
    m-CPBG (1 mg/kg, i.p.)PTZ-induced seizure in micePotentiates the anticonvulsant effect of genistein5-HT3R is involved in the anticonvulsant effect of genisteinAmiri Gheshlaghi et al., 2017
    SR 57227 (20–40 mg/kg, i.p.)PTZ-induced seizure in miceAnticonvulsant; prolongs seizure latency, reduces seizure score and mortality5-HT3R activation may result in GABA release in the hippocampusLi et al., 2014
    SR57227 (10 mg/kg, i.p.)PTZ-induced seizure threshold in miceIncreases seizure threshold5-HT3 activation may result in GABA releaseGholipour et al., 2010
    5-HT3R antagonistsHBK-15 (20, 30, and 40 mg/kg, i.p.)aMaximal electroshock-induced seizure in miceIncreases the threshold for tonic seizuresCombined antagonistic action at 5-HT1A/5-HT3/5-HT7 receptors and voltage-dependent sodium channelsPytka et al., 2017
    Ondansetron (0.1, 0.5, and 1 mg/kg per day for 20 days, i.p.)PTZ-induced kindling in miceReduction in seizure severity and associated memory deficit in a dose-dependent mannerReduction in AChE activity and nitrite level in the cortex and hippocampusMishra and Goel, 2016
    Ondansetron (0.1, 0.5, and 1 mg/kg per day, i.p.)Increasing current electroshock seizure in miceSingle dose and chronic administration raise the seizure threshold, chronic treatment enhances cognitive performanceChange in the influx of cations, leading to the inhibition of neuronal depolarizationJain et al., 2012
    Ondansetron (0.25–4 mg/kg, i.p.)Maximal electroshock-induced seizure in ratsDecreases the duration of tonic seizures at low doses, attenuates phenytoin-induced cognitive dysfunctionFacilitation of cholinergic transmission in brainBalakrishnan et al., 2000
    Zacopride (1 mg/kg, i.p.)Audiogenic seizure in DBA/2 miceIncreases seizure latency and decreases seizure severityAlteration of brain 5-HT content, densities of 5-HT binding sites, and/or sensitivity to 5-HT receptor agonistsSemenova and Ticku, 1992
    • ↵a 1-[(2-chloro-6-methylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine hydrochloride.

PreviousNext
Back to top

In this issue

Pharmacological Reviews: 71 (3)
Pharmacological Reviews
Vol. 71, Issue 3
1 Jul 2019
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Pharmacological Reviews article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
5-HT3 Receptor Antagonists in Neurologic and Neuropsychiatric Disorders: The Iceberg Still Lies beneath the Surface
(Your Name) has forwarded a page to you from Pharmacological Reviews
(Your Name) thought you would be interested in this article in Pharmacological Reviews.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Review ArticleReview Article

5-HT3 Receptor Antagonists in Neurology and Neuropsychiatry

Gohar Fakhfouri, Reza Rahimian, Jonas Dyhrfjeld-Johnsen, Mohammad Reza Zirak and Jean-Martin Beaulieu
Pharmacological Reviews July 1, 2019, 71 (3) 383-412; DOI: https://doi.org/10.1124/pr.118.015487

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Review ArticleReview Article

5-HT3 Receptor Antagonists in Neurology and Neuropsychiatry

Gohar Fakhfouri, Reza Rahimian, Jonas Dyhrfjeld-Johnsen, Mohammad Reza Zirak and Jean-Martin Beaulieu
Pharmacological Reviews July 1, 2019, 71 (3) 383-412; DOI: https://doi.org/10.1124/pr.118.015487
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • I. Introduction
    • II. 5-HT3 Receptor Structure, Distribution, and Ligands
    • III. Biologic Effects of 5-HT3 Receptor Antagonists, a Final Remark
    • IV. 5-HT3 Receptor Antagonists in Neurologic Disorders
    • V. 5-HT3 Receptor Antagonists in Psychiatric Disorders
    • VI. Concluding Remarks
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier
  • Review of Natural Language Processing in Pharmacology
  • PHARMACOGENOMICS: Driving Personalized Medicine
Show more Review Articles

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Pharmacological Reviews
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacology Research & Perspectives
ISSN 1521-0081 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics