Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Pharmacological Reviews
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Pharmacological Reviews

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit Pharm Rev on Facebook
  • Follow Pharm Rev on Twitter
  • Follow ASPET on LinkedIn
Review ArticleReview Article

Druggable Transcriptional Networks in the Human Neurogenic Epigenome

Gerald A. Higgins, Aaron M. Williams, Alex S. Ade, Hasan B. Alam and Brian D. Athey
Lori L. Isom, ASSOCIATE EDITOR
Pharmacological Reviews October 2019, 71 (4) 520-538; DOI: https://doi.org/10.1124/pr.119.017681
Gerald A. Higgins
Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aaron M. Williams
Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alex S. Ade
Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hasan B. Alam
Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian D. Athey
Departments of Computational Medicine and Bioinformatics (G.A.H., A.S.A., B.D.A.), Surgery (A.M.W., H.B.A.), and Psychiatry (B.D.A.), University of Michigan Medical School, Ann Arbor, Michigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lori L. Isom
Roles: ASSOCIATE EDITOR
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Visual Overview

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Abstract

Chromosome conformation capture methods have revealed the dynamics of genome architecture which is spatially organized into topologically associated domains, with gene regulation mediated by enhancer-promoter pairs in chromatin space. New evidence shows that endogenous hormones and several xenobiotics act within circumscribed topological domains of the spatial genome, impacting subsets of the chromatin contacts of enhancer-gene promoter pairs in cis and trans. Results from the National Institutes of Health-funded PsychENCODE project and the study of chromatin remodeling complexes have converged to provide a clearer understanding of the organization of the neurogenic epigenome in humans. Neuropsychiatric diseases, including schizophrenia, bipolar spectrum disorder, autism spectrum disorder, attention deficit hyperactivity disorder, and other neuropsychiatric disorders are significantly associated with mutations in neurogenic transcriptional networks. In this review, we have reanalyzed the results from publications of the PsychENCODE Consortium using pharmacoinformatics network analysis to better understand druggable targets that control neurogenic transcriptional networks. We found that valproic acid and other psychotropic drugs directly alter these networks, including chromatin remodeling complexes, transcription factors, and other epigenetic modifiers. We envision a new generation of CNS therapeutics targeted at neurogenic transcriptional control networks, including druggable parts of chromatin remodeling complexes and master transcription factor-controlled pharmacogenomic networks. This may provide a route to the modification of interconnected gene pathways impacted by disease in patients with neuropsychiatric and neurodegenerative disorders. Direct and indirect therapeutic strategies to modify the master regulators of neurogenic transcriptional control networks may ultimately help extend the life span of CNS neurons impacted by disease.

Footnotes

  • This work was supported by grants from the U.S. Army, Department of Defense [F046821,17-PAF00235, and F048322,16-PAF02030 to G.A.H., A.M.W., H.B.A.]; the Massey Foundation (G.A.H., A.M.W., H.B.A.); and National Institutes of Health National Institute of Diabetes and Digestive and Kidney Diseases [Grants P30 DK081943] and National Institute of General Medical Sciences [Grant T32 GM0704490552] to B.D.A.

  • https://doi.org/10.1124/pr.119.017681.

  • ↵Embedded ImageThis article has supplemental material available at pharmrev.aspetjournals.org.

  • Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics
View Full Text
PreviousNext
Back to top

In this issue

Pharmacological Reviews: 71 (4)
Pharmacological Reviews
Vol. 71, Issue 4
1 Oct 2019
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Editorial Board (PDF)
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Pharmacological Reviews article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Druggable Transcriptional Networks in the Human Neurogenic Epigenome
(Your Name) has forwarded a page to you from Pharmacological Reviews
(Your Name) thought you would be interested in this article in Pharmacological Reviews.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Review ArticleReview Article

Drug Networks in the Regulatory Epigenome

Gerald A. Higgins, Aaron M. Williams, Alex S. Ade, Hasan B. Alam and Brian D. Athey
Pharmacological Reviews October 1, 2019, 71 (4) 520-538; DOI: https://doi.org/10.1124/pr.119.017681

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Review ArticleReview Article

Drug Networks in the Regulatory Epigenome

Gerald A. Higgins, Aaron M. Williams, Alex S. Ade, Hasan B. Alam and Brian D. Athey
Pharmacological Reviews October 1, 2019, 71 (4) 520-538; DOI: https://doi.org/10.1124/pr.119.017681
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Visual Overview
    • Abstract
    • I. Introduction
    • II. Results
    • III. Discussion
    • Acknowledgments
    • Authorship Contributions
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Hydroxynorketamines Pharmacology
  • Sex-Based Pharmacology
  • Pharmacology of Polymyxins
Show more Review Articles

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About Pharmacological Reviews
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Journal of Pharmacology and Experimental Therapeutics
  • Molecular Pharmacology
  • Pharmacology Research & Perspectives
ISSN 1521-0081 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics