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Abstract——Recent studies have strived to find an
association between rapid antidepressant effects and
a specific subset of pharmacological targets andmolec-
ular pathways. Here, we propose a broader hypothesis
of encoding, consolidation, and renormalization in de-
pression (ENCORE-D), which suggests that, fundamen-
tally, rapid and sustained antidepressant effects rely
on intrinsic homeostatic mechanisms evoked as a re-
sponse to the acute pharmacological or physiologic

effects triggered by the treatment. We review evidence
that supports the notion that various treatments with
a rapid onset of action, such as ketamine, electrocon-
vulsive therapy, and sleep deprivation, share the abil-
ity to acutely excite cortical networks, which increases
synaptic potentiation, alters patterns of functional
connectivity, and ameliorates depressive symptoms.
We proceed to examine how the initial effects are
short-lived and, as such, require both consolidation
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during wake and maintenance throughout sleep to
remain sustained. Here, we incorporate elements from
the synaptic homeostasis hypothesis and theorize that
the fundamental mechanisms of synaptic plasticity
and sleep, particularly the homeostatic emergence of
slow-wave electroencephalogram activity and the
renormalization of synaptic strength, are at the center
of sustained antidepressant effects. We conclude by
discussing the various implications of the ENCORE-D
hypothesis and offer several considerations for future
experimental and clinical research.

Significance Statement——Proposed molecular per-
spectives of rapid antidepressant effects fail to ap-
preciate the temporal distribution of the effects of

ketamine on cortical excitation and plasticity as well
as the prolonged influence on depressive symptoms.
The encoding, consolidation, and renormalization in
depression hypothesis proposes that the lasting clin-
ical effects can be best explained by adaptive func-
tional and structural alterations in neural circuitries
set in motion in response to the acute pharmacolog-
ical effects of ketamine (i.e., changes evoked during
the engagement of receptor targets such asN-methyl-
D-aspartate receptors) or other putative rapid-acting
antidepressants. The present hypothesis opens a
completely new avenue for conceptualizing and
targeting brain mechanisms that are important for
antidepressant effects wherein sleep and synaptic
homeostasis are at the center stage.

I. Introduction

Major depression is a highly prevalent and dis-
abling psychiatric illness. Common symptoms include
depressed mood, anhedonia, and cognitive dysfunc-
tion, and the patient’s emotional state is frequently
dominated by negative thinking and low self-esteem.
Recurrent, self-reflected, and uncontrollable rumina-
tion is one of the hallmarks of disease phenomenology
(Nolen-Hoeksema et al., 2008; Hamilton et al., 2015;
Whisman et al., 2020). Furthermore, depression is
associated with negative biases in cognition, which
predispose depressed individuals to exhibit a better
recall for negative information compared with healthy
subjects (Harrington et al., 2017). Patients suffering
from depression may avoid social interaction and lin-
ger in despair and suicidal thoughts, often with tragic
consequences.
The etiology of depression is poorly understood but

involves complex neurobiological and neurodevelop-
mental underpinnings. Depression is not the result of
any specific pathology affecting only single-cell types,
brain areas, or neural networks but is characterized
by structural and functional alterations of a more
complex cortico-limbic circuitry (Price and Drevets,
2012). Moreover, although the illness may manifest
suddenly, the underlying pathology takes time to de-
velop and depends on both environmental and genetic
factors. Nevertheless, certain treatments, most notably
subanesthetic ketamine, can ameliorate the core
symptoms of depression and suicidality within just
a few hours. These remarkable effects of ketamine
have been intimately connected with its ability to

increase neurotrophic signaling and synaptogenesis
along with the facilitation of synaptic plasticity in
brain areas implicated in the pathophysiology of
depression (Duman and Aghajanian, 2012; Duman
et al., 2016; Rantamäki and Yalcin, 2016). Indeed,
interest in manipulating some of the molecular mech-
anisms of synaptic plasticity directly with novel drugs
is increasing. Synaptic plasticity, however, is an
activity-dependent property of neural networks to
change, (Changeux and Danchin, 1976; Thoenen,
1995; Hensch, 2005; Park and Poo, 2013) and its
control cannot be outsourced for a specific molecular
entity or any antidepressant treatment of that matter
(Castrén, 2005, 2013; Castrén and Rantamäki, 2010).

Synaptic plasticity is proportionally high during early
life, when neural networks are developed and fine-
tuned (Hensch, 2005). During these periods, informa-
tion from environmental interaction is encoded into
stabilizing synapses and networks at a high rate. This
activity-dependent interplay is thought to shape the
structure and function of these networks for later life.
However, animal studies suggest that dendritic spines
of the cerebral cortex eventually become highly stable,
with a majority lasting throughout life (Grutzendler
et al., 2002; Yang et al., 2009). While stability increases,
plasticity is not entirely lost. This is best exemplified by
the lifelong ability to learn. Learning is dependent on
functional changes in neuronal circuitry, which can be
modified via alterations to the number (formation and
elimination), morphology, and strength of synaptic con-
tacts (Trachtenberg et al., 2002). Animal studies sug-
gest that high-frequency stimulation-induced long-term

ABBREVIATIONS: AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor; Arc, activity-regulated cytoskeleton-
associated protein; BDNF, brain-derived neurotrophic factor; CaMKII, Ca21/calmodulin-dependent protein kinase II; CEN, central executive
network; DLPFC, dorsolateral prefrontal cortex; DMN, default mode network; ECS, electroconvulsive shock; ECT, electroconvulsive therapy;
EEG, electroencephalogram; E-LTP, early phase LTP; ENCORE-D, encoding, consolidation, and renormalization in depression; EPSP, ex-
citatory postsynaptic potential; GluR1/2, glutamate AMPA receptor subunits 1 and 2; GSK3b, glycogen synthase kinase 3b; HNK, hydrox-
ynorketamine; IEG, immediate early gene; L-LTP, late phase LTP; LTP, long-term potentiation; MAPK, mitogen-activated protein kinase;
mTOR, mammalian target of rapamycin; NMDAR, N-methyl-D-aspartate receptor; NREM, non–rapid eye movement; PSD, postsynaptic
density; REM, rapid eye movement; rTMS, repetitive TMS; SCC, subgenual cingulate cortex; SHY, synaptic homeostasis hypothesis; SN,
salience network; SWA, slow-wave activity; SWS, slow-wave sleep; TMS, transcranial magnetic stimulation; TrkB, tropomyosin receptor
kinase B.
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potentiation (LTP; cellular model of learning) increases
the formation of dendritic spines in the developing brain,
whereas synapses may preferentially increase in size in
older animals (Lang et al., 2004; Bailey et al., 2015). The
main pharmacological targets of ketamine, that is,
glutamatergicN-methyl-D-aspartate receptors (NMDARs)
and a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic
acid receptors (AMPARs), are crucial components for
neural activity and synaptic plasticity. Mechanistic
studies investigating ketamine’s antidepressant actions
have focused on these receptor ion channels and their
downstream effectors (Zanos and Gould, 2018), whereas
more global mechanisms contributing to synaptic plas-
ticity have received less attention.
A single subanesthetic dose of ketamine produces

antidepressant effects within hours, and the effects are
most prominent 24 hours after the treatment. The
antidepressant effects of ketamine may continue even
up to a week or two. We hypothesize that these lasting
clinical effects of ketamine can be best explained by
adaptive functional and structural alterations in neu-
ral circuitries set in motion in response to the acute
pharmacological effects of ketamine (i.e., changes evoked
during the engagement of receptor targets such as
NMDARs). Most importantly, the timescale of the effects
set forth by ketamine suggests that fundamental mech-
anisms associated with synaptic homeostasis and sleep
play key roles in sustaining the antidepressant effects.
Here, we build on the synaptic homeostasis hypothesis
(SHY) of sleep (Tononi and Cirelli, 2003) and propose the
hypothesis of encoding, consolidation, and renormaliza-
tion in depression (ENCORE-D), which provides novel
perspectives for understanding and examining the com-
plex neurobiology around rapid-acting antidepressants.

II. Synaptic Homeostasis Hypothesis as the
Foundation for Encoding, Consolidation, and

Renormalization in Depression

Accumulating evidence suggests that sleep is essen-
tial for long-lasting changes in synaptic function, plas-
ticity, and learning (Maquet, 2001; Stickgold, 2005;
Tononi and Cirelli, 2014). Tononi and Cirelli (2003)
have described a mechanism for the regulation of
synaptic plasticity during wake and sleep, known as
SHY (Fig. 1). It proposes that the restoration of synaptic
homeostasis is the fundamental function of sleep. This
homeostasis is challenged during waking by increases
in synaptic potentiation and by immense synaptogene-
sis during early development (Tononi and Cirelli, 2014).
Accordingly, during waking, the brain is active and in
an optimal state for learning, which is encoded into
long-lasting changes in the strength, number, andwiring
of neuronal connections, fueled by molecular cascades
and plasticity-related proteins such as brain-derived
neurotrophic factor (BDNF) and activity-regulated
cytoskeleton-associated protein (Arc) (Bramham et al.,

2008; Shepherd and Bear, 2011). In contrast, during
sleep, our brains become disconnected from the external
world. The state of disconnection associated with stages
of deep sleep is ideal for the systematic renormalization
of synaptic strength because the brain is not influenced
by ongoing sensory stimuli (Tononi and Cirelli, 2019).
SHY further proposes that synaptic downscaling during
deep sleep is crucial for preserving synaptic strength
at a sustainable level. It allows for further synaptic
plasticity to take place during the next day while
preventing the metabolic costs associated with excessive
potentiation and excitability during waking. In other
words, “sleep is the price the brain pays for plasticity”
(Tononi and Cirelli, 2014).

SHY indicates that synaptic potentiation (e.g., evoked
by neural activity) during waking is connected to the
homeostatic increase of slow-wave sleep (SWS) during
consecutive non–rapid eye movement (NREM) sleep.
This can be measured in electroencephalogram (EEG)
recordings as ;0.5–4 Hz slow-wave activity (SWA) and
is proposed to reflect the strength of cortical synapses
(Tononi and Cirelli, 2003). Indeed, a motor-learning
task evokes the homeostatic increase of SWA during
subsequent sleep in the cortical area representative of
the given action during sleep along with improvement
in task performance in humans (Huber et al., 2004).
Moreover, selective SWA disruption in the motor cortex
during post-training sleep impairs subsequent motor
performance (Fattinger et al., 2017), whereas facilita-
tion of SWA may aid the consolidation of declarative
memories (Marshall et al., 2006; Lu et al., 2018).

Fig. 1. Synaptic homeostasis hypothesis (SHY) (see Tononi and Cirelli,
2003, 2014). During waking, cortical synapses become potentiated
proportionally to their activity, resulting in a net increase in synaptic
strength. Synaptic potentiation during waking is connected to a homeo-
static increase in slow-wave activity (SWA) during non–rapid eye
movement (NREM) sleep, during which the systematic normalization of
synaptic strength (synaptic downscaling and renormalization) takes
place. Larger and most potentiated synapses may remain unscaled.
Furthermore, weak connections may be eliminated, whereas the relative
strength of the remaining connections is preserved. This mechanism
allows further synaptic plasticity to take place during the next day while
preventing the metabolic costs associated with excessive potentiation and
excitability during waking.
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During SWS, cortical and thalamic neurons oscillate
between up and down states, characterized by the
tendency to fire and to be silent, respectively (Tononi
and Cirelli, 2019). This slow and synchronized rhythmic
activity has been proposed as the basis for sleep-
dependent synaptic down-selection, along with some
other forms of neural activity, such as hippocampal
sharp wave-ripples (Norimoto et al., 2018). Throughout
the course of SWS, the cortex proposedly undergoes
a process of synaptic renormalization to produce a global
yet specific downscaling of synaptic strength. Larger
and most potentiated synapses appear most likely to
remain unscaled compared with smaller and less
potentiated synapses (de Vivo et al., 2017). As further
posited by SHY, synaptic connections that are most
active during sleep are preferentially spared (Tononi
and Cirelli, 2019). Such protection from downscaling
has been evaluated in computer simulations (Hashmi
et al., 2013; Nere et al., 2013) and has recently gained
support from an animal study, in which urethane was
used to reproduce the up and down states of NREM
sleep combined with state-specific optogenetic stimula-
tions (González-Rueda et al., 2018).
The states of wakefulness and learning are accompa-

nied by LTP-like changes and increases in synaptic
density and neuronal complexity in the brains of
animals subjected tomanipulations such as an enriched
environment or whisker stimulation (Moser et al., 1997;
Kolb et al., 1998; Knott et al., 2002; Tononi and Cirelli,
2014). In line with SHY, studies have demonstrated
that synapse size and the number of AMPARs in
synaptic sites decrease during sleep (Vyazovskiy et al.,
2008; de Vivo et al., 2017; Diering et al., 2017). These
changes occur along with decreases in cortical firing
rates and synchrony (Vyazovskiy et al., 2009) and in the
frequency and amplitude of miniature excitatory post-
synaptic currents (Liu et al., 2010). Moreover, studies
investigating the evoked responses from transcranial
magnetic stimulation (TMS) in humans suggest that
cortical synaptic plasticity is restored after sleep but
impaired following sleep deprivation (Kuhn et al.,
2016). Time spent awake also results in a net increase
in cortical spines in mice, whereas sleep results in spine
loss (Maret et al., 2011; Yang and Gan, 2012). These
changes may not be, however, limited to the cortex, as
a recent study suggests that sleep-dependent synaptic
renormalization may also occur in the hippocampus
(Spano et al., 2019).
Sleep is likely involved in severalmechanisms beyond

synaptic renormalization proposed by SHY. Indeed,
sleep is often considered to be a key stage for memory
consolidation (Diekelmann and Born, 2010). For exam-
ple, the active consolidation hypothesis proposes that
memory traces encoded during waking are reactivated
and consolidated during sleep (Diekelmann and Born,
2010). These processes have beenmainly investigated in
the hippocampus, where reactivation of neural ensemble

activity occurs during sleep; however, such reactivations
may also occur in concert or independently in other brain
areas (Marshall and Born, 2007). Moreover, differences
in sleep-dependent processing likely exist between var-
ious types of memory traces. These hypotheses may thus
represent various characteristics of wake- and sleep-
dependent plasticity that are not mutually exclusive.

III. The Neurobiological Premise of
Major Depression

Major depression can emerge at almost any age;
however, it is most prevalent in adults aged 18–64
years, with a median age of onset in the 20s (Kessler
et al., 2003, 2012). Notably, this is around the period
when prefrontal cortical development and synaptic
density eventually stabilize toward the adult range
(Chugani et al., 1987; Huttenlocher and Dabholkar,
1997; Petanjek et al., 2011; Tamnes et al., 2017).
Although depression is often diagnosed in adulthood,
a vast amount of evidence indicates that it has de-
velopmental components in many cases. Already in
1649, René Descartes referenced the involvement of
what is now called an implicit (i.e., nondeclarative)
memory by describing how “[an aversive childhood
experience may] remain imprinted on the child’s brain
to the end of his life [without] any memory remaining of
it afterwards” (Schacter, 1987). Indeed, the incorpora-
tion of early negative memory traces and experiences
may contribute to dysfunctional network architecture
and altered implicit cognition, which is known to be
highly relevant for depressive disorders and several
associated behavioral characteristics, such as negativ-
ity (Gaddy and Ingram, 2014) and suicidal thinking
(Nock et al., 2010). Such alterations are most likely to
develop during sensitive periods and are difficult to
remodel thereafter. Animal studies have demonstrated
that even slight changes in the organization of neuronal
networks during sensitive periods contribute to func-
tional alterations that persist throughout life (Greenhill
et al., 2015). These developmental windows exist for
various brain functions and networks, including those
engaged in higher-order cognitive functions and emo-
tional processing (Silbereis et al., 2016). Thus, early life
adversity-driven structural alterations may be impor-
tant in the onset of depressive disorders later in life, an
idea supported by numerous studies (Newman et al.,
1996; Pine et al., 1999; Hammen et al., 2000; Heim and
Nemeroff, 2001; Dougherty et al., 2004; Cohen et al.,
2006; Kitayama et al., 2006; Kessler et al., 2010; Teicher
et al., 2014; Li et al., 2016c; Bandoli et al., 2017; Ellis et al.,
2017; Tyborowska et al., 2018;Martins-Monteverde et al.,
2019; Ohashi et al., 2019). Notably, severe forms of early
life stress, adversity, and maltreatment are associated
with the most difficult treatment-resistant forms of
depression (Bernet and Stein, 1999; Nanni et al., 2012;
Williams et al., 2016).
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Depression is recognized not to result from any
specific pathology affecting only single-cell types or
areas but is characterized by altered functioning of
a more complex cortico-limbic circuitry. The medial
prefrontal cortex, particularly the subgenual cingulate
cortex (SCC), along with connecting subcortical struc-
tures, such as the hippocampus (Videbech and Ravnkilde,
2004; Kempton et al., 2011; Santos et al., 2018), the
amygdala, and the nucleus accumbens, are affected
(Ressler and Mayberg, 2007; Heshmati and Russo, 2015;
Akil et al., 2018). Hyperactive hypothalamus-pituitary
adrenal axis and the overproduction of stress hormones,
decreased neurotrophic support, and reduced neuronal
plasticity are thought to underlie some of the atrophic
changes associated with depression (Lee et al., 2002;
Duman and Monteggia, 2006; Castrén et al., 2007; Liu
et al., 2017). These changes commonly manifest as
a decreased volume of cortical and limbic areas in
patients suffering from depression (Lorenzetti et al.,
2009; Kempton et al., 2011; Schmaal et al., 2016, 2017),
and they are also supported by both human imaging and
postmortem studies showing reductions in cortical
neurons and synapses (Rajkowska et al., 1999; Kang
et al., 2012; Holmes et al., 2019). The extent of these
changes is associated with the duration and severity of
the disorder. Studies in animal models have demon-
strated that exposure to chronic stress results in similar
atrophic alterations (Duman and Aghajanian, 2012).
Dysregulation of connectivity within cortical and

limbic networks is also evident in depressive disorders.
Notably, although major depression is commonly asso-
ciated with reduced neural activity, synaptic plasticity,
and even atrophy in several regions, other areas and
networks may exhibit increased activity or hypercon-
nectivity, which contributes to the overall dysregulation
of information processing and symptomatology such as
rumination. The triple networkmodel proposes that the
default mode network (DMN), salience network (SN),
and central executive network (CEN) are at the core of
several psychopathologies (Menon, 2011). In particular,
depression is associated with increased DMN connec-
tivity (Greicius et al., 2007; Hamilton et al., 2015),
whereas connectivity or activity within SN andCENare
suggested to be reduced (Menon, 2011). It has been
suggested that a switch between internally directed
cognition of the DMN and externally directed cognition
of the CEN is modulated by SN (Sridharan et al., 2008;
Goulden et al., 2014).
Dysregulation of the DMN may be of pivotal impor-

tance in depression, as it is associatedwith self-referential
thinking, remembering the past, future planning, and the
evaluation of survival cues (Buckner et al., 2008). More-
over, abnormal DMN activity and functional connectivity
correlate with the severity of depression and rumination
(Greicius et al., 2007; Sheline et al., 2010; Berman et al.,
2011). Importantly, the activity of the DMN is under-
pinned by patterns of hyperconnectivity between the

DMN and other regions related to symptoms of depres-
sion. For example, Hamilton et al. (2015) have proposed
that the primary dysfunction contributing to depressive
rumination is not overactivity of the DMN per se but
rather the level of connectivity with the SCC, which
demonstrates increased activity (Mayberg et al., 1999).
Deep-brain stimulation of the SCCwhitematter tract has
been shown to reverse symptoms in treatment-resistant
depressive patients along with the normalization of SCC
activity (Mayberg et al., 2005); however, a large mul-
tisite randomized sham-controlled trial failed to re-
produce statistically significant antidepressant efficacy
(Holtzheimer et al., 2017). Future functional imaging
and elaborate deep-brain stimulation studies that in-
volve (multi)targeting key brain areas and networks
will not only yield further important insights into the
effectiveness of these treatments but also elucidate the
underlying pathophysiology of depression.

Several pathophysiological paths may dictate the
emergence of depression and the associated struc-
tural and functional alterations. Apart from depres-
sion being born out of early-life predisposition, late-onset
depression may also rely on mechanisms involving
implicit cognitive processes and networks (Beck, 2008;
Gotlib and Joormann, 2010; Rock et al., 2014; Rayner
et al., 2016), which confer vulnerability to stress and
strengthen negative thought patterns through contin-
ued conscious and nonconscious mental exercise. This
may lead to changes in neural networks determined by
activity-dependent synaptic plasticity, measurable as
changes in synaptic strength and altered neural net-
work balance in favor of the hyperactive circuits.
Conversely, persistent hyperactivity can also facilitate
readjustments in functional and structural connectivity
through mechanisms of homeostatic plasticity (Fauth
and Tetzlaff, 2016). Over the course of worsening of
depression, global levels of synaptic potentiation may
decrease because general patterns of activity are “dom-
inated” by only a subset of networks. Several other
circuits and networks concurrently demonstrate dysre-
gulated activity and connectivity, resulting in long-term
depression–like plasticity, which ultimately culminates
in reversible structural atrophy. This may be evidenced
by the lowest levels of synaptic density in several brain
areas in patients with the highest levels of depression
measured indirectly using a radioligand for synaptic
vesicle glycoprotein 2A (Holmes et al., 2019). A vicious
cycle could be created by the skewed balance between
hypo- and hyperactive networks. For example, hyper-
active depressogenic networks may repeatedly reach
a saturation of synaptic plasticity, which consistently
builds their relative strength during waking and main-
tains it over the renormalization of synaptic strength
during SWS. Similar processes leading to alterations in
synaptic connectivity are likely shared by many other
psychiatric disorders, such as schizophrenia and post-
traumatic stress disorder (Krystal et al., 2017a,b).
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The processes leading to the depressed state are likely
further fueled by stress; inflammation (Vogelzangs
et al., 2012); cognitive, emotional, and genetic factors
(Joormann and Siemer, 2011; Dunn et al., 2015); sleep
problems (Nutt et al., 2008); and other disposing
factors, such as lack of gratifying daily exercise and
social communication. Overall, depression is associ-
ated with reduced physical activity patterns along
with dysregulation of sleep and circadian rhythm
(Nutt et al., 2008; Hasler et al., 2010; Burton et al.,
2013). Conversely, sleep disturbances are signifi-
cantly associated with an increased risk of depression
(Baglioni et al., 2011; Li et al., 2016b) and suicidality
(Malik et al., 2014; Bernert et al., 2015). Moreover,
altered sleep architecture is particularly associated
with affective disorders (Benca et al., 1992). De-
pressed patients commonly exhibit disturbances in
sleep continuity, a shortening of rapid eye movement
(REM) latency, increases in REM density, and in-
creased total REM sleep time, although these changes
are not specific for affective disorders (Riemann et al.,
2020). Notably, REM sleep plays an important role in
emotional processing (Tempesta et al., 2018), and
renormalization of amygdala activity is suggested to
be one of the physiologic roles of REM, a process likely
disrupted in patients suffering from anxiety (Van Der
Helm et al., 2011). Furthermore, depression is often
associated with reduced SWS and a lower delta sleep
ratio, which is indicative of a smaller decrease in SWA
occurring from the first NREM episode to the last
(Kupfer et al., 1990; Armitage, 2007). Most importantly,
some of these sleep-related abnormalities are present
even when patients are in remission (Rush et al., 1986),

and they are associatedwith an increased risk of relapse
(Modell et al., 2002).

IV. Examining Rapid Antidepressant Effects
through Encoding, Consolidation, and

Renormalization in Depression

Several attempts have been made to pinpoint the
precise mechanistic basis underlying ketamine’s anti-
depressant effects. Ketamine’s abilities to boost, at
subanesthetic doses, glutamatergic firing and to in-
crease AMPAR function are among the key areas of
interest (Zanos and Gould, 2018; Zanos et al., 2018b).
These ketamine-induced changes are thought to nor-
malize dendritic spine loss and synaptic plasticity
within the prefrontal cortex and hippocampus through
molecular mechanisms involving, but not limited to,
BDNF (Liu et al., 2012; Lepack et al., 2014) and its
primary target tropomyosin receptor kinase B (TrkB)
(Yang et al., 2015), mitogen-activated protein kinase
(MAPK) (Réus et al., 2014), mammalian target of
rapamycin (mTOR) (Li et al., 2010), and glycogen
synthase kinase 3b (GSK3b) (Beurel et al., 2011) (for
reviews see Duman and Aghajanian, 2012; Duman
et al., 2016; Rantamäki and Yalcin, 2016; Rantamäki,
2019) (Fig. 2). The following questions then arise: how
does ketamine master these mechanisms, and how do
they lead both to rapid and sustained antidepressant
effects and to the rescue of abnormal functional connec-
tivity and plasticity?

According to the prevailing view, ketamine has almost
an ingenious ability to regulate a chain of molecular
events connected with synaptic plasticity. This has led

Fig. 2. General mechanistic principles underlying rapid antidepressant effects. (A) Evoked glutamate bursts (e.g., through disinhibition of inhibitory
interneurons) and AMPAR-mediated facilitation of BDNF signaling and synaptogenesis within the medial prefrontal cortex are considered important
for the rapid antidepressant effects of ketamine. (B) Ketamine is readily distributed in the body after systemic administration; however, it undergoes
rapid elimination and metabolism. The antidepressant effects of ketamine become most evident when its psychotropic actions and acute
pharmacological effects fade out, and the therapeutic effects may last for days or weeks. ENCORE-D proposes that the key to understanding the full
spectrum of neurobiological changes triggered by ketamine is in the adaptations triggered within the brain in response to a pharmacological
“challenge.”
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some researchers to suggest that mere regulation of any
of these effectors leads to rapid and sustained antide-
pressant responses. Although this idea has turned out to
be promising in some rodent studies (Shirayama et al.,
2002; Chen et al., 2012; Fukuda et al., 2016; Hasegawa
et al., 2019), it essentially ignores how these molecular
events are part of activity-dependent synaptic plasticity
(Changeux and Danchin, 1976; Thoenen, 1995; Hensch,
2005; Park and Poo, 2013) (see Introduction). Moreover,
such molecular perspectives fail to appreciate the tem-
poral distribution of the effects of ketamine on cortical
excitation andplasticity aswell as the prolonged influence
on depressive symptoms (Fig. 2). The acute pharmacolog-
ical effects of ketamine are short-lived, lasting only a few
hours, though many neurobiological alterations become
evident long after the immediate engagement of target
receptors suchasNMDARs.Notably, emergingpreclinical
data indicate that specific metabolic byproducts of ket-
amine, namely, hydroxynorketamines (HNKs; especially
2R,6R-HNK), bring about rapid antidepressant effects in
rodents, thus suggesting that the gradual buildup of these
metabolites take part in ketamine’s rapid and sustained
antidepressant effects (Zanos et al., 2016). HNKs do not
share the pharmacological profile of ketamine (Zanos
et al., 2016; Lumsden et al., 2019) and thereby challenge
the original idea that NMDARs inhibition plays an
essential role in (rapid) antidepressant effects (Trullas
and Skolnick, 1990; Skolnick et al., 1996). This topic is
subject to active ongoing work and debate in the
preclinical domain, while patient studies are still un-
derway (Collingridge et al., 2017; Zanos et al., 2018a;
Hashimoto, 2019). However, a recent study did find
a correlation between plasma 2R,6R-HNK levels and
the antidepressant and antisuicidal effects of ketamine in
patients (Grunebaum et al., 2019), but higher rather than
lower levels correlated with less clinical improvement.
Instead of solely giving the credit to ketamine or to

some of its metabolites, or to any particular molecular
event for that matter, ENCORE-D proposes that ket-
amine’s ability to transiently excite cortical neurocir-
cuits triggers the intrinsic mechanisms of synaptic
plasticity (Waltereit and Weller, 2003; Peineau et al.,
2008; Hoeffer and Klann, 2010; Lu et al., 2014) and
homeostasis upon drug withdrawal (i.e., after the
disengagement from target receptors), leading to facil-
itated encoding of activity-dependent changes and
increases in synaptic strength. These synaptic changes
are then consolidated during subsequent steps that
involve changes in transcription and protein synthesis.
In accordance with SHY, these activity-dependent
alterations may reach their final state through the
global renormalization of synaptic weights during sub-
sequent sleep, resulting in long-term changes in circuit
activity and functional connectivity. Fundamental
mechanisms of sleep, and particularly SWA, are at the
core of this process, which results in the engraving of
what can be thought of as a pharmacologically induced

“memory.” This is not a memory trace in a strictly
explicit sense. It is instead recapitulated as the sum of
synaptic changes that the pharmacological effect sets
in motion and that are subsequently consolidated and
sustained throughout sleep. These alterations ulti-
mately affect the patterns of neural activity and the
flow of implicit cognitive processes, promoting thought
patterns free of depression. As will be discussed, such
a hypothesis may be relevant not only for ketamine but
also for other manipulations capable of eliciting rapid
and sustained antidepressant effects. We now overview
evidence supporting the key steps of the ENCORE-D
hypothesis (Fig. 3).

A. Encoding Activity into Synaptic Change

1. Cortical Excitation. Though competing explana-
tions for the rapid antidepressant effects of ketamine
have been proposed, most converge on the idea that
subanesthetic (i.e., antidepressant) doses of ketamine
lead to widespread cortical excitation and increases in
energy metabolism (Breier et al., 1997; Lu et al., 2008;
Li et al., 2016a; Abdallah et al., 2018a) (Fig. 2). These
effects have been suggested to occur through the in-
hibition ofNMDARspresent onGABAergic interneurons,
which leads to decreased inhibition of excitatory pyra-
midal neurons and increased glutamatergic signaling
(Homayoun and Moghaddam, 2007), as demonstrated
in animals (Moghaddam et al., 1997; Chowdhury et al.,
2017) and humans (Abdallah et al., 2018a). The excit-
atory effects of ketamine are dose-dependent, as anes-
thetic doses decrease glutamate activity (Moghaddam
et al., 1997), and “markers of excitation,” such as the
phosphorylation of p44/42-MAPK, are differentially
regulated by low and high doses of ketamine in rodents
(Li et al., 2010; Kohtala et al., 2019b). The rapid
antidepressant effects of ketamine have been proposed
to be dependent on this glutamatergic excitation and
the regulation AMPARs, as blocking these channels
abolishes antidepressant-like behavioral responses in
rodents (Maeng et al., 2008; Koike et al., 2011; Koike
and Chaki, 2014).

The altered “balance of inhibition and excitation”
produced by ketamine is thought to be displayed as
increased high-frequency gamma oscillations on a corti-
cal EEG. The effects of ketamine on gamma power are
dose- and area-specific; furthermore, they are most
prominent during the peak of pharmacological effects
when the target receptors are preferentially occupied
(Maksimow et al., 2006; Kohtala et al., 2019a,b), but
they remain upregulated several hours after drug
administration in patients (Nugent et al., 2019a).
Moreover, patients who have lower baseline gamma
power and experience larger increases in response to
ketamine also report better antidepressant responses
(Nugent et al., 2019a). In another study, ketamine
responders displayed a difference in peak gamma re-
sponse to a somatosensory stimulus when compared
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with nonresponders, further suggesting that altered
excitation and synaptic potentiation are important first
steps for ketamine’s antidepressant effects (Nugent
et al., 2019b).
Global cortical excitation is perhaps even more

obvious with many of the other treatments possessing
rapid antidepressant potential. Electroconvulsive ther-
apy (ECT) remains as one of the most effective inter-
ventions for treatment-resistant depression. Though
series of consecutive treatments are typically required
for therapeutic effects of ECT, some studies have shown
antidepressant effects already after the first treatment
episodes (Rich, 1984; Fligelman et al., 2016). The
alternating current induced by ECT essentially forces
activity into groups of cortical neurons (Fink, 2014).

Neurons along the traveling current, dictated by elec-
trode placement, begin firing simultaneously, which
results in the propagation and generalization of
epileptiform activity. Similar to ECT, pharmacologi-
cal convulsants such as flurothyl have been success-
fully used to treat depression in the past. In animals,
seizures induced by electroconvulsive shock (ECS; an
animal model of ECT) have been suggested to facili-
tate glutamate release and NMDAR activation (Reid
and Stewart, 1997). Notably, findings related to ECS
have provided important evidence for the upregula-
tion of BDNF following seizures (Nibuya et al., 1995).
These findings formed the basis for the neurotrophin
hypothesis of depression, which for the first time
suggested that neurotrophic support is an important

Fig. 3. A simplified model of the ENCORE-D hypothesis. (A) During the development of depression, susceptible neuronal networks become gradually
hyper- (red) or hypoactive (blue) under predisposing environmental conditions, and they retain that state at the expense of optimal network
functionality. This may manifest as, for example, uncontrollable self-focused rumination, depressive thoughts, anhedonia, and cognitive dysfunctions.
Rapid-acting antidepressants (i.e., ketamine represented in the figure) have excitatory effects that are reflected in the activity of local circuits, leading
to increases in cortical synaptic strength and the re-emergence of global functional connectivity patterns. This breaks the recursive cycle of rumination
and allows for the immediate relief of depressive symptoms. (B) Increased excitatory tone and synaptic strength are reflected in the homeostatic
emergence of waking slow-wave activity (SWA) after the acute pharmacological or physiologic effects of the said intervention have ceased. This phase is
associated with the activation of several pathways implicated in synaptic plasticity and protein synthesis, and it contributes to the subacute
consolidation of synaptic change. In subsequent slow-wave sleep (SWS), SWA is increased proportionally to the increase in cortical synaptic strength,
and the global renormalization of synaptic strength takes place. During this period of renormalization, the increased activity of previously
strengthened circuits offers protection from synaptic downscaling. Therefore, groups of synapses may maintain their relative potentiation, whereas
others are relatively depotentiated. However, if no further excitatory stimulus or other therapy is applied, susceptible neuronal networks may again
gravitate toward their depressogenic state over the course of several sleep-wake cycles. Once depressogenic patterns of activity are re-established,
symptoms of depression re-emerge.

446 Rantamäki and Kohtala

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


feature in the pathophysiology of depression and antide-
pressant actions (Duman et al., 1997).
Sleep deprivation, another nonpharmacological treat-

ment of depression and an important tool for examining
SHY in relation to sleep (see above), also increases
cortical excitation (Huber et al., 2013; Meisel et al.,
2015; Ly et al., 2016) and extracellular glutamate levels
(Dash et al., 2009). In addition, several other experimen-
tal rapid-acting depression treatments, such as the
antimuscarinic agent scopolamine (Furey and Drevets,
2006; Voleti et al., 2013; Chowdhury et al., 2017; see also
Park et al., 2019) and psychedelic drugs (Scruggs et al.,
2003;Muschamp et al., 2004; Vollenweider andKometer,
2010; Kometer et al., 2013; Carhart-Harris et al., 2016,
2018), acutely increase cortical excitation and glutamate
activity despite obvious pharmacological differences.
We recently reported that nitrous oxide (“laughing
gas”), an NMDAR-blocking anesthetic possessing rapid
antidepressant potential (Nagele et al., 2015), increases
markers of cortical excitation, including the expression
of immediate early genes (IEGs) such as c-Fos (Fos proto-
oncogene), Arc, and Homer1 (homer protein homolog 1)
(Kohtala et al., 2019b).Whether other anesthetics with
antidepressant potential, such as isoflurane (Langer
et al., 1995; Weeks et al., 2013; Antila et al., 2017) or
propofol (Mickey et al., 2018), also regulate cortical
excitation in a similar manner remains to be investi-
gated. Several reports have, however, highlighted the
paradoxical excitation that frequently takes place
during general anesthesia, characterized by a pattern
of burst-suppression in the cortical EEG (Kroeger and
Amzica, 2007; Ferron et al., 2009). It could be that the
variable therapeutic outcomes of general anesthesia
reported in depressed patients are related to the
unpredictable nature of such treatments on cortical
excitation.
2. Synaptic Potentiation and Spinogenesis. Neural

communication in neocortical circuits is adjusted in co-
ordination with experience. Changes can be made by
altering the strength of synaptic connections or through
the growth and retraction of dendritic spines and
axonal boutons (Holtmaat and Svoboda, 2009). Synap-
tic potentiation, synaptic strength, and spine size
correlate with one another, with stronger spines being
larger in size and capable of more effective neurotrans-
mission. Indeed, studies using caged glutamate released
at individual spines have demonstrated increased LTP
taking place alongwith increases in spine size (Matsuzaki
et al., 2004).
Changes in the phosphorylation and trafficking of

AMPARs constitute the early phase of LTP (E-LTP)
formation (Esteban et al., 2003; Yang et al., 2008), which
is the starting point for activity-induced synaptic alter-
ation. This change is set in motion by an increased Ca21

flow through NMDARs, which leads to the activation
of calcium-dependent enzymes such as CaMKII (De
Koninck and Schulman, 1998). CaMKII regulates several

targets, including AMPARs (Incontro et al., 2018), p44/42-
MAPK (Zhu et al., 2002), and BDNF-TrkB signaling
(Harward et al., 2016), and its activity is associated with
the control of spine size and synaptic strength (Lee et al.,
2009; Pi et al., 2010). Among other things, spine size and
synaptic strength are regulated by the constant dynamic
motion of AMPARs to and from the postsynaptic mem-
brane (Derkach et al., 2007). The activation of NMDARs
and the following Ca21 influx is thought to play a role in
the phosphorylation, lateral diffusion, and incorporation
of GluR1 subunit containing AMPARs from extrasynaptic
sites to the active postsynaptic densities (PSDs). More-
over, small GTPases rat sarcoma protein and Ras-related
protein have been found to control AMPAR subunit
trafficking and synaptic potentiation through mech-
anisms requiring MAPK activation (Zhu et al., 2002).
Increased activation and expression of GluR1 sub-
units in the synaptic membrane contributes to en-
hanced channel conductance and function, which are
important for E-LTP expression (Hayashi et al., 2000;
Derkach et al., 2007; Kristensen et al., 2011), whereas
subsequent accumulation of GluR2-containing AMPARs
may contribute to maintaining LTP. Concomitantly,
activity-induced signaling cascades, including MAPK,
reach the nucleus and activate transcription factors
(Barco et al., 2002). This leads to changes in the
expression of IEGs, such as c-Fos (Fos proto-oncogene),
which orchestrates further transcriptional events. IEG
mRNAs, which are encoding proteins that support the
functions of synapses and dendrites, are transported to
the synapse for local protein synthesis (e.g., Bdnf,
Homer-1a, Arc) (Flavell and Greenberg, 2008; Lisman
et al., 2018). These processes, involving changes in
transcription and translation, are generally deemed to
contribute to the late phase of LTP (L-LTP) (Derkach
et al., 2007; Costa-Mattioli et al., 2009).

Ketamine has been shown to regulate CaMKII,
eukaryotic elongation factor 2 kinase (Adaikkan et al.,
2018), GSK3b (Beurel et al., 2016), and the phosphor-
ylation of GluR1 subunits (Zhang et al., 2016), altering
the expression, composition, and trafficking of AMPARs
to the postsynaptic membrane. The blocking of AMPARs
abolishes the ketamine-induced BDNF release and
phosphorylation of MAPK in primary neuronal cul-
tures, suggesting that these processes are dependent
on increased glutamatergic signaling (Lepack et al.,
2016). Ketamine also induces several transcriptional
changes in IEGs, including alteredHomer1 expression
(de Bartolomeis et al., 2013; Ficek et al., 2016). These
IEGs are translated and accumulate in the PSD, which
refers to complex scaffolds of proteins located in close
proximity to the postsynaptic membrane in dendritic
spines. Proteins such as Homer1, Arc, and PSD-95 are
important components of the PSD and contribute to
glutamatergic signaling and synaptic function. Changes
in Homer1a expression are particularly interest-
ing because it has been associated not only with the
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homeostatic regulation of sleep (Maret et al., 2007;
Mackiewicz et al., 2008) but also with the antidepressant-
like effects of ketamine, sleep deprivation, and ECS in
rodents (Conti et al., 2007; Serchov et al., 2015). A
recent study demonstrating that systemic administra-
tion of cell-permeable Homer1a recapitulates the
behavioral responses of ketamine in rodents provides
a further link between Homer1a and rapid antidepres-
sant responses (Holz et al., 2019).
The administration of ECSs also produces prominent

synaptic potentiation in rodents. Studies have shown
that brief electroconvulsive seizures essentially reduce
the degree to which further LTP can be induced in the
dentate gyrus of anesthetized rats. Indeed, analyses of
the EPSPs (excitatory postsynaptic potentials) and
population spike size suggest that LTP induction had
already occurred after ECS induced seizure activity,
thus hampering further potentiation attempts (Stewart
and Reid, 1993; Stewart et al., 1994). These results are
also supported by a study in which hippocampal EPSP
characteristics were monitored throughout a series of
ECS treatments. The increase in EPSP slope developed
gradually over the course of the first five seizures,
whereas a single seizure did not induce a significant
change (Stewart et al., 1994). The saturation of LTP-
like plasticity and synaptic strength appears to resist
further potentiation attempts, whereas weaker synap-
ses are more likely to gain in strength (Abraham et al.,
2001; Abraham, 2008). Similar to ECS, sleep depriva-
tion is thought to saturate LTP-like plasticity in
humans (Kuhn et al., 2016) and rats (Campbell et al.,
2002; Vyazovskiy et al., 2008). Ample evidence demon-
strates the upregulation of IEGs in response to both
ECS and sleep deprivation (Cirelli and Tononi, 2000).
Apart from synaptic potentiation, the growth of

dendritic spines and their retraction offer powerful
ways tomodulate circuit activity. In some cortical areas,
alterations in the density of spines and synapses have
been demonstrated to occur after exposure to different
training paradigms, enriched environments (Greenough
et al., 1985; Moser et al., 1994, 1997; Kolb et al.,
2008), and sensory stimulation (Knott et al., 2002;
Trachtenberg et al., 2002; Holtmaat et al., 2006). On
the other hand, chronic stress decreases spine density
in areas implicated in depression, such as the pre-
frontal cortex and hippocampus; this finding is com-
monly observed in animal models of depression (Qiao
et al., 2016). Though the structures of dendritic and
axonal arbors remain relatively stable in adulthood,
even subtle changes in the growth or retraction of
boutons and dendritic spines may affect functional
and behavioral outcomes. Several factors are thought
to be important for the structural plasticity of den-
dritic spines, including presynaptic activity (Engert
and Bonhoeffer, 1999; Maletic-Savatic et al., 1999),
glutamate release (Richards et al., 2005), neurotro-
phins (Tanaka et al., 2008), mTOR signaling (Lipton

and Sahin, 2014), CaMKII (Glazewski et al., 2000),
and GSK3b (Cuesto et al., 2015; Cymerman et al.,
2015; Ochs et al., 2015), among others.

Furthermore, animal studies investigating the effects
of ketamine on spine synapse alterations have found
that a single subanesthetic dose of ketamine increases
the synthesis of synaptic proteins and the number of
dendritic spines in the medial prefrontal cortex (Li
et al., 2010; Moda-Sava et al., 2019). In the chronic
unpredictable stress model of depression, ketamine is
able to rapidly reverse the loss of spines along with the
amelioration of depressive behavior, an effect that is
blocked by the administration of rapamycin, which is
an mTOR antagonist (Li et al., 2011). In addition to
ketamine, ECS has been shown to rescue deficits in
spine morphology induced by the stress hormone corti-
costerone in the mouse cortex along with the induction
of activity-dependent synthesis of BDNF (Maynard
et al., 2018). A similar rescue of stress-induced dendritic
changes after ECS treatment has been shown in the
hippocampus of rats (Hageman et al., 2008; Kaastrup
Müller et al., 2015). However, in a recent study, the
increase in prefrontal cortical spines was not required
for the rapid effects of ketamine on animal behavior or
circuit function (Moda-Sava et al., 2019), thus suggest-
ing that alterations in synaptic strength and circuit
function may be responsible for the fast onset of
antidepressant effects, whereas spinogenesis contrib-
utes to the sustained action. Upcoming clinical studies
will be important to elucidate the role of synaptogenesis
and underlyingmechanisms such asmTOR in rapid and
sustained antidepressant effects.

3. Acute Changes in Circuit Function. Current
network models of brain function suggest that function-
ality is generated through the activation neural ensem-
bles consisting of groups of neurons (Yuste, 2015).
ENCORE-D proposes that rapid antidepressant effects
are set forth by increased cortical excitation, activation
of neural ensembles, and the resulting synaptic poten-
tiation during stimulation or pharmacological action.
These changes rapidly alter the computational pro-
cesses in cortical circuits, ultimately modulating pat-
terns of functional connectivity and the emergence of
behavioral states. Such reorganization may also con-
tribute to the acute increase in prefrontal functional
connectivity reported in depressed patients treated
with ketamine (Abdallah et al., 2018b). Indeed, re-
cent studies suggest that the optogenetic activation of
groups of neurons in the visual cortex can generate
neural ensembles that spontaneously recur in rodents
(Carrillo-Reid et al., 2016) and that learning can rapidly
engender memory engrams in the human neocortex
(Brodt et al., 2018).

As indicated by ENCORE-D, the local and more
global rearrangements in neural communication result
in the rapid amelioration of depressive thought pat-
terns. Once implicit cognitive patterns are restored, the
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underlying neural ensembles and networks begin to
gather synaptic strength in competition with prevailing
depressogenic network activity. In other words, the
stimulus-facilitated activation of previously “dormant”
circuits may rapidly switch the balance toward more
unconstrained patterns of local and global activity. Nota-
bly, ketamine has been shown to reverse stress-induced
changes in the ensemble activity of prefrontal cortical
projection neurons accompanied by antidepressant-like
behavioral changes in rodents (Moda-Sava et al., 2019).
Changes in functional connectivity are also associ-

ated with the antidepressant effects of ECT and
neuromodulatory treatments. For example, a study
by Argyelan et al. (2016) used resting-state functional
magnetic resonance imaging to measure the frac-
tional amplitude of low-frequency fluctuation and
found that depressed patients had higher baseline
activity and connectivity in the SCC, with higher
values predicting a better response to ECT. This
increased activity was reduced after a single ECT
treatment and completely normalized at the end of
the treatment course. On the other hand, Liu et al.
(2015) reported an increase in the local activity and
connectivity of the SCC in response to ECT. Moreover,
Perrin et al. (2012) investigated the effects of an ECT
treatment course on global functional connectivity
and found a decrease localized to a limited area within
the left dorsolateral prefrontal cortex (DLPFC) in
severely depressed patients. A recent study by Leaver
et al. (2018) proposed that pretreatment connectivity
measures of the DLPFC and SCC predict ECT treat-
ment outcomes. Several studies have also reported
functional connectivity changes in response to repeti-
tive TMS (rTMS) in depressed patients (Ge et al., 2017;
Kito et al., 2017; Richieri et al., 2017; Du et al., 2018;
Iwabuchi et al., 2019). Positive responses to rTMS have
been associated with reduced connectivity of the SCC
to the DMN (Philip et al., 2018), along with reduced
activity of the SCC and connectivity with the DLPFC
(Hadas et al., 2019), supporting the hypothesis of
altered connectivity in these areas underlying depres-
sive symptoms (Hamilton et al., 2015). Moreover,
sleep-deprived healthy participants and depressed
patients demonstrate alterations in functional connec-
tivity patterns (Bosch et al., 2013; Chen et al., 2018;
Kong et al., 2018). In particular, after sleep depriva-
tion, depressed patients demonstrate reduced connec-
tivity between the ACC and DMN (Bosch et al., 2013).
In synthesis of the discussed studies, ENCORE-D

proposes that rapid-acting antidepressants share the
property of eliciting pronounced cortical excitation and
synaptic potentiation, thus promoting altered encoding
of information and changes in network dynamics. The
increase in excitatory tone effectively leads to acute
alterations in functional connectivity, as reported with
ketamine, sleep deprivation, ECT, and rTMS. Areas and
networks implicated in treatment responses include, but

are not limited to, theACCandSCC, theDLPFC, and the
DMN. However, future studies are likely to offer better
perspectives on which specific brain regions and net-
works are most relevant for antidepressant action. As
suggested by ENCORE-D, the switch in connectivity
entails the disruption of depressogenic network dom-
inance and the reinstatement of normal patterns of
connectivity and activity, evidenced as a decrease in
rigid patterns of thought, such as depressive rumina-
tion, which is a core symptom of depressive disorders.
These changes, however, are short-lived, and as such,
they require consolidation to remain sustained.

B. Subacute Consolidation of Synaptic Change

1. Protein Synthesis and Synaptic Consolidation.
Synaptic consolidation generally refers to the posten-
coding process, which stabilizes stimulus-induced ac-
tivity into a more stable (“storable”) form. This is
assumed to occur within a short time from the induction
of a memory trace, being finalized in synaptic alter-
ations that confer resistance to amnesic agents. In
animals, the administration of protein synthesis inhib-
itors does not affect short-term improvement (i.e., short-
term memory) in task performance while disrupting
long-term memory (Davis and Squire, 1984). The acti-
vation of pathways important for protein synthesis
during memory consolidation suggests an intertwined
relationship between memory and translation (Costa-
Mattioli and Sonenberg, 2008). Indeed, de novo protein
synthesis is required for the consolidation of induced
LTP, which is the basis for the formation of lasting
memories (Goelet et al., 1986; Cammalleri et al., 2003;
Bekinschtein et al., 2007). Moreover, the induction of
L-LTP through electrical or pharmacological stimula-
tion is thought to require changes in gene expression
along with the local translation of mRNAs in dendrites
(Kelleher et al., 2004; Sutton and Schuman, 2006;
Costa-Mattioli and Sonenberg, 2008). The blocking of
either the transcription steps or the translation inhibits
the formation of lasting synaptic change.

The translation of newprotein products is suggested to
contribute to both the stabilization of activity-induced
changes in synaptic strength and the structural plastic-
ity of dendritic spines (Vanderklish and Edelman, 2002;
Miniaci et al., 2008; Tanaka et al., 2008). Moreover,
a mechanism of synaptic tagging has been proposed to
explain how short-term memories transform into long-
term memories (Frey and Morris, 1997). In synaptic
tagging, a stimulus establishes molecular “tags” in
active synapses that can then become further potenti-
ated in L-LTP by associating with newly synthesized
plasticity-related proteins. Kinases triggered during
E-LTP are thought to contribute to L-LTP, such as
MAPK (Thomas andHuganir, 2004), CaMKII (Ma et al.,
2015), protein kinase B (Pen et al., 2016), phosphoinosi-
tide 3-kinase (Asrar et al., 2009), and protein kinase C
(Jalil et al., 2015).
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Activation of mTOR and MAPK, which initiate pro-
tein synthesis through eukaryotic translation initiation
factors 4E and 4E-binding protein 1, are among the
multiple pathways involved in translation regulation
for plasticity and memory (Hay and Sonenberg, 2004;
Amorim et al., 2018). Key components of these path-
ways are MAPK-interacting serine/threonine-protein
kinase 1 and 2. The disruption of this translation
mechanism has been shown to result in depression-
like behavior in mice (Aguilar-Valles et al., 2018).
Importantly, several studies associate the increased
phosphorylation TrkB, MAPK, mTOR, and GSK3bwith
the antidepressant-like effects of ketamine in rodents
(Li et al., 2010; Beurel et al., 2011; Lepack et al., 2016;
Sun et al., 2016). A seminal study by Li et al. (2010)
demonstrated that a subanesthetic dose of ketamine
induced phosphorylation changes in mTOR, p70S6K,
eukaryotic translation initiation factor 4E-binding pro-
tein 1, p44/42-MAPK, and protein kinase B within
30 minutes, whereas synaptic proteins Arc, Synapsin
I, PSD95, and GluR1 were upregulated hours later. The
blocking of mTOR by rapamycin also blocks ketamine-
induced antidepressant-like effects and accelerated fear
extinction responses (Li et al., 2010; Girgenti et al.,
2017), suggesting that protein synthesis is important
for the consolidation of these effects. Similarly, the
blocking of MAPK signaling diminishes ketamine’s
antidepressant-like effects (Réus et al., 2014). More-
over, studies have suggested that the activation of
mTOR and protein synthesis are linkedwith ketamine’s
ability to increase the formation of dendritic spines in
the prefrontal cortex (Li et al., 2010; Moda-Sava et al.,
2019). This effect likely relies on pharmacologically
induced excitation, as electrophysiological experiments
have shown increased spine formation to occur rapidly
within hours of an LTP-inducing stimulus (Engert and
Bonhoeffer, 1999; Maletic-Savatic et al., 1999; Toni
et al., 1999; Tang et al., 2002).
Among other targets implicated in synaptic consolida-

tion and ketamine’s effects is GSK3b, a promiscuous
kinase with multiple functions and targets (Li and Jope,
2010). Its activity can be blocked by increased phosphor-
ylation at the serine-9 residue, which has been shown to
take place in LTP induction (Peineau et al., 2007) and
ketamine administration (Beurel et al., 2011). This in-
activation following LTP disrupts the induction of long-
termdepression in synapses for up to an hour, possibly by
altering AMPAR trafficking, and it has been suggested to
maintain information encoded during LTP for subse-
quent consolidation (Peineau et al., 2007). The inhibition
of GSK3b has been proposed to be necessary for the rapid
antidepressant-like effects of ketamine observed in mice
(Beurel et al., 2011), with coadministered lithium (an
unspecific GSK3 inhibitor) leading to additive effects (Liu
et al., 2013). However, a recent clinical trial reported that
lithiumdidnot increase or prolong the effects of ketamine
in depressed patients (Costi et al., 2019).

Notably, many studies have focused on either imme-
diate or relatively sustainedmolecular changes induced
by ketamine, measured during the acute pharmacological
effects of the drug or during the day following treatment.
These approaches have generally not accounted for the
temporal gradients of molecular changes that may take
place during acute pharmacological effects of ketamine
and thereafter (t1/2 ;10–15 minutes in mice) (Maxwell
et al., 2006). To this end, we investigated the time-
dependent effects of nitrous oxide and flurothyl on these
molecular responses, as the exceptional pharmacokinetics
of these compounds allows for the differentiation of acute
effects from effects emerging immediately after. Nitrous
oxide produced no regulation in the phosphorylation of
TrkB, GSK3b, and p70S6K (downstream of mTOR)
during gas administration (i.e., duringNMDARblockade);
instead, changes took place gradually after the gas flow
was terminated (Kohtala et al., 2019b). Similarly, these
signaling mechanisms remained unaltered immediately
during a flurothyl-induced seizure but, again, appeared
gradually during the postictal period. These results
suggest that pathways involved in synaptic plasticity
and protein synthesis are differentially regulated during
acute excitatory effects and periods following thereafter.
Detailed time- and dose-dependent studies of ketamine
on these pathways must, however, be carried out.

2. Homeostatic Emergence of Wake Slow-Wave Activity.
SWA, characterized by ;0.5–4 Hz high amplitude
oscillations in the EEG, occurs predominantly during
physiologic deep NREM sleep; however, it also occurs
under states of sedation and anesthesia and, in some
cases, locally during prolonged waking (Nir et al., 2017).
Several studies have suggested that rapid-acting anti-
depressants share common features of regulating SWA
during sleep. Notably, the pronounced upregulation of
SWA can also occur during quiet waking (Sachdev et al.,
2015). Though increased waking SWA has previously
been considered to be mainly a pathologic EEG signa-
ture, it has also been suggested to serve as a proxy for
cortical plasticity (Assenza and Di Lazzaro, 2015). The
increases in waking SWA appear to follow similar
principles as the upregulation of SWS, with high levels
of neuronal activity resulting in increases in subsequent
EEG slowing. For example, the arousal-promoting
effects of subanesthetic ketamine are countered by
increases in the intensity of SWA after the acute
pharmacological effects have dissipated and again
during sleep in rats (Feinberg and Campbell, 1993,
1995). Similarly, albeit more pronounced and long-
lasting, increases in SWA take place following adminis-
tration with MK-801 (dizocilpine; a potent and durable
NMDAR antagonist) (Campbell and Feinberg, 1996a,b),
sharing features with the SWS rebound caused by sleep
deprivation (Campbell and Feinberg, 1999). Increases in
waking SWA have also been noted following the cessa-
tion of nitrous oxide administration in humans (Henrie
et al., 1961;Williams et al., 1984; Foster and Liley, 2011).
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The emergence of rebound SWA is not limited to
pharmacological agents that possess antidepressant
properties. Postictal increases in SWA after ECT are
widely documented, and other convulsive therapies,
such as flurothyl, share similar features (Chusid and
Pacella, 1952; Fink and Kahn, 1957; Chatrian and
Petersen, 1960; Kriss et al., 1978; Silfverskiöld et al.,
1987; Sackeim et al., 1996; Perera et al., 2004). Notably,
pronounced postictal EEG slowing has been associated
with rapid antidepressant responses (Folkerts, 1996)
and clinical improvement after ECT (Nobler et al., 1993;
Suppes et al., 1996). As already noted, though a sin-
gle seizure is usually insufficient to produce marked
symptomatic relief in depression, some patients
have responded already to a single ECT (Rich, 1984;
Fligelman et al., 2016). In further support of the idea
of the homeostatic emergence of waking SWA in
response to neural activity, a clinical study using
cortical intermittent theta burst stimulation found
increases in waking delta frequency power following
the stimulation (Assenza et al., 2015).
We have recently observed an increase in waking

SWA following the withdrawal of nitrous oxide, after
subanesthetic ketamine, and as a rapid response to
flurothyl-induced seizures in mice (Kohtala et al.,
2019b; Kohtala et al., unpublished data). This phenom-
enon is best exemplified by nitrous oxide, which evokes
SWA within 5–15 minutes after gas cessation when the
drug has been essentially eliminated (exhaled unchanged
withinminutes) from the body (Kohtala et al., 2019b). The
period of nitrous-oxide–induced waking SWA, along with
coinciding increases in the phosphorylation of TrkB,
GSK3b, and p70S6K, continues long after drug with-
drawal (Kohtala et al., 2019b) and overlaps with
a probable time period for changes involved in synaptic
consolidation. Whether subanesthetic ketamine regu-
lates this molecular cascade similarly during homeo-
static SWA remains to be investigated.
The MAPK pathway is a possible candidate involved

in the homeostatic upregulation of SWA, as increases in
the phosphorylation of p44/42-MAPK occur during the
acute excitatory effects of nitrous oxide, subanesthetic
ketamine (Kohtala et al., 2019b), and ECS/flurothyl
(Hansen et al., 2007; Rosenholm M., et al. unpublished
data). Conversely, large decreases in MAPK phosphory-
lation occur during SWA induced by sedative or anes-
thetic agents and during the homeostatic regulation of
waking SWA (Kohtala et al., 2016, 2019b). Intriguingly,
the MAPK pathway has been shown to regulate sleep
duration through activity-induced gene expression dur-
ing wakefulness, with p44/42-MAPK deletion or inhibi-
tion significantly increasing the duration of wakefulness
in mice (Mikhail et al., 2017). Though the function of
this phenomenon remains almost completely unstudied,
ENCORE-D suggests that the period dominated by
waking SWA in response to rapid-acting antidepressants
represents a physiologically meaningful step for the

subacute consolidation of activity-induced synaptic
changes, involving alterations in both protein synthe-
sis and energy metabolism, resembling deep or local
sleep. Notably, a recent study conducted in zebrafish
demonstrates the homeostatic emergence of a sleep-
like state immediately following acute administration
of pharmacological agents that prominently increase
neuronal activation (Reichert et al., 2019).

In summary of this section, ENCORE-D proposes
that the acutely emerging homeostatic increase in
waking SWA after cortical excitation, which coincides
with the activation of several pathways involved in
synaptic plasticity and protein synthesis, contributes to
the subacute consolidation of synaptic change.Moreover,
the homeostatic processes that are activated in response
to excitation may share common mechanisms with the
emergence of waking SWA after cortical stimulation or
increased sleep SWA after TMS or sleep deprivation.
Future studies that specifically investigate the electro-
physiological, molecular, and cellular changes occurring
immediately after rapid-acting antidepressant treat-
ments, as well as their functional and clinical signifi-
cance, will be of great importance to test this hypothesis.

C. Renormalization and Consolidation of Synaptic
Strength during Sleep

1. Slow Waves and Rapid Antidepressant Responses.
Sleep plays an extremely important role in learning and
memory consolidation (Abel et al., 2013). During differ-
ent stages of sleep, rich patterns of neural activity take
turns in periods of REM and NREM sleep throughout
the cortex. Neurons previously activated during the day
are recruited by patterns of reactivation, which are
thought to contribute to the consolidation of pre-
viously encoded information. Increasing knowledge
of the mechanisms of sleep suggests that complex
interactions between different brain regions, emerg-
ing neural activity, and the phases of sleep act in
conjunction to modulate learning and memory. For
understanding the basic idea of ENCORE-D, we now
focus on examining mechanisms associated with SWS
from the perspective of SHY (Tononi and Cirelli,
2003). However, it is important to recognize that
several differentmechanisms throughout the complex
patterns of sleep periods may be ultimately involved.

According to SHY, synaptic potentiation during ac-
tive waking is connected to the homeostatic increase in
SWA during sleep. In other words, the higher the level
of cortical synaptic potentiation, the higher the in-
tensity of slow waves during subsequent sleep. This
connection between preceding neural activity and the
emergence of subsequent sleep SWA has been dem-
onstrated in numerous studies. For example, SWS
is increased after sleep deprivation (i.e., recovery
sleep) (Cajochen et al., 1999; Huber et al., 2000) and
after cortical TMS (Huber et al., 2007). Local increases
in SWA emerge after sensory or motor stimuli in
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experience-related brain areas during NREM sleep
(Kattler et al., 1994; Huber et al., 2004; Mascetti et al.,
2013), whereas arm immobilization reduces SWA in
the sensorimotor area (Huber et al., 2006) and dark
rearing in the visual cortex (Miyamoto et al., 2003).
Moreover, several studies have investigated the
effects of sleep manipulations for the consolidation
of nondeclarative memories (Stickgold, 2005; Miyamoto
et al., 2017). For example, boosting sleep spindles
enhances finger-sequence tapping task performance
(Lustenberger et al., 2016), and the perturbation of
sleep slow waves in the motor cortex decreases motor
performance (Fattinger et al., 2017). Notably, SWS
also correlates with cerebral protein synthesis in mon-
keys (Nakanishi et al., 1997) and rodents (Ramm and
Smith, 1990) and has been suggested to contribute to
the formation of dendritic spines after learning (Yang
et al., 2014).
During stages of deep sleep, cycles of SWS and synaptic

renormalization take place (Tononi and Cirelli, 2003).
Based on the previous activity of the synapses and the
neural networks they are part of, synapses may lose
potentiation, remain unchanged, or, in some cases,
gain strength (Fig. 1). This renormalization of synaptic
strength during sleep contributes to adjusting the
baseline of neural activity for the subsequent waking.
The ENCORE-D hypothesis proposes that the sleep
following ketamine and other rapid-acting antidepres-
sant treatments is important for the sustained consol-
idation of synaptic changes and the full realization of
the antidepressant effects through the renormaliza-
tion of synaptic weights. Moreover, ENCORE-D pro-
poses that in depression, the balance between waking
neural activity and synaptic renormalization in sleep
is compromised. Depressed patients spend significant
amounts of time in rumination, whereas complex
cognitive tasks, or even routine daily activities, may
seem insurmountable. This is perhaps also evidenced
in decreased patterns of motor activity during the day,
whereas increases in activity take place during the
night (Burton et al., 2013). Rapid-acting antidepres-
sants administered during waking cause rapid changes
in synaptic strength and circuit function, which are
subacutely consolidated in the following hours. During
subsequent sleep, a period of further consolidation,
along with the reactivation of neural activity and the
renormalization of synaptic strength, takes place, thereby
allowing homeostatic processes to readjust network func-
tion in a sustained manner. Under these circumstances,
previously hypoactive but now pharmacologically poten-
tiated neural networks can conserve some of their gained
strength throughout SWSand the accompanying synaptic
renormalization.
In support of ENCORE-D, clinical evidence suggests

that the most robust antidepressant responses to sub-
anesthetic ketamine become evident during the follow-
ing day (i.e., after one night’s sleep) (Berman et al.,

2000; Zarate et al., 2006a; Lapidus et al., 2014; Phillips
et al., 2019). Studies have also demonstrated the
normalization of global functional connectivity patterns
when measured 24 hours after treatment (Abdallah
et al., 2017a,b) and decreases in suicidal cognition within
the same time frame (Price et al., 2014, 2009; Wilkinson
et al., 2018). Likewise, antisuicidal responses in de-
pressed patients have been associated with reductions
in wakefulness the night following ketamine treat-
ments (Vande Voort et al., 2017). Moreover, a recent
double-blind placebo-controlled crossover functional
magnetic resonance imaging imaging study demon-
strated the normalization of connectivity between the
insula and DMN in depressed patients when compared
with healthy controls 2 days after ketamine adminis-
tration (Evans et al., 2018). The authors have high-
lighted the role of the insula in emotional information
processing and in modulating the switch between the
CEN and DMN, which may be involved in the improve-
ment of depressive symptoms.

The most direct evidence supporting the importance
of SWA in rapid-antidepressant action originates from
a clinical study that demonstrated increases in sleep
SWA after subanesthetic ketamine treatments and fur-
ther showed that this increase correlated with antide-
pressant efficacy (Duncan et al., 2013a). Moreover, a low
baseline delta ratio has been demonstrated to predict
a better mood response to ketamine the day following
treatment (Duncan et al., 2013b). These studies sug-
gest that ketamine’s sustained effects on mood may be
related to subsequent SWS through the accrual of
synaptic potentiation during wakefulness and by the
modulation of synaptic renormalization during sleep.
In addition, ECT-induced increases in SWS (as well as
increased REM sleep duration and a decrease in REM
density) have been reported to occur in remitting
patients but not in nonremitters (Göder et al., 2016),
suggesting that the regulation of brain activity during
sleep is implicated in antidepressant responses to ECT.

Several mechanisms have been proposed to be poten-
tially involved in the processes that lead to the global
yet selective renormalization of synaptic strength dur-
ing sleep as proposed by SHY (reviewed by Tononi and
Cirelli (2019). Different rules could apply in the renorm-
alization of synaptic strength, several of which have
been tested in computer simulations (Hashmi et al.,
2013; Nere et al., 2013). One of these is a “protection
from depression”mechanism, which suggests that when
a neuron fires strongly during sleep, because of the
prominent coactivation of its different inputs, its syn-
apses maintain their strength throughout sleep. The
end result is a relative increase of strength in these
protected synapses in relation to other synapses that
are more likely to be downscaled. This idea is supported
by a recent in vivo study, which demonstrated a similar
effect during urethane anesthesia that mimics the up
and down states of neural activity during NREM sleep
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(González-Rueda et al., 2018). Another recent study has
lent support to the function of the up states of SWA in
synaptic down-selection by studying neuroprosthetic
learning in an experiment in which the activity of
neurons in themotor cortexwere pairedwith the control
of a feeding tube (Gulati et al., 2017). The authors
observed that after sleep, a slight increase occurred in
the peak firing of the direct units in causal control of the
task activity, whereas the firing of most of the indirect
units were markedly reduced. The lack of firing during
sleep was found to predict synaptic down-selection.
Furthermore, when closed-loop optogenetic inhibition
was used to reduce firing during the on states of slow
oscillations, sleep-induced learning improvements were
prevented, and the decrease in indirect unit activity did
not occur. In addition to slow-wave oscillations, hippo-
campal sharp wave-ripples may not only promote
synaptic weakening but also allow for previously acti-
vated hippocampal place cells to maintain their firing
rate throughout sleep (Norimoto et al., 2018).
Apart from patterns of neural activity, several

plasticity-related proteins may be important for the
renormalization of synaptic strength during sleep.
Among potential candidates are Homer1a and Arc,
which are known to increase during extended waking
and excitatory neuronal activity (Cirelli and Tononi,
2000; Diering et al., 2017). Though the overall levels
of Homer1a in the cortex are higher during wake than
in sleep, the amount of Homer1a in the PSDs increases
in sleep and acts to replace longer isoforms of Homer
(Diering et al., 2017). This effectively inactivates the
signaling complex with metabotropic glutamate recep-
tors, facilitates the endocytosis of AMPARs from the
cell membrane, and results in the downscaling of
synaptic strength. Indeed, the dysfunctional regula-
tion of Homer1a may be involved in the development of
network imbalances, as suggested by ENCORE-D. For
example, a genome-wide association study, combined
with neuroimaging, found a single-nucleotide poly-
morphism of Homer1 to exert significant influence
over prefrontal cortical activity during cognitive and
motivational processes (Rietschel et al., 2010). Fur-
thermore, in the context of synaptic tagging, Arc has
been proposed to act as one of the tags for synaptic
depression by promoting the endocytosis of AMPARs
(Chowdhury et al., 2006). Arc has also been suggested
to accumulate, particularly in synapses that have not
been prominently activated, resulting in decreased
synaptic strength (Okuno et al., 2012). At this time,
though the role of altered TrkB, GSK3b, p70S6K, and
MAPK signaling during SWS remains unknown, it is
plausible they are involved in processes of consolida-
tion or renormalization throughout sleep.
2. Sustained Antidepressant Effects. A significant

yet scarcely studied issue of ketamine treatments is the
gradual relapse of depressive symptoms, which typi-
cally already occur a few days after the treatment.

ENCORE-D proposes that if no further excitatory
stimulus or other therapy is applied following the initial
treatment, then susceptible neuronal networks may
begin to regravitate toward an unfavorable, depresso-
genic state. This occurs during several subsequent
wake-sleep cycles, effectively resulting in the loss of
a treatment-induced increase in the relative potentia-
tion of nondepressogenic networks. Depressive thought
patterns again emerge along with a more “rigid” func-
tional connectivity. Indeed, Evans et al. (2018) reported
that the connectivity changes induced by ketamine in
depressed patients were reversed after 10 days, in line
with the duration of ketamine’s antidepressant effects
and in alignment with a viable timeframe for multiple
cycles of renormalization to occur. Moreover, repeated
ketamine infusions have cumulative effects in treating
depression, and patients that relapse between treat-
ments still respond to new infusions (Phillips et al.,
2019). This suggests that such changes can be reestab-
lished with further treatments.

Following these sameprinciples, ENCORE-Dproposes
that therapeutic sleep deprivation also increases cortical
excitation through the accrual of synaptic potentiation or
other mechanisms of altered excitability. Similar to the
rapid effects of ketamine, sleep deprivation results in
a decrease in depressive symptoms in approximately
half of patients (Wu and Bunney, 1990). This decrease
in symptoms builds up throughout the sleepless night
and ismaximal the following day. However, contrary to
ketamine, the effects of sleep deprivation are typically
highly transient, with a large majority of patients
relapsing after a night of sleep or even after taking
a short nap. ENCORE-D proposes that this difference
in sustainability is because of differences in both the
consolidation of excitation-induced synaptic change
and the renormalization during treatment-evoked
SWS. Although both treatments lead to changes in
neural activity and patterns of connectivity (i.e., rapid
antidepressant effects), the changes induced by sleep
deprivation may not be sufficiently consolidated or
protected from subsequent renormalization but are
instead lost in time, like tears in rain. The mechanistic
basis for such a difference remains unknown; however,
it is well acknowledged that sleep deprivation results
in impairments of learning and memory while de-
creasing long-lasting forms of synaptic plasticity (for
reviews, see Havekes et al., 2012; Abel et al., 2013).
These detrimental changes may occur through the
reduced expression of genes that are important in
regulating translation for memory encoding and consol-
idation. Moreover, both ketamine and sleep deprivation
increase glutamate release, whereas ketamine may also
block postsynaptic and extrasynaptic NMDARs, which
contribute differentially to processes such as the activa-
tion of the mTOR pathway, the activity of transcription
factors, and BDNF synthesis (Sutton et al., 2007; Autry
et al., 2011; Nosyreva et al., 2013; Miller et al., 2016).
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Here, the metabolites of ketamine, such as HNKs, may
also play an important role.
Unlike subanesthetic ketamine, ECT is commonly

associated with cognitive dysfunction, including impaired
learning and memory (Nuninga et al., 2018). The major
differences in the extent, duration, and selectivity of the
excitatory activity produced by rapid antidepressant
treatments may ultimately determine their functional
consequences and the onset of the antidepressant
effects. Though ECT-induced seizures are highly pro-
nounced and global forms of excitatory activity, ket-
amine drives cortical excitation in a subtler way,
essentially facilitating more physiologic levels of neu-
ral activity. Moreover, excitation may involve particu-
lar (micro)circuits, depending on the properties of the
treatment or the pharmacology of the drug. Differ-
ent drugs and treatments are thus likely to have
varying effects on a network level. Notably, ECT, once
the traveling current and neural activation generalizes
into a global seizure, remains in no way selective
regarding which neuronal populations are activated;
it thus effectively disregards the physiologic patterns
of neural communication. The processes of encoding,
consolidating, and subsequently renormalizing synap-
tic strength during SWA may consequently also be
highly disorganized, which can have not only therapeu-
tic but also detrimental effects onmemory and cognitive
functions.

V. Discussion of Encoding, Consolidation, and
Renormalization in Depression and Its

Implications for Antidepressant Treatments

We and others have previously proposed models for
integrating mechanisms of synaptic plasticity into
antidepressant actions (Castrén, 2005, 2013; Castrén
and Rantamäki, 2010; Leuchter et al., 2015; Harmer
et al., 2017). According to the network hypothesis of
antidepressant action, long-term treatment with con-
ventional antidepressants such as fluoxetine produce
a heightened state of cortical plasticity that allows for
rewiring of synaptic connections in the adult brain.
Importantly, such rewiring is not considered to be
orchestrated by the drugs themselves but by the network
activity in collaboration with environmental stimuli.
Rapid-acting antidepressants alleviate depression
within hours, indicating that their mode of action is
fundamentally different from conventional antide-
pressants, although the treatments trigger several
shared molecular pathways (Rantamäki et al., 2007,
2011; Rantamäki, 2019). Moreover, in line with the
network hypothesis, the effects of rapid-acting antide-
pressants can hardly be explained by basic pharmacolog-
ical principles. For example, the antidepressant effects of
ketamine become most evident when its psychotropic
actions (Berman et al., 2000) and acute pharmacological
effects on NMDARs fade, and the therapeutic effects may

last for days or weeks. Such dynamic and long-lasting
effects of a pharmacologically short-acting drug can be
best explained by adaptive functional and structural
alterations in neural circuitries, involving physiologic
mechanisms of sleep and plasticity.

Building on aspects of the network hypothesis of
antidepressant action and SHY (Tononi and Cirelli,
2003), ENCORE-D proposes that to understand rapid
antidepressant effects, we should pay attention to the
physiologic homeostatic adaptations triggered within
the brain in response to pharmacological (i.e., NMDAR
blockade) or physiologic challenges (e.g., convulsions,
sleep deprivation) and its consecutive release (see
Workman et al., 2018) (Fig. 4). In this framework,
fundamental mechanisms of synaptic plasticity and
sleep are at the center of attention. In short, ENCORE-D
suggests that altered synaptic encoding takes place
during treatment-induced neural excitation and net-
work activity, which is subsequently consolidated during
periods that overlap with the emergence of waking SWA
in the following hours. Finally, the synaptic and network
alterations set forth by the treatment reach amore stable
form during different stages of sleep, when synaptic
renormalization, and likely many other processes re-
lated to consolidation and reactivation of neural activ-
ity patterns, takes place. The hypothesis proposes that
during these phases, rapid-acting antidepressants
trigger important yet temporally distinct mechanisms
for the emergence of sustained alterations in neural
networks.

As posited by ENCORE-D, the different temporal
phases constitute mechanisms that work in conjunction
to achieve alterations in network function. Indeed,
agents that facilitate SWA more directly and without
preceding cortical excitation do not bring about thera-
peutic effects despite activating some of the molecular
cascades implicated in synaptic plasticity and antide-
pressant responses, such as TrkB signaling and the
inhibition of GSK3b (Kohtala et al., 2019b). Though
these molecular events are important for the mecha-
nisms underlying antidepressant effects, relevant neural
activity is required to harness these molecular machin-
eries into producing meaningful activity-dependent
alterations in synaptic structure and function. As
demonstrated by several animal experiments, disrupting
either glutamatergic neurotransmission (Zanos et al.,
2016) or these molecular mechanisms (Li et al., 2010;
Beurel et al., 2011; Pochwat et al., 2017) results in
diminished antidepressant-like responses because with-
out activity, the machinery does not have a purpose, and
without the machinery, activity cannot elicit sustainable
change. Further studies are required to elucidate how
the molecular and functional alterations directly acti-
vated by sedative-anesthetic drugs differ from those that
occur during the homeostatic emergence of waking SWA
or subsequent SWS in response to cortical excitation.
Thus, ENCORE-D predicts that efforts to directly and
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specifically target individual components of complex
molecular pathways are unlikely to lead to antidepres-
sant outcomes in patients. This hypothesis is, however,
built on studies of treatments possessing rapid antide-
pressant effects currently in the clinical domain, and it
aims to explain their effects through a common neurobi-
ological framework. This does not rule out that rapid and
sustained antidepressant effects might also be achieved
viamechanisms not aligningwith this hypothesis, such as
by using novel treatments not yet proven in the clinical
setting. With the current enthusiasm about novel antide-
pressant developments, the principles of ENCORE-D
will need to be re-examined and expanded as new
findings emerge.
It is also important to recognize that merely increas-

ing SWS may not be beneficial for treating depression.
On the contrary, some preliminary studies have found
that the reduction of SWS is associated with modest
improvements in depressed mood (Landsness et al.,
2011) or negative affect (Cheng et al., 2015). From the
perspective of ENCORE-D, the dysfunctional renorm-
alization of synaptic strength (i.e., reduced downscaling
in depressogenic or facilitated downscaling in nonde-
pressogenic areas) may constitute one characteristic
that maintains depressive information processing. One
possibility is that reducing SWS in depressed patients
could allow nondepressogenic areas to also maintain
higher levels of synaptic potentiation throughout sleep,
resulting in a small restoration of network balance.
However, for more robust antidepressant responses such
as those produced by ketamine and perhaps ECT, likely
determined by the path of the initial electrical current
(Leaver et al., 2018), synaptic activation and potentiation
in specific circuits, along with putative protection from
renormalization during SWS, may be required. More-
over, focusing merely on alterations in the amount of

SWS is misleading because changes in its temporal
expression may be equally important. For example,
several studies have suggested that the delta sleep
ratio may be indicative of clinical outcomes in the
treatment of depression (Kupfer et al., 1990; Nissen
et al., 2001; Duncan et al., 2013b; Lotrich andGermain,
2015), with lower values associated with a higher risk
of relapse (Kupfer et al., 1990). A recent study demon-
strated that a lower delta sleep ratio predicted mood
disturbance in depressed individuals who were sub-
jected to a 3-hour sleep-delay challenge, highlighting
the distinction between the accumulation of SWS and
its dissipation in regulating emotional functioning
(Goldschmied et al., 2019). Importantly, it must be
emphasized that the role of SWS, or delta sleep ratio,
in either rapid or sustained antidepressant effects of
ketamine remains to be thoroughly investigated. To
further unravel these mechanisms, experiments in
which the process of SWA/SWS accumulation, along
with its emergence during both wake and subsequent
sleep are manipulated, are essential.

One intriguing aspect related to the study of novel
treatments of depression is ketamine’s ability to pro-
duce rapid antidepressant responses, whereas several
other drugs targeting glutamatergic neurotransmission
have failed in patient studies (Ibrahim et al., 2012;
Quiroz et al., 2016; Sanacora et al., 2017; Henter et al.,
2018). It is tempting to speculate that the pharmacoki-
netics (Fig. 4) and receptor-binding properties of ket-
amine allow durable yet not too extensive cortical
excitation to take place, especially when compared with
less ormore potent or long-lastingNMDARantagonists.
For example, while both ketamine and MK-801 (dizo-
cilpine) are noncompetitive inhibitors of NMDAR ion
channels, the channel-trapping capability is lower for
ketamine (Zanos et al., 2018a). Moreover, memantine,

Fig. 4. Potential implications of the ENCORE-D hypothesis for the treatment of depression. Rapid and sustained antidepressant effects critically rely
on homeostatic adaptations (e.g., slow EEG activity during waking and sleep) triggered within the brain in response to the intervention in question
(e.g., ketamine). The ability of the intervention to evoke such adaptations depends on several baseline variables (cortical excitability and sleep,
genetics, medication) and specific aspects related to the dosing of the treatment (e.g., administration route, circadian time of administration,
pharmacokinetics and thus duration of acute pharmacological effects, and external factors). Subjective experiences during the treatment, along with
supportive psychotherapy and mechanisms of sleep, may influence the sustainability of the clinical outcome.
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which is a low affinity, voltage-dependent, uncompeti-
tive NMDAR antagonist (Gilling et al., 2009), has not
demonstrated robust antidepressant effects in clinical
trials (Zarate et al., 2006b; Kishi et al., 2017). Though
ketamine’s acute effects last for a few hours (Clements
and Nimmo, 1981; Mathew and Zarate, 2016), meman-
tine has a half-life of several days in humans (Matsunaga
et al., 2018) as well as differential effects on NMDA
receptor desensitization (Glasgow et al., 2017). Notably,
one of the proposed mechanisms of action for the use of
memantine in the treatment of neurodegenerative dis-
eases is its neuroprotective properties against glutama-
tergic excitotoxicity (Parsons et al., 1999), whereas
the antidepressant effects of subanesthetic ketamine
have been directly linked to an acute increase in
glutamate bursting (Moghaddam et al., 1997). These
properties may explain why ketamine is unique in
provoking relatively rapid homeostatic adaptations,
and they encourage the search for novel, rapid-acting
antidepressants among short-acting agents that in-
fluence glutamate bursting.
Several other features may also explain the unique

effects of ketamine. Notably, a recent animal study
suggests that the gradual metabolism of ketamine and
the appearance of specific metabolites, preferentially
2R,6R-HNK, account for the therapeutic lag, and they
mediate antidepressant effects through a mechanism
not involving NMDAR blocking (Zanos et al., 2016). It is
plausible that these ketamine metabolites may directly
increase neural excitation and engage mechanisms pro-
posed by ENCORE-D, as evidenced by increased gamma
oscillations in some preclinical studies (Zanos et al., 2016,
2019). However, it currently remains unknown whether
thesemetabolites have clinical efficacy by themselves or if
they contribute to augmenting or sustaining ketamine’s
effects. These questions will hopefully be answered by
upcoming clinical trials and animal experiments.
An interesting line of research employing motor-

activity monitoring in depressed patients has associated
the rapid antidepressant effects of ketamine with the
regulation of circadian timekeeping (Duncan et al., 2017,
2018). These studies suggest that parameters of circa-
dian timekeeping may be important in uncovering the
mechanisms of both rapid and sustained responses to
ketamine as well as the identification of patients who are
most likely to benefit from the treatment. In a model
proposed by Duncan et al. (2017), depressed patients
exhibit diminished interactions of sleep homeostatic and
circadian mechanisms, leading to the promotion of
a depressed mood. Treatment with ketamine increases
plasticity, SWS, and sleep quality while ameliorating
depressive symptoms. At the same time, ketamine
modulates circadian timing and output. This results
in both weakened interaction of homeostatic and
circadian mechanisms and an acute reduction of
the circadian mood component. The authors suggest
that in sustained responses, the interaction between

homeostatic and circadian is strengthened through
reciprocal activation, which facilitates a more func-
tionally relevant interaction and greater temporal
organization of the transcriptome. Conversely, in re-
lapse, the interaction between homeostatic and circa-
dian returns to its weakened state. As such, this
theoretical and experimental approach is highly im-
portant for recognizing and integrating motor and
circadian aspects into the study of rapid-acting anti-
depressants, some of which may turn out to be highly
relevant in the context of ENCORE-D as well.

Apart from obvious pharmacodynamic and kinetic
differences, varying doses, dosing paradigms, and
routes of administration may be major contributors
to the effects of different rapid antidepressant drugs
(Fig. 4). For ketamine, subanesthetic doses produce
increases in glutamatergic neurotransmission, whereas
higher anesthetic doses may suppress neural activity
(Moghaddam et al., 1997; Chowdhury et al., 2017;
Abdallah et al., 2018a). Subanesthetic and anesthetic
doses also differ in the molecular pathways that are
acutely activated (Kohtala et al., 2019a). Nonetheless, it
remains to be investigated whether higher anesthetic
doses may also reach excitatory concentrations once the
majority of the drug is metabolized. Such postanesthe-
sia reactions are well known by anesthesiologists and
are often referred to as emergence phenomena, which
may manifest as, for example, agitation, confusion, and
hallucinations (Marland et al., 2013). Importantly, this
phenomenon is by no means limited to ketamine; it can
occur upon awakening from general anesthesia con-
ducted with various drugs. Altogether, general anes-
thetics can facilitate paradoxical excitation of the cortex
when the drug concentrations are low (Voss et al., 2008),
an effect that may hold unprecedented potential to
trigger rapid antidepressant effects.

It is likely that no optimal dosage or intensity of
treatment exists that would be beneficial for every
patient. In this regard, volatile and gaseous anes-
thetics hold great potential, either as a sole agent or in
combination with another short-acting NMDAR an-
tagonist, to titrate the dosing almost in real time to
elicit sufficient excitation. It is important to keep in
mind, however, that these effects are not restricted to
NMDAR antagonists, as the manipulation of several
other receptors and physiologic mechanisms may effi-
ciently produce similar neurobiological consequences.
Excitatory drugs and treatments unarguably do not
contain any inherent information that would effectively
target the underlying pathology of depression. Instead,
ENCORE-D proposes that they exert their beneficial
effects by unbalancing the current state of neural and
network homeostasis, which allows innate neurobiolog-
ical mechanisms to adequately adjust. In this context,
neurophysiological measures such as the emergence of
increased rebound SWA and subsequent SWSmay turn
out to be particularly useful in determining optimal
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dosing and treatment paradigms for bringing about
a remedying state in a personalized manner (Fig. 4).
New avenues of research may also arise from un-

derstanding rapid-acting antidepressants from the per-
spective of memory functions. For example, a stimulus
may have no immediate effect on synaptic strength but
can modulate the subsequent expression of plasticity,
a phenomenon known as metaplasticity (Young and
Nguyen, 2005). Indeed, investigations into spacing LTP
induction in an intermittent manner have suggested
that dividing training over time produces stronger and
longer-lasting memories than a single bout of inten-
sive learning (Lynch et al., 2013; Wang et al., 2014).
Whether such physiologic mechanisms hold relevance
for developing more effective rapid-acting antidepres-
sant treatments (i.e., intermittent administration para-
digms) remains to be investigated. In this context,
treatments such as nitrous oxide, short-acting ketamine
analogs (Dimitrov et al., 2019), and theta burst stimu-
lationmay be particularly useful for several consecutive
intermittent periods of administration in a single session
(Fig. 4). For these types of novel treatment paradigms,
conventional drug-development principles that aim for
stable, steady-state concentrations and long half-lives
may need to be discarded.
One neglected aspect in the research and treatment of

brain disorders is related to the variability in the state
of the brain. Themechanisms implicated in ENCORE-D
provide the basis for the idea that the baseline state of
the underlying neural networks may influence rapid
antidepressant outcomes (Fig. 4). For example, ket-
amine reportedly has distinct electrophysiological, as
measured by magnetoencephalography, and behavioral
effects when administered to depressed or healthy sub-
jects (Nugent et al., 2019a). Though depressed patients
exhibit rapid improvements in their symptoms, healthy
controls may even display increases in depressive
symptoms for up to a day after ketamine administra-
tion. A possible explanation offered by ENCORE-D
is that unless dysfunctional connectivity is present,
ketamine may negatively influence network homeo-
stasis. In support of the idea that baseline conditions
affect the outcome of ketamine treatment, mice sub-
jected to the chronic social defeat model of depression
have been found to elicit glutamate functional hyper-
connectivity and altered responses to ketamine when
compared with naïve mice (McGirr et al., 2017).
Following the idea of variability in brain states,

emphasis should also be placed on studies that address
whether the timing of treatment contributes to its
clinical effects (Ruben et al., 2019) (Fig. 4). Treatments
given during the early morning could produce different
outcomes than those in the evening, as cortical excit-
ability is regulated by circadian rhythmicity (Ly et al.,
2016) as well as wake and sleep (Kuhn et al., 2016). To
the best of our knowledge, the impact of timing has not
been addressed with ketamine, or other rapid-acting

antidepressants, although such experiments have been
planned (Zhuo et al., 2019). These principles may also
prove to be crucial for the refinement of the basic
research of psychiatric disorders in general. Laboratory
rodents, such as mice and rats, are widely used in
biomedical research to understand the pathologic pro-
cesses underlying depression and to study and develop
antidepressants. Though many important discoveries
have been made, the translation of preclinical observa-
tions into novel treatments is scarce. ENCORE-D urges
us to consider that a part of this translational gap is
explained by our ignorance of the most fundamental
aspects of animal physiology: the circadian rhythm and
sleep. Most rodent species used for biomedical research
are nocturnal. Although the contrast between active,
wakeful, and vigilant states during light and dark
periods in rodents is not as stark as in humans,
(nocturnal) mice and rats are clearly more active during
the dark period and sleep in bouts predominantly
during the day. Yet, and solely because of the conve-
nience of the experimenter, a vast majority of rodent
studies are conducted during the inactive period. A
recent observation of prominent circadian variation in
ketamine metabolism (Martinez-Lozano Sinues et al.,
2017) suggests that the timing of administration may
significantly contribute to the neurobiological effects set
forth by ketamine and its metabolites.

The mechanisms proposed by ENCORE-D may also
be important for the antidepressant actions of psy-
chedelic drugs, which have recently gained renewed
interest in psychiatry. Psilocybin, a prodrug of the
5-HT2A agonist psilocin, has shown promise in a range
of psychiatric conditions, including treatment-resistant
depression. Studies suggest that, unlike ketamine,
these drugs may have positive effects lasting for
months (Carhart-Harris et al., 2016), although proper
placebo-controlled randomized clinical trials are still
lacking. Interestingly, the expression of 5-HT2A recep-
tors is especially enriched in the high-level association
regions, such as those within the DMN (Beliveau et al.,
2017). Compared with ketamine, the effects of psilocin
may thus bemore focused to this hub network, which is
dysregulated in depressive states (Carhart-Harris and
Friston, 2019). Molecular mechanisms suggested to
underlie the effects of other rapid-acting antidepres-
sants, such as TrkB and mTOR signaling, are also
associated with psychedelics and their ability to pro-
mote structural and functional plasticity (Ly et al.,
2018). An important distinction between the thera-
peutic use of ketamine and classic psychedelics comes
from the therapeutic context (Fig. 4). Psychedelic
therapy uses psychedelic drugs to promote peak inner
experiences during a session together with a therapist.
It may turn out that the extraordinarily long-lasting
effects of psychedelic therapy arise when the person and
his or her experiences are the focus of the treatment.
Salient stimuli, for example, a powerful psychologic
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experience, combined with a pharmacologically facili-
tated state may be expected to produce the most
persistent changes in memory and cognitive patterns.
In this context, examining the principles of ENCORE-D
together with previously proposed theoretical perspec-
tives, such as the entropic brain hypothesis (Carhart-
Harris et al., 2014) and the relaxed beliefs under
psychedelics framework (Carhart-Harris and Friston,
2019), may turn out to be particularly fruitful. These
emerging perspectives also encourage further research
into both ketamine-assisted psychotherapy (Dore et al.,
2019) and the impact of subjective experience on the
therapeutic outcome.
ENCORE-D also provides a plausible neurobiological

basis for the rapid and sustained antidepressant effects.
For example, sleep deprivation is a relatively efficient
rapid-acting antidepressant (efficient increase in activity/
encoding); however, its therapeutic effects are seldom
sustained (dysfunctional consolidation and/or renorm-
alization). On the other hand, ketamine may suffi-
ciently allow both phases to take place. According to
one recent hypothesis (Wolf et al., 2016), sleep depri-
vation extends the period when cortical neurons gather
synaptic strength or excitability. This allows synapses
to reach an optimal zone for LTP inducibility (Normann
et al., 2007), which compensates for the attenuated
associative synaptic plasticity in depression and leads
to the remediation of depressive symptoms. This hy-
pothesis does not exclude the principles of ENCORE-D,
which proposes that the increase in cortical excitability
induced by sleep deprivation (and other putative rapid-
acting treatments) is important for altering patterns of
brain activity and subsequent synaptic changes. How-
ever, though alterations in LTP inducibilitymay exist in
some brain areas of depressed patients, ENCORE-D
suggests that the observed decrease in cortical excit-
ability is mainly representative of the pathophysiolog-
ical process itself, meaning that neural activity is more
concentrated on select depressogenic networks wherein
synaptic plasticitymay even be facilitated (Nissen et al.,
2010). This skewed balance leads other networks to
exhibit a relative decrease in activity over the course of
disease progression, which continues to worsen in a
vicious cycle as depressive symptoms increase.
Finally, the advantage of ENCORE-D is that it does

not depend on any synaptic pathology, molecular path-
way, or deficit that affects global synaptic plasticity;
instead, it relies on mechanisms of activity-dependent
network tuning in several brain networks associated
with major depression. Though many aspects of the
hypothesis remain conceptual and speculative, and, at
this stage, require further testing, this perspective
provides a plausible framework for explaining how
depression may arise from early adverse psychologic
experiences and/or later cognitive behaviors over time.
Moreover, ENCORE-D provides a mechanistic frame-
work for a variety of pharmacological and physiologic

treatments capable of eliciting rapid antidepressant
effects, and it suggests that understanding the shared
mechanisms between these treatments may provide
fundamental insights into both rapid antidepressant
action and physiologic brain function.
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