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Abstract——The popularity of botanical and other
purported medicinal natural products (NPs) continues
to grow, especially among patients with chronic ill-
nesses and patients managed on complex prescription
drug regimens. With few exceptions, the risk of a given
NP to precipitate a clinically significant pharmacoki-
netic NP-drug interaction (NPDI) remainsunderstudied
or unknown. Application of static or dynamicmathematical
models to predict and/or simulate NPDIs can provide
critical informationabout thepotential clinical significance
of these complex interactions. However, methods used
to conduct such predictions or simulations are highly
variable.Additionally,publishedreportsusingmathematical
models to interrogate NPDIs are not always sufficiently
detailed to ensure reproducibility. Consequently, guidelines
areneeded to inform the conduct and reporting of these
modeling efforts. This recommended approach from
the Center of Excellence for Natural Product Drug

Interaction Research describes a systematic method for
using mathematical models to interpret the interaction
riskofNPsasprecipitantsofpotential clinicallysignificant
pharmacokinetic NPDIs. A framework for developing
andapplyingpharmacokineticNPDImodels is presented
with the aim of promoting accuracy, reproducibility, and
generalizability in the literature.

Significance Statement——Manynaturalproducts (NPs)
contain phytoconstituents that can increase or decrease
systemicor tissueexposure to, andpotentially theefficacy
of, a pharmaceutical drug; however, no regulatory agency
guidelines exist to assist in predicting the risk of these
complex interactions. This recommended approach from
a multi-institutional consortium designated by National
InstitutesofHealthas theCenterofExcellence forNatural
ProductDrugInteractionResearchprovidesa framework
for modeling pharmacokinetic NP-drug interactions.

I. Introduction: Application of Static and
Dynamic Models to Natural Products

Static and dynamic [i.e., physiologically-based phar-
macokinetic (PBPK)] models are mainstay tools during
drug development. For applications such as estimating
dissolution and bioavailability, triaging early-phase
new chemical entities (NCEs) with suboptimal pharma-
cokinetic characteristics (e.g., high clearance or low oral
bioavailability), or predicting drug-drug interactions
(DDIs), PBPKmodels can be used to design and occasion-
ally replace clinical studies (Sager et al., 2015). Botanical
dietary supplements and other purported medicinal
natural products (NPs) often contain phytoconstituents
that can precipitate clinically significant pharmacokinetic
and potential pharmacodynamic NP-drug interactions
(NPDIs) with conventional medications (both approved
prescription and nonprescription) (Grimstein and Huang,
2018; Johnson et al., 2018; Paine et al., 2018). NPs can
also contain misidentified plants or toxic chemical con-
stituents introduced through suboptimal harvesting, pro-
duction, and/or manufacturing practices (van Breemen
et al., 2008). Induction or inhibition of cytochrome P450
(CYP) 3A by St. John’s wort or grapefruit juice, respec-
tively, are textbook examples of NPDIs that can increase
or decrease the systemic exposure to CYP3A object drugs
(Bailey et al., 1998; Henderson et al., 2002).
As with DDIs, NPDIs can perturb object drug systemic

exposure to subtherapeutic or supratherapeutic concen-
trations, which in turn can lead to altered therapeutic

response to the drug. However, mathematical modeling of
NPDIs has not kept pacewith that of DDIs. UnlikeDDIs, to
date, NPDI prediction is not driven by guidance documents
from regulatory agencies, including the US Food and Drug
Administration (FDA), European Medicines Agency, and
the Pharmaceuticals and Medical Devices Agency. Silence
on this challenging topic may have arisen from the intrica-
cies ofNPDImodelingand simulation,which require special
attention to the phytochemical complexity of NPs, incon-
sistencies in formulations, differences in botanical taxonomy
and nomenclature, and the paucity of human pharmacoki-
netic data for most commercially available NPs.

Despite the absence of guidance documents, static
and PBPKmodels for estimating changes in object-drug
systemic exposure have been developed (Zhou et al.,
2005; Brantley et al., 2013; Ainslie et al., 2014; Brantley
et al., 2014b; Gufford et al., 2015a; Tian et al., 2018;
Adiwidjaja et al., 2019, 2020b). That NPDI models
continue to be developed in the absence of regulatory
guidance underscores the timeliness and importance of
NPDImodeling and simulation and the need for resources
and guidelines to support this research effort.

Compared with DDIs, NPDIs remain uniquely difficult
to predict because of several key factors that preclude
accurate in vitro-to-in vivo extrapolation: 1) the inherently
complex and variable composition of phytoconstituents
among marketed products of presumably the same NP,
2) identification of all possible constituents that contribute
to NPDIs, 3) the often relatively sparse human pharma-
cokinetic information about precipitant (“perpetrator”)

ABBREVIATIONS: AUC, area under the concentration-versus-time curve; DDI, drug-drug interaction; Fa, fraction of oral dose absorbed into
the intestinal wall; FDA, US Food and Drug Administration; fu, fraction unbound; HLM, human liver microsome; KI, inhibitor concentration
at half maximum inactivation rate; Ki, reversible inhibition constant; Ki,u, unbound reversible inhibition constant; kinact, maximum in-
activation rate constant; NaPDI Center, Center of Excellence for Natural Product Drug Interaction Research; NCE, new chemical entity; NP,
natural product; NPDI, NP-drug interaction; PBPK, physiologically-based pharmacokinetic; UGT, UDP-glucuronosyltransferase.
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NP constituents, and 3) potentially complex and vary-
ing interactions between the precipitants (e.g., synergy
between constituents, inhibition by one constituent, and
induction by another) due to the variable composition of
precipitants in the same NP (Grimstein and Huang,
2018; Paine et al., 2018; Sorkin et al., 2020). The limited
plasma exposure data for most commercially available
NPs as well as the general absence of physicochemical
data for their major phytoconstituents are perhaps
the greatest impediments to developing robust PBPK
models in this field. Indeed, the FDA recognizes these
deficiencies as “technical challenges in determining stan-
dard pharmacokineticmeasurements (https://www.fda.gov/
media/93113/download).”This recommended approach lays
a framework for selection of robust in vitro data, appro-
priate model parameterization and verification, and clear
communication of model characteristics in the literature
with the aim of promoting accuracy, reproducibility, and
generalizability of pharmacokinetic NPDI models.
Recognizing thatNPDIsareapressingbutunderstudied

public health risk, theNational Center forComplementary
and Integrative Health established the Center of Excel-
lence for Natural Product Drug Interaction Research
(NaPDI Center), which is tasked with developing recom-
mended approaches to guide researchers on the conduct of
rigorous NPDI studies (Paine et al., 2018). The NaPDI
Center has released recommended approaches for
selecting and prioritizing NPs as potential precipitants
of NPDIs and for sourcing and characterizing NPs for
research studies (Johnson et al., 2018; Kellogg et al.,
2019). This recommended approach summarizes exist-
ing challenges and potential solutions related to math-
ematical modeling of pharmacokinetic NPDIs with the
goal of facilitating more rapid and systematic identifi-
cation of clinically significant NPDIs.

II. Generating and Selecting Data for Static and
Physiologically Based Pharmacokinetic Models

A. Identification of Precipitant Phytoconstituents

For many commercial NPs, precipitant phytocon-
stituent(s) (i.e., inducers and inhibitors of drug metab-
olizing enzymes and transporters) may not have been
identified. These situations merit judicious sourcing
and characterization of the crude NP followed by identi-
fication and quantification of precipitant constituents.
One of the NaPDI Center’s recommended approaches
details pivotal considerations for sourcing and character-
izingNPs for both in vitro and in vivo studies involving an
NP (Kellogg et al., 2019). These considerations mirror
those put forth by the FDA for ensuring therapeutic
consistency and quality control during botanical drug
development (https://www.fda.gov/media/93113/download)
and by National Center for Complementary and Integrative
Health for promoting consistency in grant applications
and research reporting (https://nccih.nih.gov/research/
policies/naturalproduct.htm#requestedpi).

Identifying phytoconstituents as precipitants of phar-
macokinetic NPDIs is a complex and variable process,
which typically includes a screening and/or experimen-
tal approach involving human-derived in vitro systems
expressing relevant drug metabolizing enzymes and/or
transporters. Experimental approaches include iterative
fractionation and screening of crude extracts, during
which an NP is partitioned into aqueous and organic
phases and separated chromatographically into discrete
pools of phytochemicals. These fractions are subse-
quently tested for bioactivity (induction or inhibition)
across a predefined array of concentrations against
a panel of drug metabolizing enzymes and transporters.
Such biochemometric analysis or bioactivity-directed
fractionation allows the bioactive fraction(s) to be re-
fined and rescreened iteratively, progressively isolating
fractions containing relatively purified mixtures of bio-
active constituents or highly purified individual constitu-
ents (Kim et al., 2011; Kellogg et al., 2016; Rivera-Chávez
et al., 2017a,b, 2019a,b; Amrine et al., 2018; Britton et al.,
2018;Caesar et al., 2018;Tian et al., 2018;El-Elimat et al.,
2019; Paguigan et al., 2019).

If the NP constituents are known and corresponding
chemical structures are available, structure-activity com-
parisonsmaybeused to anticipate the likelihood ofNPDIs
based solely on the presence of certain functional groups
in individual constituent structures (Johnson et al., 2018)
(Table 1). For example, methylenedioxyphenyl groups are
well known structural alerts for potential time-dependent
inhibition of the cytochrome P450 enzymes that involve
stable heme coordination, whereas catechol groups or
a,b-unsaturated aldehydes and ketones are structural
alerts for time-dependent inhibition of cytochrome P450
enzymes that produce reactive intermediates and co-
valent protein adduction (Johnson et al., 2018).

B. Obtaining Existing Data to Populate Static and
Physiologically-Based Pharmacokinetic Models with
Requisite Parameters

1. Collecting Physicochemical Data. Several open-
source and/or commercial screening libraries exist spe-
cifically for the purpose of collating physicochemical
characteristics of NPs (Gao et al., 2008; Valli et al.,
2013; Mirza et al., 2015; Xie et al., 2015; Chen et al.,
2018; Pilón-Jiménez et al., 2019). These databases are
designed primarily to facilitate in silico identification of
NCEs and to obtain experimentally determined char-
acteristics, including structure, pKa, logarithm of octa-
nol:water partition ratio, stereochemistry, and possible
mechanisms of action. Additionally, the CHEMFATE
data base curates available physicochemical data for
many chemical entities (https://cfpub.epa.gov/si/si_public_
record_Report.cfm?Lab=&dirEntryID=2897).

For constituents whose physicochemical characteristics
have not been determined experimentally, structure-based
prediction of chemical properties can be made provided
that the molecular structure is known. Structure-based
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prediction of phase partitioning has shown excellent
coefficients of determination with direct measurement
(r2 = 0.51–0.91) (Eros et al., 2002; An et al., 2014;
National Research Council, 2014), although perfor-
mance is less accurate for phosphorus- and halogen-
containing chemical entities (An et al., 2014). Similarly,
pKa can be predicted using a variety of computational
tools (Voutchkova et al., 2012). The intestinal effective
permeability and absorption rate constant (ka) can be
predicted from basic molecular attributes (polar surface
area, phase partitioning, and hydrogen-bond donors),
showing relatively high predictive performance with
experimental Fa (fraction of the oral dose absorbed into
the intestinal wall) values (r2 . 0.70) (Winiwarter et al.,
1998; Linnankoski et al., 2006). When an NP is formu-
lated as a capsule or tablet, solubility and dissolutionmay
be limiting factors for absorption. Alternatively, a conser-
vative estimate of 100% Fa may be used to predict the
highest degree of exposure to precipitant constituents.
In contrast to physicochemical factors, computational

prediction of factors influencing distribution (e.g., plasma
protein and tissue binding) remains less developed
(Poulin, 2015a). Previous studies that estimated
the extent of plasma protein binding using sigmoidal
functions of logarithm of octanol:water partition ratio
showedhigh predictive performance comparedwith direct
measurement (r2 = 0.79), whereas others have proposed
simulating unbound drug concentrations in tissue com-
partments (Yamazaki andKanaoka, 2004; Poulin, 2015b).

Experimental methods for measuring the extent of
plasma protein binding or fraction unbound (fu) rely
on long-established techniques for separating bound
and unbound drug (Rowland, 1980). Until further research
validates novel methods for simulating protein binding
behavior of NP constituents, determining fu experimentally
is recommended based on data generated by the NaPDI
Center (Nguyen et al., 2019). In brief, fu for multiple NP
constituents (n=14–17) in human livermicrosomes (HLMs)
and plasmawas generated in silico using twomodeling and
simulation platforms (www.certara.com, v17; Simcyp and
www.simulations-plus.com/software/gastroplus, v9.6; Gas-
troPlus) and compared with experimentally determined
values. Experimental fu was recovered via equilibrium
dialysis using a 96-well device as described (Zamek-
Gliszczynski et al., 2011). In silico–generated values
ranged from 0.48 to 1.00 and from 0.01 to 0.75 in HLMs
and plasma, respectively. Average (6S.D. of at least three
determinations) experimental fu ranged from 0.052 6
0.008 to 1.21 6 0.09 for HLMs and from 0.013 6 0.003
to 0.95 6 0.20 for plasma. The ratio of in silico–
generated fu values to experimental fu values was
assessed for low, moderate, and high binding constitu-
ents (Fig. 1). Experimental fu for plasma proteins was
generally lower than that for HLMs, which was consis-
tent with values generated in silico. Both modeling and
simulation platforms consistently predicted fu values for
low binding constituents to within 30% of experimental
values, suggesting that in silico–generated values are

TABLE 1
Structural alerts for constituents in select natural products

Reprinted with permission from the American Society for Pharmacology and Experimental Therapeutics from Johnson et al. (2018).

Constituent(s)/Natural Product Structural Alert Alert Substructure

Flavonoids, phenylpropanoids/Echinacea glycyrrhizin, glycyrrhizinic acid/licorice Catechols

Isoquinoline alkaloids/goldenseal terpenoids/cinnamon curcuminoids/turmeric Masked catechol
,

Isoquinoline alkaloids/goldenseal shizandrins/Schisandra spp. Gomisins/
Schisandra spp.

Methylenedioxyphenyl

Cycloartenol/black cohosh Subterminal olefin

Polyacetylenes/Echinacea Terminal and subterminal
acetylenes

,

Terpenoids/cinnamon diallyl disulfides and trisulfides/garlic Terminal olefin

Cinnamaldehyde/cinnamon a,b-Unsaturated aldehyde

Curcuminoids/turmeric a,b-Unsaturated ketone
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reasonable estimates for low binding constituents. However,
predictive performance diminished for moderate and high
binding constituents. Continued comparisons of in silico–
generated and experimental fu values for additional NP
constituents will form a database that can be used to
develop predictive models of fu as described for pharma-
ceutical drugs (Obach, 1999; Lombardo et al., 2018).
2. Generating Requisite Model Parameters from In

Vitro Experiments. In general, based on the morpho-
logic, transcriptomic, and proteomic differences among
animal, immortalized human, and primary human tis-
sues, the latter are the preferred experimental systems
for characterizing xenobiotic metabolism and transport
(Baillie and Rettie, 2011; Kauffman et al., 2013; Sawant-
Basak et al., 2018). For these reasons, FDA guidance
documents and the International Transporter Consor-
tium recommend conducting in vitro DDI studies using
human-derived systems or systems modified to express
human drug-metabolizing enzymes and/or transporters
(Brouwer et al., 2013; Chu et al., 2018; Evers et al., 2018;
Zamek-Gliszczynski et al., 2018; FDA, 2020). These
systems include recombinant enzymes, human subcel-
lular tissue fractions (e.g., microsomes, cytosol), cell
lines expressing human transporters, and intact human
cell systems (i.e., hepatocytes, enterocytes). Recommen-
ded panels of enzymes and transporters against
which potential NP precipitant constituents should
be screened have been proposed in a previous NaPDI
Center recommended approach (Johnson et al., 2018)
(Table 2). In addition to the systems proposed in the earlier
recommended approach, kidney- and intestine-derived
microsomes and cell lines should be considered because
of the well known interorgan differences in enzyme and
transporter expression and function (Loretz et al., 2020).

Generally, NPDI prediction models are designed for
the purpose of evaluating NPs as inhibitors or inducers
of drug metabolizing enzymes and transporters rather
than predicting exposure to NPs. Because the dose(s) of,
and thus exposure to, NP constituents are difficult to
standardize, these models provide only a conservative
estimate of the magnitude of an interaction to confirm

Fig. 1. Variability in the geometric mean of in-silico-to-observed fu ratios
for high binding (low fu, denoted by experimental fu # 20%), moderate
binding (moderate fu, denoted by 20% , experimental fu , 80%), and low
binding (high fu, denoted by experimental fu $ 80%) natural product
constituents in human liver microsomes and plasma. Error bars denote
90% confidence intervals. Closed diamonds denote values generated by
GastroPlus, whereas open diamonds denote values generated by Simcyp.
Natural product constituents evaluated are 4-methylumbelliferone,
7-hydroxymitragynine, berberine, bergamottin, hydrastine, hydrastinine,
isosilybin A, isosilybin B, isosilychristin, mitraciliatine, mitragynine, paynan-
theine, silybin A, silybin B, silychristin, silydianin, and speciogynine.

TABLE 2
Recommended enzymes, transporters, and experimental systems for

screening natural products for inhibition and/or induction
Adapted with permission from the American Society for Pharmacology and

Experimental Therapeutics from Johnson et al. (2018).

Cytochrome P450 enzymes

Essential: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2C19,
CYP2D6, CYP3A

Experimental System Inhibition Induction

Recombinant enzymes As needed NA
Human liver microsomes a NA
Human hepatocytes As needed a

Human intestinal microsomes As needed NA
Human intestinal cells As needed As neededb

Human kidney microsomes As needed NA
Human kidney cells As needed As neededb

Other cell lines As needed NA

UGTs

Essential: UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A8, UGT1A9,
UGT1A10, UGT2B7, UGT2B10, UGT2B15

Experimental System Inhibition Induction

Recombinant enzymes As needed NA
Human liver microsomes a NA
Human hepatocytes a a

Human intestinal microsomes As needed NA
Human intestinal cells As needed As neededb

Human kidney microsomes As needed NA
Human kidney cells As needed As neededb

Other cell lines As needed NA

Other Enzymes that May Be Considered

hCE1, hCE2, SULT1A1, SULT1A3, SULT1B1, SULT1E1, SULT2A1

Experimental System Inhibition Induction

Recombinant enzymes a NA
Human liver microsomes a NA
Human hepatocytes As needed a

Human intestinal microsomes As needed NA
Human intestinal cells As neededb As neededb

Human kidney microsomes As neededb NA
Human kidney cells As neededb As neededb

Transporters

Essential: BCRP, BSEP, MATE1, MATE2-K, MRP2, MRP3, NTCP, OATP1B1,
OATP1B3, OATP2B1, OAT, OCT, P-gp

Experimental System Inhibition Induction

Transfected cell lines (single, double) a NA
Human intestinal cells As neededb As neededb

Human kidney cells As neededb As neededb

Human hepatocytes a a

Membrane vesicles a NA

BCRP, breast cancer resistance protein; BSEP, bile salt export pump; hCE, human
carboxylesterase; MATE, multidrug and toxin extrusion protein; MRP, multidrug
resistance–associated protein; NA, not applicable; NTCP, sodium taurocholate–
cotransporting polypeptide; OAT, organic anion transporter; OATP, organic anion–
transporting polypeptide; OCT, organic cation transporter; P-gp, P-glycoprotein;
SULT, sulfotransferase.

aEssential system. Inhibition studies in hepatocytes may involve multiple
transporters.

bThese models represent an emerging field and will be refined with time.
Expression levels of enzymes and transporters in these models are lower than those
in vivo (Speer et al., 2019; Chapron et al., 2020; Kasendra et al., 2020).
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or rule out potential NPDIs. Thus, the goal of in vitro
experiments is to generate robust parameters related
to activation and induction (e.g., EC50, maximum in-
ductive effect) or inhibition (e.g., IC50, reversibleKi, time-
dependent KI, kinact) behavior as well as parameters
related to clearance (e.g., t1/2, clearance). The following
recommendations pertain to selecting concentration
ranges for such experiments.
Prior to isolation of individual NP precipitant con-

stituents, in vitro testing with crude fractions derived
during bioactivity-directed fractionation is recommended.
Concentrations used for initial bioactivity screening
may vary because of differences in extraction methods
and assay methodology. Based on the NaPDI Center
investigators’ collective experience, relatively higher
concentrations of the extracts may be needed to identify
potential pharmacokinetic interactions mediated by
UDP-glucuronosyltransferases (UGTs) compared with
the CYPs. For example, cranberry extracts/fractions at
5 and 50 mg/ml showed concentration-dependent in-
hibition of intestinal CYP3A activity (Kim et al., 2011),
and silymarin at 5 and50mg/ml showed similar percentage
inhibition toward CYP3A and UGT activities (Brantley
et al., 2013; Gufford et al., 2014), whereas higher concen-
trations (20, 60, and 180 mg/ml) were needed to produce
concentration-dependent inhibition of UGTs by green tea
extracts/fractions (Tian et al., 2018). These concentration
ranges can be used to test for reversible inhibition as
well as time-dependent CYP inhibition (e.g., based on
structural alerts). NADPH or another relevant cofactor
(e.g., UDP glucuronic acid) and substrate, respectively,
should be used to initiate these reactions.
When testing isolated bioactive constituents, the con-

centration range should spanapharmacologically relevant
concentration of individual constituents (i.e., maximum
unbound plasma concentration) and a 10-fold higher
concentration. If human plasma concentrations of a
given constituent are not available, simulated unbound
gut concentrations, simulated unbound hepatic portal
venous inlet concentrations, and concentrations approach-
ing constituent solubility can provide initial estimates
of the concentrations to be tested (Tian et al., 2018; Cox
et al., 2019). Three concentrations of constituents (e.g.,
1, 10, and 100 mM) are recommended during initial
screening to assess potential concentration-dependent
alteration in enzyme/transporter activity. Depending
on the results, this concentration range can be adjusted
accordingly or used to guide determination of induction
(e.g., EC50), reversible inhibition (e.g., IC50, Ki), and/or
time-dependent inhibition (e.g., IC50 shift, KI, kinact)
potency.

III. Applying or Developing Static and
Physiologically Based Pharmacokinetic Models

There are twomajor categories of modeling strategies
that are applicable to different pharmacokinetic NPDI

scenarios. Static models refer to those that generate the
estimated change in a pharmacokinetic endpoint of the
object drug (typically AUC) in the presence of a single
concentration of one or more NP constituents. Unless
the NP is administered to steady state as an intravenous
infusion, the plasma (or gut) concentration of the constit-
uent causing the NPDI will change with time. Dynamic
models, such as PBPK models, are capable of incorpo-
rating these changing concentrations to predict NPDIs.
Such models are used with increasing frequency in the
academic, regulatory, and commercial sectors to charac-
terize and simulate DDIs. Both techniques have been
used successfully to predict NPDIs involving curcumin
and constituents of St. John’s wort and milk thistle
(Table 3). Publications using PBPK modeling have
proliferated approximately 4-fold since 2011, and the
FDA has released 24 rule-making and guidance docu-
ments on this topic (Kola and Landis, 2004; Tan et al.,
2018).

Selection of a static model to predict NPDI risk is
a conservative approach. If the NP is a potent in-
hibitor that results in maximum inhibition of the
enzyme/transporter at all plasma or gut concentrations
of the NP constituent, then the static and PBPKmodels
will yield identical predictions. Static models that esti-
mate fold changes in object drug AUC have been used to
predict pharmacokinetic NPDIs (Zhou et al., 2004, 2005;
Brantley et al., 2013; Ainslie et al., 2014; Gufford et al.,
2015b; Tian et al., 2018; Bansal et al., 2020; Espiritu
et al., 2020; McDonald et al., 2020). In contrast, PBPK
models incorporate systems of differential equations to
predict the time course of plasma concentrations of both
object drug and precipitant NP constituent(s) using an
array of in vitro data and a sequence of physiologic
compartments (e.g., intestine and liver) in which distri-
bution of the object drug/NP constituent is governed
by blood flow, protein binding, and influx and efflux
processes, and elimination is governed by blood flow,
protein binding, and the intrinsic clearance of metabolic
or excretory processes.

A. Developing Pharmacologically Based
Pharmacokinetic Models for Natural Product–Drug
Interaction Prediction

Few PBPK models for estimating the extent of NPDIs
have been reported, although PBPK modeling strategies
have been used successfully to predict drug interactions
involving silibinin (Brantley et al., 2014b; Gufford et al.,
2015a), Schisandra sphenanthera (Adiwidjaja et al.,
2020b), and St. John’s wort (Adiwidjaja et al., 2019).
Historically, PBPK modeling was a niche skill that
involved solving systems of differential equations, often
with manually coded programs. The general structure
of a PBPK model is illustrated conceptually (Fig. 2).

Strategies for developing PBPK models depend on
the available data and can be bottom-up, top-down,
or middle-out. Various platforms have been used to
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construct bottom-up concentration-time predictionmodels,
and differential equation–solving applications have proven
to be useful tools for developing PBPKmodels (Allen, 1990;
Lu et al., 2016). When some in vivo data are available,
a middle-out approach that integrates existing in vivo
and in vitro data can be used to refine uncertain or
unknown parameters in the PBPK model; the advantage
of this approach is that the model is informed by limited
in vivo data (Tsamandouras et al., 2015). Finally, when
complete clinical pharmacokinetic data are available,
top-down models can be constructed to estimate organ
exposures, although these models usually require the
assumption of homogenous distribution.
Each modeling strategy requires assumptions (e.g.,

the expression and abundance of tissue-specific enzymes
and transporters). Tutorials and reviews for building
these models are available (Sager et al., 2015; Kuepfer
et al., 2016). Thus, the scope of this recommended
approach is to tailor these recommendations for build-
ing PBPK models for NPs and NPDIs.

B. Natural Product Dose Selection

As mentioned earlier, dose estimation is difficult for
NPs. Currently, no database exists to collate information
on the relative proportions of individual constituents
in commercially available NPs. In addition, estimat-
ing average consumer NP doses is difficult because NP
formulations vary widely between manufacturers, lots,
and batches, and NP standardization is relatively non-
existent (Brantley et al., 2014a; Paine et al., 2018). For
NPs administered as an aqueous solution (e.g., flavo-
noids in grapefruit juice), the dose can be approximated
as the quantity of constituent in the volume of a glass of

juice (e.g., 250 ml) (Johnson et al., 2017). The lack of
standardized NP doses necessitates a sensitivity anal-
ysis with varying doses to predict the magnitude range
for an NPDI.

C. Modeling Using Commercial Applications

Commercially available software platforms are designed
to require minimal input from the end user and typically
run full PBPKmodels that operate on systems of differen-
tial equations governing dissolution, solubility, absorption,
distribution, metabolism, and excretion. An advantage of
these platforms is the ability to simulate populations with
large intersubject variation (e.g., by Monte Carlo methods)
in these determinants of xenobiotic disposition. Addition-
ally, effects of age, sex, race, and physiologic conditions,
such as disease and pregnancy, on xenobiotic disposition
can be simulated using commercial software.

Because manual entry of physiologic model parameters
and equations is not required, end users may run simu-
lations without changing input parameters. At minimum,
the default software settings should be carefully evaluated,
and all input values and settings should be reported.
Commercial applications typically include a library of
default object drugs. These drugs should be carefully
evaluated to ensure that the correct object drugs
are selected according to published guidelines (Fuhr
et al., 2019).

IV. Building Physiologically Based
Pharmacokinetic Models De Novo for NPDIs

Unlike PBPK models developed using commercial
software, PBPK models developed de novo provide full

Fig. 2. General structure of a physiologically-based pharmacokinetic model designed to evaluate a natural product–drug interaction. Intravenous
administration is rarely, if ever, used for natural products; rather, common routes include oral consumption and inhalation. The number of tissue
compartments is variable, but N compartments can be included in a full physiologically-based pharmacokinetic model. Input and output blood flow
rates (Q) describe constituent passage between the arterial and venous circulation.
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control over model characteristics. Design considera-
tions are described below.

A. Compartments and Parameterization

The degree of complexity used in a PBPK model can
vary fromminimal (e.g., a three-compartment model) to
high (e.g., a model with many physiologic compartments)
(Sager et al., 2015). A full PBPK model can produce
concentration-versus-time estimates in many physio-
logic compartments, potentially providing greater in-
sight into the mechanism of an NPDI. However, the
potential increase in accuracy from a more compart-
mentalized model can be achieved only if the necessary
physiologic parameters (blood flow, organ composition)
andNP physicochemical parameters (e.g., tissue partition
coefficient, pKa) are available. Complicated dissolution
and absorption models may improve model performance
but can be implemented only if the necessary physico-
chemical and in vitro data are available.

B. Verification

PBPK models can be built manually as systems of dif-
ferential equations or generated using machine-learning
approaches. Regardless of the approach, a separate ver-
ification data set should be used for final assessment of
model prediction accuracy. Acceptable prediction accu-
racy should be specified before conducting PBPK mod-
eling and simulation.

C. Error Checking

To avoid physiology-related errors while parameteriz-
ing models, checkpoints should be used to ensure physi-
ologic relevance (e.g., the sum of blood flows should be
equivalent to the expected cardiac output scaled for
ahumanof certain age and sex). Sources of these reference
values may include curated databases, such as those
maintained by the US Environmental Protection Agency
for PBPK modeling (https://cfpub.epa.gov/ncea/risk/
recordisplay.cfm?deid=204443). Evaluating models in al-
ternate programming languages and/or with independent
datasets provides an additional layer of model verifica-
tion and quality assurance. When possible, comparing
a de novo model to that developed using a commercial
programmay provide insight into critical differences in
predicted pharmacokinetic endpoints (Gufford et al.,
2015a).

D. Reporting

Reproduction of a PBPK model is impossible without
comprehensive reporting of model characteristics. Ide-
ally, the complete code for a custom PBPKmodel should
be published or made available for purposes of reproduc-
tion (Sager et al., 2015). Likewise, all inputs for a PBPK
model developed using commercial software should be
provided. Ensuring the availability of the relevant in-
formation is incumbent on both the editors and reviewers
of relevant journals.

V. Using Static and Physiologically Based
Pharmacokinetic Models to Prioritize Natural

Product–Drug Interaction Risk

The NaPDI Center posits that NPDIs should be
evaluated with at least the same level of rigor as that
mandated for DDIs (FDA, 2020). Thus, a sequential set
of decision trees are proposed to guide decision-making
(Fig. 3).

A. Initial Assessment of Natural Product–Drug
Interaction Risk

Investment of time and computing resources into
development of complex PBPK models is not necessary
for every NP constituent. Rather, simple initial assess-
ments should be conducted to determine which constit-
uent(s) may merit modeling studies.

For rapid triage ofmultiple NP constituents, predicted
physicochemical properties can be used to populate
commercial modeling software programs that include
the target tissue as a compartment. Estimated concen-
trations at the tissue site(s) of interest can then be
compared with reported inductive or inhibitory concen-
trations from in vitro experiments. If the predicted
maximum unbound plasma concentration of the NP
constituent(s) is within 10% of (FDA, 2020) or exceeds
the in vitro unbound inductive or inhibitory concentra-
tion (e.g., unbound concentration at half maximum
inductive effect, unbound IC50, Ki,u), then PBPKmodeling
of theNPDI is warranted. Alternatively, if the target drug
metabolizing enzyme or transporter is pharmacologically
important in the gut (e.g., CYP3A or organic anion–
transporting polypeptide 2B1) (Won et al., 2010; 2012)
and the gut tissue/luminal concentration estimated by
the modeling approach is near or exceeds the unbound
inductive or inhibitory concentration, then static and
PBPK models should be used to predict the likelihood
and magnitude of an NPDI (FDA, 2020). A decision
process for developing PBPK models of NPDIs is
presented (Fig. 3; Table 4).

VI. Future Research

As for DDIs, if a clinically significant pharmacokinetic
NPDI is suspected, the interactionmerits advancement to
a clinical study. The design of such a study is critical and
will be addressed in a separate recommended approach
from the NaPDI Center.

A. Natural Product–Drug Interactions within the
Gastrointestinal Tract

Precision in modeling NPDIs mediated by drug
metabolizing enzymes and transporters expressed
in the intestine is governed primarily by the difficulty
in predicting intracellular unbound concentrations of
absorbed and effluxed NP constituents. Because in-
testinal epithelial cells polarize into an apical (brush
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border) and a basolateral domain, intestinal trans-
porters show orientation-related expression. Thus, the
extent of an NPDI mediated by an intestinal transporter
should be driven by the local intracellular (for efflux

transporters) or extracellular (for uptake transporters)
concentration of the NP constituent at the mem-
brane (apical or basolateral) where the transporter
is expressed (Fig. 4). These concentrations may be

Fig. 3. Decision tree for the development of PBPK models of natural product–drug interactions. Selection of a modeling strategy depends on the available
data. If data about the induction and inhibition behavior of the natural product constituent(s) are not available in the literature, these data can be gathered
from in vitro experiments. If the predicted concentrations of the constituent(s) in either the gut or the plasma exceed the cutoffs [Table 4 and FDA and
European Medicines Agency (EMA) guidance], different types of modeling are warranted. Cmax,u, maximum unbound concentration; Emax, maximum
inductive effect; kdeg, degradation rate constant; KI, inhibitor concentration at one-half maximum inactivation rate; kobs, inactivation rate constant (observed).

TABLE 4
Gut-specific cutoffs or criteria for natural product–drug interactions

Cutoffs or criteria used in decision tree for physiologically-based pharmacokinetic modeling of natural product–drug interactions depicted in
Fig. 3. For additional information or for cutoff values related to other organ systems, refer to (http://www.ema.europa.eu/docs/en_GB/document_
library/Scientific_guideline/2012/07/WC500129606.pdf; FDA, 2020).

Transporter Inhibition

P-gp and BCRP (Dose/250 ml)/Ki,u (or IC50,u) $ 10

Enzyme Inhibition

Reversible Inhibition Time-Dependent Inhibition
CYP3A (Dose/250 ml)/Ki,u $ 10 kobs/kdeg $ 10, wherein kobs = (kinact × Dose/250 ml)/(KI,u + Dose/250 ml)

CYP Inductiona

1. Concentration-dependent increase in mRNA expression of a CYP
2. $ 2-Fold increase of CYP mRNA expression relative to vehicle control at expected gut drug concentrations
3. Increase $20% of the positive control response

BCRP, breast cancer resistance protein; CYP, cytochrome P450; IC50,u, unbound IC50; kdeg, degradation rate constant; Ki,u, unbound reversible
inhibition constant; kobs, inactivation rate constant (observed); P-gp, P-glycoprotein.

aMust satisfy all three criteria to qualify as a CYP inducer. Criteria are based on those recommended for hepatic CYP induction (http://www.
ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf; FDA, 2020).

856 Cox et al.

at A
SPE

T
 Journals on M

arch 12, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf
http://pharmrev.aspetjournals.org


reasonably approximated by the concentration of an
NP constituent in the intestinal lumen. For example, for
uptake transporters expressed on the apical membrane,
unbound intestinal lumen concentrations would be
the driving force. Further complicating these calcu-
lations is the unstirred water layer covering the apical
membrane of enterocytes, which effectively consti-
tutes an aqueous barrier to absorption both in vitro
and in vivo (Korjamo et al., 2008; Wood et al., 2018). For
an intracellular enzyme or efflux transporter expressed
on the basolateral membrane of enterocytes, the intra-
cellular unbound concentration would bemore relevant,
with the intestinal lumen concentration serving as a
driver of intracellular concentration during the absorp-
tive phase.
Another area of future research for PBPKmodeling of

NPDIs relates to the impact of the gut microbiota on
plasma and target tissue exposure to object drugs. Gut
microbiota can contribute to prodrug activation (e.g.,

the sulphanilamide-generating prodrugs prontosil and
neoprontosil and the 5-aminosalisylic acid–generating
prodrugs sulfasalazine, balsazide, and osalazine) (Wilson
and Nicholson, 2017). Additionally, the gut flora directly
execute a number of drug metabolic reactions, including
decarboxylation, demethylation, hydrolysis, and dehydra-
tion (Wilson and Nicholson, 2017; Clarke et al., 2019).
There is also emerging evidence that the secretory gut
flora metabolome can alter drug metabolizing enzyme
and transporter expression in the gut and liver (Fu and
Cui, 2017; Nichols et al., 2019) and the drug molecules
on which they act. Thus, there may be NPDIs medi-
ated by gut microbiota. The contribution of the gut
flora to NPDIs is a largely untapped area of future
research.

B. Natural Product Metabolites

Currently, for NCEs, evaluation of a metabolite as
a substrate and inducer/inhibitor of drug metabolizing
enzymes and transporters is warranted if a metabolite
is 1) less polar and exhibits at least 25% of the AUC
compared with the parent or 2) more polar and has
equal or greater AUC compared with the parent (FDA,
2020).

For NP phytoconstituents, metabolite data are often
not available, raising concerns about the risk of un-
identified NPDIs. NP phytoconstituents can undergo
significant first-pass metabolism in the gut and liver,
generating quantitatively major circulating products
with uncharacterized effects on pharmacokinetic pro-
cesses, as well as reactive metabolites that inactivate
the enzymes that produce them. The recent develop-
ment of the biochemometric approach discussed above
may identify NP constituent metabolites that are precip-
itants of NPDIs. However, such examples have yet to be
reported.

C. Systems Biology

Another logical step for improving the understanding
of pharmacokinetic NPDIs is to integrate systems
biology models with PBPKmodels. One systems biology
tool potentially helpful to NPDI research is the virtual
metabolic human database (Noronha et al., 2019). This
recently developed database connects humanmetabolism
with genetics, human-associated microbial metabolism,
nutrition, and diseases. The use of -omics tools and the
virtual humanmetabolic database have yet to be explored
for NPDIs but may eventually offer unique mechanistic
insight that can contribute to PBPK modeling.

VII. Conclusions

The application of static and PBPK models to poten-
tial NPDIs may allow rapid and systematic assessment
of NPDI risk. Given the breadth and popularity of
the NP consumer market, the lack of strict regulation
on NPs with high NPDI risk, and the cost and time

Fig. 4. Illustration of intestinal cell polarization and the relative
orientations of uptake and efflux transporters.
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associated with conducting clinical studies, mathemati-
cal modeling provides a plausible method for mitigating
the public health risk of NPDIs. Widespread adoption of
systematic approaches to NPDImodel development and
application will facilitate the identification and inves-
tigation of NPDIs and promote the dissemination of
critical NPDI information to researchers, clinicians,
and patients.
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