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Abstract——The phosphodiesterase 4 (PDE4) enzyme
family plays a pivotal role in regulating levels of the sec-
ond messenger cAMP. Consequently, PDE4 inhibitors
have been investigated as a therapeutic strategy to en-
hance cAMP signaling in a broad range of diseases, in-
cluding several types of cancers, as well as in various
neurologic, dermatological, and inflammatory diseases.
Despite their widespread therapeutic potential, the pro-
gression of PDE4 inhibitors into the clinic has been
hampered because of their related relatively small ther-
apeutic window, which increases the chance of produc-
ing adverse side effects. Interestingly, the PDE4 enzyme
family consists of several subtypes and isoforms that
can be modified post-translationally or can engage in
specific protein-protein interactions to yield a variety of
conformational states. Inhibition of specific PDE4 sub-
types, isoforms, or conformational states may lead to
more precise effects and hence improve the safety pro-
file of PDE4 inhibition. In this review, we provide an
overview of the variety of PDE4 isoforms and how their
activity and inhibition is influenced by post-translation-
al modifications and interactions with partner proteins.
Furthermore, we describe the importance of screening

potential PDE4 inhibitors in view of different PDE4 sub-
types, isoforms, and conformational states rather than
testing compounds directed toward a specific PDE4 cat-
alytic domain. Lastly, potential mechanisms underlying
PDE4-mediated adverse effects are outlined. In this re-
view, we illustrate that PDE4 inhibitors retain their
therapeutic potential in myriad diseases, but target
identification should be more precise to establish selec-
tive inhibition of disease-affected PDE4 isoforms while
avoiding isoforms involved in adverse effects.

Significance statement——Although the PDE4 en-
zyme family is a therapeutic target in an extensive
range of disorders, clinical use of PDE4 inhibitors has
been hindered because of the adverse side effects. This
review elaborately shows that safer andmore effective
PDE4 targeting is possible by characterizing 1) which
PDE4 subtypes and isoforms exist, 2) how PDE4 iso-
forms can adopt specific conformations upon post-
translational modifications and protein-protein inter-
actions, and 3) which PDE4 inhibitors can selecti
vely bind specific PDE4 subtypes, isoforms, and/or
conformations.

I. Introduction

Since the discovery of cAMP as a second messenger
by Sutherland and Rall in 1958, its role in a wide varie-
ty of cellular processes, bodily functions, and patholo-
gies has been thoroughly studied (Rall and Sutherland,
1958; Sutherland and Rall, 1958). Upon diverse extra-
and intracellular cues, the second messenger cAMP is
synthesized by adenylyl cyclases to relay signaling to
adaptive changes in the cell. This notion indicates that
cAMP is used as a single generic signaling molecule to
convey and amplify information from different sources,
a notion supported by the principle that evolution pro-
motes utilizing the same machinery for different func-
tions (Purvis and Lahav, 2013). Through precise
regulation of the localization, abundance, and dynamics
of cAMP, different signaling modes can be generated us-
ing the same generic molecule. Consequently, slight dis-
turbances in cAMP regulation could promote pathoph
ysiology in different cell types. Levels of cAMP are pre-
dominantly controlled through exclusive breakdown by
the 30,50-cyclic nucleotide phosphodiesterase (PDE) en-
zyme family. This PDE enzyme family comprises
11 gene families (PDE1–11), which display different

selectivity toward their substrates cAMP and cGMP.
PDE4, PDE7, and PDE8 are cAMP-selective, and
PDE5, PDE6, and PDE9 selectively degrade cGMP. The
other gene families, PDE1, 2, 3, 10, and 11, can hydro-
lyze both cAMP and cGMP (Beavo, 1995; Bender and
Beavo, 2006). PDE4 enzymes make up a majority of
cAMP-selective PDEs in different organs and cell types
(Lakics et al., 2010; Baillie et al., 2019). Hence, PDE4
enzymes are interesting pharmacological targets to spe-
cifically modulate cAMP signaling. Hence, inhibition of
PDE4 has been and is clinically investigated as a thera-
peutic strategy in a multitude of disease areas, as also
recently reviewed (Peng et al., 2020), including cogni-
tive and affective disorders [e.g., Alzheimer disease
(NCT03817684), fragile X syndrome (NCT03569631),
schizophrenia (NCT02539550), depression (Hebenstreit
et al., 1989), and substance dependence (NCT03489850)],
autoimmune disorders [e.g., multiple sclerosis (NCT01-
982942) (Schepers et al., 2019), rheumatoid arthritis,
atopic dermatitis, and Behçet syndrome (NCT02307513)],
respiratory system diseases [e.g., chronic obstructive pul-
monary disease and asthma (Lipworth, 2005)], dermato-
logical conditions [e.g., psoriasis (NCT03022617)], and
cancer [e.g., glioblastoma (NCT03782415)].

ABBREVIATIONS: AKAP, A-kinase anchoring protein; AP, area postrema; CaMKII, calcium/calmodulin-dependent kinase II; CDK5, cy-
clin-dependent kinase 5; CFTR, cystic fibrosis transmembrane conductance regulator; circPDE4D, circular PDE4D; DISC1, disrupted in
schizophrenia 1; ERK, extracellular signal–regulated kinase; Fyn, proto-oncogene tyrosine-protein kinase Fyn; HARBS, high-affinity roli-
pram binding site; 5HT4, 5-hydroxytryptamine 4; JNK, c-Jun N-terminal kinase; LARBS, low-affinity rolipram binding site; LR2, linker re-
gion 2; Lyn, Lck/Yes novel tyrosine kinase; MK2, MAPK-activated protein kinase 2; NCBI, National Center for Biotechnology Information;
NTS, nucleus tractus solitaries; PDE, phosphodiesterase; PHD2, prolyl hydroxylase domain-containing protein 2; PKA, protein kinase A;
p75NTR, p75 neurotrophin receptor; QKI, quaking; qPCR, quantitative polymerase chain reaction; RACK1, receptor of activated protein C
kinase 1; Rheb, RAS homolog enriched in brain; Shank2, SH3 and multiple ankyrin repeat domains protein 2; SIK1, salt-inducible kinase
1; Src, proto-oncogene tyrosine-protein kinase; UCR1, upstream conserved region 1; UCR2, upstream conserved region 2; 30UTR, 30 un-
translated region; 50UTR, 50 untranslated region; XAP, HBV X-associated protein 2.
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Although inhibition of PDE4 shows widespread thera-
peutic potential in preclinical research, the progression
of PDE4 inhibitors into the clinic has been held back by
severe adverse effects, including headaches, diarrhea,
dizziness, nausea, and vomiting (Spina, 2008). In fact,
only three PDE4 inhibitors made it to the market be-
cause of their limited or reduced adverse effects: rof-
lumilast (Daliresp, Daxas), apremilast (Otezla), and
crisaborole (Eucrisa) for chronic obstructive pulmonary
disease, psoriasis, and moderate atopic dermatitis, re-
spectively (Baillie et al., 2019). Interestingly, the PDE4
gene family consists of four paralogous genes, which, cor-
respondingly, encode PDE4 subtypes (i.e., PDE4A–D).
Each of these genes generates a variety of transcript var-
iants that translate into different protein isoforms (e.g.,
PDE4D1–9). As these PDE4 subtypes and isoforms show
tissue- and cell type–specific expression and intracellular
compartmentalization patterns (Houslay, 2010) [reviewed
in Baillie et al. (2019)], more selective inhibition could re-
duce the abovementioned adverse effects while maintain-
ing treatment efficacy. An additional layer of complexity
is added by the fact that PDE4 enzymes can adopt differ-
ent conformational states as a result of various post-
translational modifications and interactions with partner
proteins. Consequently, this allows for more selective tar-
geting, as PDE4 inhibitors will likely display different af-
finities toward different PDE4 subtypes, isoforms, and
conformational states.
This review aims to provide an overview of the vari-

ety of PDE4 subtypes and isoforms and the mecha-
nisms by which their cellular activity and inhibitor
affinity is regulated through post-translational modi-
fications and protein-protein interactions. Moreover,
current advancements and strategies toward the de-
velopment of PDE4 subtype- and/or conformation-
specific compounds are discussed. Lastly, several
mechanisms that potentially contribute to adverse
side effect profiles of PDE4 inhibition are outlined to
support the development of new, more specific, and
safer PDE4-directed therapeutics.

II. Phosphodiesterase 4 Subtypes and Isoforms

Before the identification of the responsible enzymes
in 1987, rolipram was shown to inhibit cAMP-specific
PDE activity (Reeves et al., 1987). As this activity
was distinct from three other types of PDE activity al-
ready known at the time, it was coined PDE IV. In
retrospect, earlier studies had already identified roli-
pram-sensitive PDE activity to be present in rat brain
material and to be involved in gastric secretion
(Schwabe et al., 1976; Puurunen et al., 1978). A rat
ortholog of the Drosophila cAMP-PDE enzyme, en-
coded by the dunce gene, was found to produce an en-
zyme that can be inhibited by rolipram (Davis et al.,
1989; Swinnen et al., 1989a,b).

In mammals, four PDE4 genes can be distin-
guished, all of which show similar and evolutionarily
conserved exon compositions, encoding the abovemen-
tioned PDE4 subtypes PDE4A, B, C, and D (Bolger et
al., 1993, 1994; Milatovich et al., 1994; Johnson et al.,
2010). Across species and among genes, there is par-
ticular sequence similarity in specific exons that en-
code the enzyme’s catalytic domain and two
regulatory domains, upstream conserved region 1
(UCR1) and upstream conserved region 2 (UCR2).
Next to their sensitivity to rolipram, PDE4 enzymes
can be distinguished from other PDEs by the presence
of these UCR1 and UCR2 domains. Apart from the
UCR1, UCR2, and catalytic domains, the amino acid
sequences of human PDE4 subtypes differ notably in
the linker region 1 (between UCR1 and UCR2), linker
region 2 (LR2) (between UCR2 and catalytic domain),
and the C termini. These differences allow for sub-
type-specific modulation while maintaining core
PDE4 regulation and functionality as discussed in
section III. Phosphodiesterase 4 Modifications and
Interactions.
Additional diversity is achieved at the gene level as

each of the PDE4 genes contains alternative pro-
moters that can generate distinct transcript variants
by incorporating unique exons and through recursive
splicing mechanisms (Sibley et al., 2015). Different
promoters may contain distinct transcription response
elements that allow for transcriptional regulation as-
sociated with a diversity of signaling pathways. For
example, specific promoters of the PDE4D gene have
been identified to contain regulatory elements for the
transcription factors cAMP-response element binding
protein (Vicini and Conti, 1997; D’Sa et al., 2002; Le
Jeune et al., 2002), melanocyte inducing transcription
factor (Khaled et al., 2010), or activating transcription
factor 4 (Soda et al., 2013). These transcriptional con-
trol mechanisms allow for intricate transcriptional
feedback loops that upregulate PDE4 expression to
terminate cAMP signaling associated with particular
cascades. The activity of certain promoters is thus
regulated by the presence of the various transcription
factors, and the accessibility of the promoter may also
be subject to epigenetic regulation. Indeed, epigenetic
alterations at the level of DNA (hydroxy)methylation
and histone modifications of the PDE4D gene have
been associated with changes in expression on specific
transcript variants (Tilley and Maurice, 2005; Paes et
al., 2021a). Although the exact responsiveness of the
different PDE4 promoters remains to be explored fur-
ther, prior findings already suggest that PDE4 tran-
scription can be regulated in an intricately regulated
manner that enables organ- and cell-specific expres-
sion patterns.
Depending on the location of the promoter, PDE4

mRNA transcripts will include the exons encoding
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both UCR1 and UCR2, only UCR2, a truncated
UCR2, or only exons that encode a part of the catalyt-
ic domain (Nemoz et al., 1996; Johnston et al., 2004).
Based on the presence of these UCRs, the protein
products of these transcripts can be categorized as
long, short, and supershort isoforms, respectively.
Transcripts encoding catalytically inactive isoforms
are called dead-short (Houslay, 2001). Based on dele-
tion mutant studies, the UCR domains were found to
regulate catalytic activity, showing differential enzy-
matic kinetics for the different isoform categories (Ja-
cobitz et al., 1996; Saldou et al., 1998). Via alternative
promoters and alternative splicing mechanisms, more
than 20 human PDE4 transcript variants have been
identified, allowing for tissue- and cell-specific expres-
sion regulation.
Figure 1 highlights the exon composition per human

PDE4 transcript. As described below, certain PDE4
transcripts have been identified or characterized in hu-
mans or rodents only; Supplemental Table 1 provides
an overview of which PDE4 transcript has been de-
scribed per species. Human PDE4A encodes four long
isoforms [PDE4A8 (Mackenzie et al., 2008); PDE4A4,
which is named PDE4A5 in rodents (Bolger et al.,
1993; Naro et al., 1996); PDE4A11 (Wallace et al.,
2005); and PDE4A10 (Rena et al., 2001)]; one super-
short isoform [PDE4A1 (Sullivan et al., 1998)]; and a
dead-short, catalytically inactive isoform [PDE4A7
(Johnston et al., 2004)] (Supplemental Table 1).
For human PDE4B, two long [PDE4B1 (Bolger et

al., 1993) and PDE4B3 (Huston et al., 1997)], one
short [PDE4B2 (McLaughlin et al., 1993)], and one
supershort isoform [PDE4B5 (Cheung et al., 2007)]
have been identified. In rodents, in addition, a long
PDE4B4 isoform has been characterized that was
suggested to have no functional equivalent in humans
as a result of in-frame stop codons (Shepherd et al.,
2003). However, PDE4B antibodies can clearly detect
an 85-kDa PDE4B species in human brain tissue cor-
responding to rodent PDE4B4, but the exact sequence
remains to be determined (Fatemi et al., 2008)
(Supplemental Table 1).
The least well characterized PDE4 subtype is PDE4C,

which comprises three long isoforms [PDE4C1 (Engels et
al., 1995), PDE4C2 (Owens et al., 1997b), and PDE4C3
(Obernolte et al., 1997)], but likely generates additional
variants through complex alternative splicing (Obernolte
et al., 1997). Interestingly, despite relatively little insight
into its function, several studies found that the DNA
methylation signature of the PDE4C gene correlated
with aging (Marquez-Ruiz et al., 2020).
Lastly, the human PDE4D gene produces the high-

est number of isoforms, i.e., six long isoforms
[PDE4D3, PDE4D4, PDE4D5 (Bolger et al., 1997),
PDE4D7, PDE4D8 (Wang et al., 2003), PDE4D9 (Gre-
tarsdottir et al., 2003)], one short isoform [PDE4D1

(Bolger et al., 1997)], and two supershort isoforms
[PDE4D2 (Bolger et al., 1997) and PDE4D6 (Wang et
al., 2003)] (Supplemental Table 1).
Moreover, alternatively spliced transcripts have

been described for PDE4D3, D4, and D5 that do not
translate the catalytic domain because of in-frame
stop codons caused by exon deletions or insertions
(Fig. 1) (Miro et al., 2000). These variations of the
“conventional” PDE4D3, D4, and D5 isoforms have
been respectively coined PDE4DN1, PDE4DN2, and
PDE4DN3 and can be categorized as dead-short forms
based on the absence of the catalytic domain. For
PDE4DN1, all exons encoding UCR1 are skipped, cre-
ating a transcript that encodes the unique N-terminal
of PDE4D3 followed by 31 frame-shifted codons of the
UCR2 (Fig. 1). Based on this sequence, PDE4DN1
may engage in similar protein-protein interactions as
PDE4D3 would using its N-terminal residues, but the
exact functional role of PDE4DN1 remains undeter-
mined (see also section III. Phosphodiesterase 4 Modi-
fications and Interactions and Fig. 2). In contrast to
PDE4DN1, PDE4DN2 and PDE4DN3 do incorporate
the UCR1-encoding exons in their transcripts (Fig. 1).
Similar to PDE4DN1, the unique N termini, as also
present in PDE4D4 and PDE4D5, may allow
PDE4DN2 and PDE4DN3 to bind specific protein
partners or putatively cause competitive binding for
these binding sites with full-length PDE4D4 and
PDE4D5, respectively. This competitive binding may
subsequently induce altered distribution of full-length
PDE4 forms causing distinct cellular cAMP dynamics.
Intriguingly, the presence of UCR1 in these truncated
forms may have functional consequences on full-
length PDE4 forms. It has been demonstrated that a
peptide fragment of the UCR1 can bind and activate
full-length long PDE4 forms (Wang et al., 2015).
PDE4DN2 and PDE4DN3, containing the same se-
quence as this peptide fragment, may exert similar
actions and could biologically be relevant by providing
an additional mechanism to elevate cellular PDE4 ac-
tivity. The existence of these truncated forms at the
protein level and their putative activating effects on
full-length long PDE4D forms, however, remain to be
validated.
Importantly, the existence of these truncated

PDE4DN1–3 forms has a practical consequence for
quantitative polymerase chain reaction (qPCR) meas-
urements. Isoform-specific PDE4D expression can be
measured using qPCR primers that amplify part of
the sequence of the isoform-unique exon (and the first
UCR1 exon), but in the case of PDE4D4 and
PDE4D5, the respective expression of PDE4DN2 and
PDE4DN3 will also be detected by qPCR. Hence, PCR
and gel electrophoresis should be performed in paral-
lel using appropriate primers to determine whether
expression changes are found for both the full-length
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Fig 1. Exon composition per human PDE4 transcript variant. For each of the PDE4 genes (PDE4A–D), the exon composition is shown per transcript variant.
Gray boxes depict exons and their nucleotide length. The protein isoform names and associated amino acid (aa) number per transcript are shown on the left. Start
and stop codons are indicated by arrows and pins, respectively. The regions translating intoUCR1, UCR2, and the catalytic domain are visualized by thick horizon-
tal bars. *As the transcripts PDE4DN1–3 have only been identified on themRNA level, amino acid lengths are isoform categories that are predictions based on in-
frame stop codons. This figure was established through analysis and crossreferencing of online databases (NCBI: https://www.ncbi.nlm.nih.gov/gene and Ensembl:
http://www.ensembl.org/index.html) and original cloning studies (see references to studies per transcript variant in section II. Phosphodiesterase 4 Subtypes and
Isoforms). An overview indicating which transcripts have counterparts in rodents or are only found in rodents is provided in the SupplementalMaterial.
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and truncated transcript or for only one of these
transcripts.
Recently, it has been described that PDE4D also enco-

des a highly stable, mainly cytoplasmic, circular RNA,
circPDE4D, which is formed through circularization of
exons 2–5 of the PDE4D gene (Fig. 1) (Wu et al., 2021).
The expression of circPDE4D and linear PDE4D mRNA

was found not to be correlated, indicating that distinct
mechanisms produce these transcript types. Wu et al.
(2021) identified regulatory regions in the flanking in-
trons (i.e., upstream of exon 2 and downstream of exon
5) that are crucial for circPDE4D circularization.
Through specific CRISPR-Cas9 editing, the authors
were able to decrease circPDE4D expression and

Fig 2. Graphical representation of regulatory protein domains of PDE4 proteins and PDE4 amino acids or domains involved in inherent features of
PDE4 enzymes, post-translational modifications and interactions with protein partners. Colored rectangles indicate regulatory domains. Inherent fea-
tures of PDE4 enzymes and associated amino acids are also visualized in Supplemental Video. Those post-translational modifications and protein-pro-
tein interactions for which the involved PDE4 domains or specific amino acid residues have been identified are listed in this figure. If specific amino
acids in involved regions have been identified to mediate the modification or interaction, these amino acids are indicated in bold and underlined. In
case the specific amino acids are unidentified, the involved region is indicated by the region’s first and last amino acids connected by a line. Of note, for
simplicity, PDE4D amino acids are shown for nonconserved amino acids involved in modifications or interactions that can occur in multiple PDE4 sub-
types. Importantly, not all proteins or mechanisms in Figure 2 are listed in Table 1, and vice versa, as one of both aspects (i.e., either involved amino
acids or effect of activity) may not have been revealed yet. The determination of amino acids involved in each of the modifications or interactions was
based on the references as listed below: AKAP9 (Terrenoire et al., 2009); AKAP18d (Stefan et al., 2007); Akt (Fang et al., 2015); AMPK, AMP-activated
protein kinase (Sheppard et al., 2014); b-arrestin (Bolger et al., 2006; Baillie et al., 2007; Smith et al., 2007; Bolger, 2016); aII spectrin (Creighton et al.,
2008); B55a PP2a subunit (Yun et al., 2019b); calcineurin (Zhu et al., 2010); CaMKII (Mika et al., 2015); caspase-3 (Huston et al., 2000); CDK5 (Platt-
ner et al., 2015); C-term, C terminus; dimerization (Lee et al., 2002; Richter and Conti, 2002; 2004; Xie et al., 2014; Bolger et al., 2015; Cedervall et al.,
2015); DISC1 (Millar et al., 2005; Cheung et al., 2007; Murdoch et al., 2007; Soda et al., 2013); ERK ( Hoffmann et al., 1999; Baillie et al., 2000; Mac-
Kenzie et al., 2000); HSP20 (Sin et al., 2011); integrin a5 (Yun et al., 2016, 2019b); JNK (Sharrocks et al., 2000; Bogoyevitch and Kobe, 2006; Zeke et
al., 2015); LIS1 (Murdoch et al., 2011); LR1, linker region 1; Lyn (Beard et al., 2002); Lyn1 Src (McPhee et al., 1999); mAKAP (Dodge et al., 2001; Car-
lisle Michel et al., 2004); Mdm2, mouse double minute 2 homolog (Li et al., 2009); membrane binding (Baillie et al., 2002); Mg21 binding (Alvarez et al.,
1995; Saldou et al., 1998; Laliberte et al., 2000; Liu et al., 2001); MK2 (MacKenzie et al., 2011; Bolger, 2016; Houslay et al., 2017; Houslay et al., 2019);
myomegalin (Verde et al., 2001); N-term, N terminus; oxidative stress kinase (Hill et al., 2006; Bolger, 2016); p62 (SQSTM1, sequestosome 1) (Christian
et al., 2010); PHD2 (Huo et al., 2012); phosphodegron motif (Zhu et al., 2010); PKA (Alvarez et al., 1995; Sette and Conti, 1996; Hoffmann et al., 1998;
Beard et al., 2000; MacKenzie et al., 2002; Byrne et al., 2015; Bolger, 2016); p75NTR (Sachs et al., 2007; Houslay et al., 2019); RACK1 (Yarwood et al.,
1999; Bolger et al., 2002; Bolger et al., 2006; Smith et al., 2007; Bird et al., 2010); Rheb (Kim et al., 2010; Meng et al., 2017); Shank2 (Lee et al., 2007);
SIK1 (Kim et al., 2015); Src/Lyn/Fyn (O’Connell et al., 1996; Beard et al., 1999); SUMOylation (Li et al., 2010); ubiquitination (Li et al., 2009); UCR1-
UCR2 interaction (Beard et al., 2000); XAP/aryl hydrocarbon receptor-interacting protein (AIP) (Bolger et al., 2003).
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determine that QKI response elements are involved in
circularization of the PDE4D pre-mRNA. QKI response
elements bind the RNA-binding protein quaking (QKI),
which has previously been shown to regulate the circu-
larization of many pre-mRNAs (Conn et al., 2015). The
functional role of circPDE4D remains largely to be de-
termined, but Wu et al. (2021) identified that
circPDE4D can bind specific microRNAs and thereby
indirectly modulates the translation of mRNAs that
otherwise would be degraded by the now-scavenged
microRNA. In the same study, circPDE4D was found
to be downregulated in osteoarthritic cartilage tissue,
and intra-articular injection of circPDE4D could miti-
gate impairments in a mouse model of osteoarthritis.
As circPDE4D contains four exons that are also

present in linear long-form PDE4D mRNA, it can be
speculated that circPDE4D scavenges microRNAs
that bind linear long-form PDE4D mRNA, and
circPDE4D may therefore indirectly modulate PDE4D
protein expression. Moreover, circRNAs can also di-
rectly regulate protein function, protein scaffolding,
and protein localization, but these potential roles still
remain to be determined for circPDE4D (Kristensen
et al., 2019). These recent findings underline the com-
plex transcriptional control of the PDE4D gene and
warrant further investigation into non–protein-coding
transcripts of the PDE4 gene family.
For murine Pde4d, the additional long PDE4D11

and supershort PDE4D10 isoforms have been de-
scribed (Chandrasekaran et al., 2008; Lynex et al.,
2008) (Supplemental Table 1). Furthermore, addition-
al murine PDE4D transcripts have been identified
that all encode supershort PDE4D2 but are generated
through diverse exon incorporation, resulting in di-
verse 50UTR sequences and lengths (Chandrasekaran
et al., 2008) (Supplemental Table 1). Regarding
50UTR and 30UTR lengths, discrepancies exist regard-
ing the reported transcript lengths when comparing
NCBI Gene and Ensembl databases. 50UTR lengths
can differ depending on where the transcriptional ma-
chinery binds the DNA and initiates transcription, as
exemplified for mouse PDE4D1 (McLaughlin et al.,
1993). Similarly, the PDE4 transcript’s 30UTR may
differ in length, as it contains multiple polyadenyla-
tion sites (Sullivan et al., 1998; Wang et al., 2003). Ac-
cording to this variability at the 50UTR and 30UTR,
certain gene data banks may show other lengths for
the first unique and last common exons compared
with those displayed in Fig. 1. As 50UTR and 30UTR
sequences have been found to function as “zip codes”
for specific intracellular transcript transport, it can
be speculated that variation in these PDE4 transcript
sequences may contribute to specific intracellular lo-
calization patterns for the different PDE4 isoforms
(Andreassi and Riccio, 2009; Chin and Lecuyer, 2017).
Wang et al. (2003) identified 10 putative consensus

polyadenylation signals in the 30UTR of PDE4D
mRNA, which indicates that multiple transcripts that
differ in their 30UTR length can be generated depend-
ing on which polyadenylation site is used. Subse-
quently, differences in 30UTR length may give rise to
mRNA transcripts that exhibit different recognition
motifs for several RNA-binding proteins (Di Liegro et
al., 2014). For example, self-complementary sequen-
ces in mRNA can form secondary-structure hairpin
loops that can be recognized and bound by RNA-bind-
ing proteins to regulate mRNA stability and transpor-
tation (Di Liegro et al., 2014). Depending on PDE4
30UTR length, different secondary structures may be
formed and bound by different transport proteins,
which localize the transcript to distinct intracellular
compartments. There, the specific PDE4 mRNA may
be locally translated, after which the PDE4 protein
isoform can be anchored to other proteins or mem-
branes through its (isoform-specific) amino acids (see
section III. Phosphodiesterase 4 Modifications and In-
teractions). Although the role of 50UTR and 30UTR se-
quence differences in mRNA transportation has not
yet been explicitly demonstrated for PDE4 tran-
scripts, these sequence differences could provide an-
other mechanism through which PDE4 subtypes and
isoforms can display a distinct cell type–specific and
tissue type–specific intracellular distribution.
The intracellular localization of PDE4 isoforms is

particularly regulated via isoform-specific N termini at
the protein level, encoded by typical unique exon incor-
poration. These different N termini permit PDE4 iso-
forms to interact with protein partners or membranes
in specific intracellular compartments (Houslay et al.,
1995). In Aplysia, apPDE4 was found to require N-ter-
minal residues for membrane binding, which indicates
a conserved role for isoform-specific N termini in
PDE4 localization (Jang et al., 2010). Likewise, differ-
ent mammalian PDE4 subtypes (e.g., PDE4B and
PDE4D) locate to different intracellular compartments
(Blackman et al., 2011).
In addition to the scaffolding function, interactions

with partner proteins can, as mentioned above, act
upon the enzyme’s conformational state and hence af-
fect its catalytic activity and inhibitor affinity. Simi-
larly, PDE4 subtypes and isoforms are subject to post-
translational modifications that differentially alter
the conformation and activity of the enzyme.
To develop more efficacious and safer PDE4 inhibi-

tors for different diseases, it is crucial to identify which
PDE4 subtypes and isoforms should be targeted in dis-
ease-relevant tissues and cell types. Similarly, insight
into which PDE4 subtypes and isoforms mediate ad-
verse effects will determine which specific targets to
avoid to improve the treatment’s safety profile. Addi-
tionally, understanding the conformational state of the
isoform(s) involved in the compartmentalized signaling
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important to treat the disease at hand determines
which compounds would be most potent. In the follow-
ing section, an overview is provided on the different
manners by which PDE4 activity and inhibitor affinity
are influenced by post-translational modifications and
interactions with partner proteins.

III. Phosphodiesterase 4 Modifications and
Interactions

As mentioned before, catalytically active PDE4 iso-
forms can be categorized as long, short, or supershort
based on the presence of UCR1 and UCR2 domains.
Depending on the PDE4 subtype, isoform category,
and unique N-terminal features, different post-transla-
tional modifiers and interaction partners can influence
the conformation of the enzyme. These mechanisms al-
low for the dynamic regulation of the amount, localiza-
tion, and activity of PDE4 enzymes to shape and
respond to spatiotemporal cAMP signaling [as also re-
cently reviewed for all PDE gene families (Baillie et
al., 2019)]. The seminal work by Houslay and collabo-
rators has provided a detailed understanding of which
PDE4 amino acid residues are crucial for several modi-
fications and interactions (Klussmann, 2016). Those
post-translational modifications and protein-protein in-
teractions for which involved PDE4 domains or specific
amino acid residues have been identified are graphical-
ly represented in Fig. 2. These and other modifications
and interactions, for which involved regions have not
been determined, are discussed below in more detail.
Furthermore, the known functional consequences of
several modifications and interactions on PDE4 activi-
ty and inhibitor binding are elaborated upon in the fol-
lowing subsections and are summarized in Table 1.

A. Upstream Conserved Region 1-Upstream Conserved
Region 2 Module, Dimerization, and Phosphorylation

PDE4 activity is profoundly regulated by its own
UCR domains as, in long isoforms, the C-terminal of
UCR1 forms a module with the N-terminal of UCR2,
which autoinhibits its activity through the capping of
the UCR2 a-helix NQVSE[F/Y]ISXTFLD across the
catalytic domain (Kovala et al., 1997; Lim et al., 1999;
Beard et al., 2000; Houslay and Adams, 2010) (Fig. 3;
Table 1; Supplemental Video). Furthermore, the
UCR1 and UCR2 domains enable long isoforms to
homo- and heterodimerize, whereas short and super-
short isoforms (lacking UCR1) exist as monomers (Xie
et al., 2014). The UCR1-UCR2 module is disrupted
upon serine phosphorylation in the conserved protein
kinase A (PKA) consensus motif RRES in UCR1 of all
long PDE4 isoforms. The liberation of this UCR1-
UCR2 module attenuates the autoinhibitory effect
causing enzyme activation (Hoffmann et al., 1998;
Beard et al., 2000). As PKA is a direct downstream ef-
fector protein of cAMP, this modification serves as a

negative feedback loop restoring cAMP levels through
enhanced PDE4 activity. Although PKA phosphoryla-
tion can activate all long isoforms, the amplitude of
PKA activation can differ among these isoforms as re-
ported for long PDE4D isoforms (Richter et al., 2005).
This indicates that additional regulatory mechanisms
influence enzymatic activity. For example, the pres-
ence of additional PKA phosphorylation sites in
PDE4D3 and PDE4D7, upon combined PKA phos-
phorylation, leads to differential effects in terms of
catalytic activity (Sette and Conti, 1996; Collins et al.,
2008; Byrne et al., 2015). Indeed, unique phosphoryla-
tion in the N-terminal PDE4D7, but not at the unique
site in PDE4D3, induces an inhibitory effect on activi-
ty as opposed to PKA phosphorylation at the con-
served UCR1 site (Byrne et al., 2015). Although PKA
phosphorylation provides a negative feedback loop to
restore cAMP levels, this regulation can be influenced
by other protein interactors as well. For example,
when PDE4D is bound by the protein coiled-coil and
C2 domain-containing protein 1A (CC2D1), phosphor-
ylation by PKA is prevented (Al-Tawashi et al., 2012;
Al-Tawashi and Gehring, 2013). In addition to PKA,
it was found that the same serine residue in UCR1
can be phosphorylated by Akt (Fang et al., 2015).
Other conserved serine residues in the UCR1 also
serve as phosphorylation sites for other kinases such
as MK2, SIK1, CDK5, and AMP-activated protein ki-
nase, which may modulate PDE4 activity by similarly
affecting UCR1-UCR2 module formation/stabilization
(MacKenzie et al., 2011; Sheppard et al., 2014; Kim et
al., 2015; Plattner et al., 2015; Bolger, 2016; Houslay
et al., 2019). Next to phosphorylation events, binding
of phosphatidic acid or phosphatidylserine to the
UCR1-UCR2 module increases PDE4 activity (Nemoz
et al., 1997). The regulatory role of the UCR1-UCR2
module is further supported by the observation that
several PDE4D mutations associated with the rare
genetic disorder acrodysostosis localize to these re-
gions, causing either increased or decreased PDE4D
activity (Kaname et al., 2014; Gurney et al., 2015;
Briet et al., 2017).

B. Phosphorylation at Sites Other than Upstream
Conserved Region 1

Through the use of multiple phosphorylation sites,
PDE4 functionality can be modulated in a conditional
manner, requiring multiphosphorylation, as has been
reported for the role of PDE4D9 in mitosis (Sheppard
et al., 2014). Next to the UCR1, the N terminus of the
catalytic domain comprises phosphorylation sites for
CaMKII and an “oxidative stress” or “switch” kinase.
CaMKII phosphorylation is PDE4D-specific and indu-
ces enzyme activation in a manner distinct from PKA
activation (Mika et al., 2015). In response to oxidative
stress, an as of yet unidentified oxidative stress or
switch kinase can increase PDE4 enzyme activity by
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TABLE 1
Overview of modifications and interactions that influence PDE4 activity and the affinity of PDE4 inhibitors

Effect on PDE4
Activity Interaction/Modification Effect on Inhibitor affinity Comments References

Increase Akt — Fang et al., 2015
B55a PP2a subunit — Dephosphorylation at

ERK site on PDE4D5
Yun et al., 2019a

Calcineurin — Protects against
degradation

Zhu et al., 2010

CaMKII — Mika et al., 2015
Caspase-3 cleavage — Huston et al., 2000

CDK5 — Possible synergistic
activation by PKA

Plattner et al., 2015

ERK — Short isoforms of PDE4B,
4C, and 4D only

Baillie et al., 2000;
MacKenzie et al., 2000

mAKAP/AKAP6 — Presumably through
mAKAP-sequestered PKA

Carlisle Michel et al.,
2004; Dodge et al., 2001

Metal binding (Mg21) Increase (R-rolipram,
S-rolipram, CDP-840,
cilomilast, roflumilast,
piclamilast, PMNPQ)

Huang et al., 2007;
Laliberte et al., 2000;
Liu et al., 2001; Saldou

et al., 1998
Oxidative stress switch

kinase
No effect (rolipram) Switches ERK inhibition

to activation,
phosphomimetic

mutation prevents
dimerization

Bolger, 2016; Hill et al.,
2006

Phosphatidic acid — Dimerization necessary
for activation

Grange et al., 2000;
Nemoz et al., 1997;

Richter and Conti, 2004
Phosphatidylserine — Nemoz et al., 1997

PI3Kc — D’Andrea et al., 2015;
Ghigo et al., 2012

PKA Increase (rolipram,
BPN14770, RS-25344,

RS-33793)

Alvarez et al., 1995;
Bolger, 2016; Hoffmann
et al., 1998; MacKenzie
et al., 2002; Sette and

Conti, 1996;
Zhang et al., 2018

RACK1 Increase (rolipram) Ablates dimerization Bird et al., 2010; Bolger
et al., 2006; Bolger

et al., 2002; Yarwood et
al., 1999

Rheb — Stabilizes PDE4D protein
expression

Kim et al., 2010; Meng
et al., 2017

SIK1 — Kim et al., 2015; Liu
et al., 2020

Decrease CC2D1A — Prevents activation by
PKA

Al-Tawashi and
Gehring, 2013

DISC1 — PKA phosphorylation
releases DISC1

Cheung et al., 2007;
Millar et al., 2005;
Murdoch et al., 2007

ERK — Long and supershort
isoforms of PDE4B, 4C,

and 4D only

Baillie et al., 2000;
MacKenzie et al., 2000

PHD2 — Presumably induces
PDE4 protein
degradation

Huo et al., 2012

PKA (PDE4D7-specific) — Byrne et al., 2015
Smurf2 — Ubiquitination and

degradation of PDE4B
Cai et al., 2018

SUMO E3 ligase PIASy — Augments PKA
phosphorylation, reduces

ERK inhibition

Li et al., 2010

UCR1-UCR2 interaction No effect (IBMX,
rolipram, piclamilast,

RS-25344)

Beard et al., 2000;
Saldou et al., 1998

XAP2/AIP Increase (rolipram) Bolger et al., 2003
None Dimerization Increase (R-rolipram), no

effect (piclamilast)/no
effect (rolipram)/

increased (rolipram)

Dimerization enables
UCR2 to bind rolipram

Bolger et al., 2015;
Cedervall et al., 2015;
Richter and Conti, 2004

Lyn, Src Increase for rolipram Beard et al., 2002; Beard
et al., 1999; McPhee
et al., 1999; O’Connell

et al., 1996
MK2 phosphorylation — Phosphomimetic

mutation prevents
dimerization; attenuation

Bolger, 2016; Houslay
et al., 2019; MacKenzie

et al., 2011
(continued)
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switching the inhibitory effect of phosphorylation by
extracellular signal–regulated kinase (ERK) to an acti-
vating effect (Hill et al., 2006; Bolger, 2016). Similarly,
inhibition of PDE4D by ERK is diminished upon SU-
MOylation mediated by protein inhibitor of activated
STAT protein gamma (PIASy), and this SUMOylation
augments PKA activation of PDE4A and PDE4D
(Fig. 2; Table 1) (Li et al., 2010).
Phosphorylation by ERK is established through the

docking of ERK at the KIM and FQF motifs, which

are located in catalytic domains and the C terminus,
respectively (Fig. 2) (Houslay and Baillie, 2003). Upon
docking of ERK, the consensus motif PXSP can be
phosphorylated, which is present at the end of the
catalytic domain in PDE4B, 4C, and 4D. Although
PDE4A phosphorylation at this motif has been de-
tected, this is unlikely induced by ERK, given the ab-
sence of the consensus motif, or it does not result in
changed PDE4A activity (Baillie et al., 2000; Lario et
al., 2001). Phosphorylation by ERK reduces the cata-
lytic activity of long and supershort PDE4B, 4C, and
4D isoforms, presumably by intramolecular stabiliza-
tion of the UCR2-capped configuration (Baillie et al.,
2000; Houslay and Baillie, 2003). Conversely, short
isoforms are activated upon ERK phosphorylation.
However, removal of the UCR2 region in the short
PDE4B2 form prevents an effect by phosphorylation
by ERK, which supports the notion that UCR2 cap-
ping is required for ERK-mediated effects (Rocque et
al., 1997b). Moreover, when ERK phosphorylation is
paired with additional PKA or switch kinase phos-
phorylation, enzyme activity will increase in long iso-
forms as well (Hoffmann et al., 1999; Hill et al.,
2006). Apart from these direct effects on PDE4 activi-
ty, phosphorylation by ERK may make PDE4 less
prone to proteolysis (Lenhard et al., 1996). The
PDE4D5 isoform may be minimally subjected to phos-
phorylation by ERK, as its unique N terminus binds
the protein phosphatase B55a subunit, which dephos-
phorylates at the ERK site, reversing its inhibition
(Yun et al., 2019). Furthermore, PDE4D5 specifically
interacts with the proteins b-arrestin and RACK1,
which can block the docking and phosphorylation by
ERK, respectively (Table 1) (Bolger et al., 2006). Con-
sequently, PDE4 activity can be increased upon these
interactions, as reported for RACK1 (Yarwood et al.,
1999; Bolger et al., 2002, 2006; Bird et al., 2010). Of
note, binding of b-arrestin and RACK1 ablates dimer-
ization, but they bind mutually exclusively as a result

TABLE 1—Continued
Effect on PDE4
Activity Interaction/Modification Effect on Inhibitor affinity Comments References

PKA activation and
interaction with DISC1

and AIP; enhances
interaction of PDE4A4

with p75NTR
p75NTR — Houslay et al., 2019;

Sachs et al., 2007
PKA (PDE4D3-specific) — Upon phosphorylation,

PDE4D3 is released from
Ndel1

Collins et al., 2008;
Sette and Conti, 1996

Not reported b-Arrestin2 — Ablates dimerization and
preferentially binds
monomeric PDE4D5

Baillie et al., 2007;
Bolger, 2016; Bolger

et al., 2006

AIP, aryl hydrocarbon receptor-interacting protein; CC2D1A, coiled-coil and C2 domain-containing protein 1A; PIASy, protein inhibitor of activated STAT protein gam-
ma; PI3Ky, phosphoinositide 3-kinase gamma.

Fig 3. Tertiary structure of dimerized PDE4B demonstrating capping of
UCR2 across the catalytic domain and helices 10 and 11. Crystal struc-
ture was derived from Protein Data Bank [PDB: 4WZI, (Cedervall et al.,
2015)]. UCR1 and UCR2 regions of both monomers are indicated in pur-
ple and red, respectively. Catalytic domains are colored cyan and have
the catalytic metals (i.e., Mg21 and Zn21) embedded as shown by the
spheres. Wheat-colored helices form part of the linking region between
catalytic domains and, nonmodeled, C termini. A three-dimensional rep-
resentation of the image is provided in Supplemental Video.
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of overlapping binding residues in the PDE4D5 N ter-
minus (Bolger, 2016). Additional mouse double minute
2 homolog–mediated ubiquitination putatively primes
PDE4D5 to interact with b-arrestin rather than
RACK1 (Li et al., 2009). Although b-arrestin preferen-
tially binds PDE4D5, when bound to the RXFP1 rector,
it prioritizes binding PDE4D3 (Halls and Cooper,
2010). These findings indicate that, because of the dif-
ferential and combined interactions with partner part-
ners, phosphorylation and binding events may be
stimulated, prevented, or countered in an isoform-spe-
cific manner.
The ERK-associated KIM docking motif can also be

used by c-Jun N-terminal kinase (JNK) (Sharrocks et
al., 2000; Houslay and Adams, 2003). Intriguingly,
the specific isoforms PDE4A8, PDE4B1, and PDE4D7
all contain an additional, evolutionary conserved
docking site for JNK in their unique N terminus
(Fig. 2). Previously, it has been demonstrated that
PDE4B1 can indeed bind JNK, but it remains to be
verified whether JNK effectively phosphorylates
PDE4 and whether this changes PDE4 enzymatic ac-
tivity (Zeke et al., 2015). A putative JNK phosphory-
lation site can be found in the accessible LLSTPAL
motif in the catalytic domain, which corresponds with
the heptapeptidic consensus sequence surrounding
the JNK phosphorylation site (Bogoyevitch and Kobe,
2006).

C. Indirect Regulation of Phosphodiesterase 4 Activity
and Interactions

Next to the aforementioned mechanisms, cellular
PDE4 activity can be regulated through mechanisms
distinct from phosphorylation. These regulatory
mechanisms may be therapeutically relevant for the
disease of interest, as exemplified by the disrupted in
schizophrenia 1 (DISC1) protein. DISC1 is a PDE4 in-
teraction partner and has been found to be a risk fac-
tor for the development of psychiatric diseases when
mutated (Millar et al., 2005; Cheung et al., 2007;
Soda et al., 2013). DISC1 can bind and inhibit both
PDE4B and PDE4D through homologous amino acids,
causing occlusion of the catalytic domain, and addi-
tional subtype-specific binding sites allow for a stron-
ger interaction with PDE4B than with PDE4D
(Fig. 2) (Murdoch et al., 2007). Consequently, upon
cAMP elevation, DISC1 dissociates from PDE4D
while retaining its interaction with PDE4B, resulting
in functionally distinct roles for these PDE4 subtypes
(Murdoch et al., 2007). Hence, mutations in either
DISC1 or PDE4, or both, can impair or enhance this
inhibitory action of DISC1, leading to aberrant PDE4
activity.
Through regulation of PDE4 mRNA and protein

stability, cellular PDE4 activity can also be influ-
enced. For example, cold-inducible RNA-binding pro-
tein, which acts as a cellular stress regulator, can

stabilize PDE4B and PDE4D mRNA expression (Xie
et al., 2020). Moreover, PDE4B mRNA was found to
be stabilized by the common RNA modification N6-
methyladenosine, providing another mechanism to
regulate PDE4 translation and subsequent activity
(Huang et al., 2020). At the protein level, PDE4 ex-
pression and activity were found to be decreased upon
overexpression of the oxygen-sensing protein prolyl
hydroxylase domain-containing protein 2 (PHD2)
through hydroxylation of a specific site in the catalyt-
ic domain (Fig. 2) (Huo et al., 2012). PDE4D contains
a phosphodegron motif in its C terminus, which upon
dual phosphorylation by casein kinase I and glycogen
synthase kinase 3b, induces PDE4D degradation (Fig.
2). However, through binding of the serine/threonine
protein phosphatase calcineurin, PDE4D can be pro-
tected against phosphodegron-mediated degradation,
which would stabilize PDE4 activity (Zhu et al.,
2010). Notably, both calcineurin inhibitors and PDE4
inhibitors are used in the treatment of atopic dermati-
tis (Papier and Strowd, 2018). Based on the calcineur-
in-PDE4 interaction, these calcineurin inhibitors may,
at least in part, be effective through stimulation of
PDE4 degradation. Likewise, the small GTPase Rheb-
stabilizes PDE4D protein expression and dissociates
upon cAMP elevation to activate the mTOR pathway
(Kim et al., 2010; Meng et al., 2017). Lastly, PDE4B
ubiquitination can be induced upon interaction with
the E3 ubiquitin ligase SMAD ubiquitination regula-
tory factor 2 (Smurf2) (Cai et al., 2018). Thus, PDE4
activity is indirectly regulated through control of its
degradation. Conversely, when these regulatory
mechanisms are affected in a disease state (e.g., in
case of DISC1 mutations), PDE4 activity can conse-
quently become dysregulated.

D. Conformational States Impacting upon
Phosphodiesterase 4 Activity and Inhibitor Binding

Upon modifications and interactions, PDE4 can ex-
ist in different conformational states. Historically,
this has been recognized by PDE4 activity that could
be distinguished based on different binding affinities
for rolipram, a high-affinity rolipram binding site
(HARBS) and low-affinity rolipram binding site
(LARBS); see also section IV. Phosphodiesterase 4 In-
hibitors below (Jacobitz et al., 1996; Rocque et al.,
1997a,b; Souness and Rao, 1997). Multiple studies
have demonstrated several factors that contribute to
the existence of distinct conformers. For example,
binding Mg21 in the catalytic domain dose-dependent-
ly increases enzymatic activity but also increases the
affinity to bind rolipram and other inhibitors (Table
1) (Wilson et al., 1994; Alvarez et al., 1995; Laliberte
et al., 2000). Similarly, phosphorylation by PKA and
RACK1 binding both increase PDE4 activity and
induce an increase in rolipram affinity (MacKenzie et
al., 2002; Zhang et al., 2018). However, the effect of
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phosphorylation by PKA on rolipram affinity can be
different per long isoform (MacKenzie et al., 2002).
Interestingly, increases in enzyme activity upon phos-
phorylation by PKA may actually be a consequence of
an increase in Mg21 sensitivity, which subsequently
would facilitate cAMP catalysis as well as binding of
certain inhibitors through water-mediated interac-
tions (Saldou et al., 1998; Laliberte et al., 2000). In-
deed, as proposed by Houslay and Adams (2003),
modifications at the N terminus may be relayed via
conformational changes to the catalytic domain to
eventually influence enzyme activity. For example,
upon PKA phosphorylation and possibly also other
PDE4-activating phosphorylation events in the UCR1
(Fig. 2), the UCR1-UCR2 module and/or UCR2-cata-
lytic domain interactions may be disrupted (Beard et
al., 2000; Houslay and Adams, 2003). Subsequently,
this altered conformation could change the orienta-
tion of helices 10 and 11 in the catalytic domain that
flank the catalytic metals, thereby impacting the way
these metals are held in place. More specifically, heli-
ces 10 and 11 form a tweezer-like structure (Fig. 4,
dark blue helices) and are connected by a loop (Fig. 4,
orange), which may interact with UCR2 and/or LR2
residues (Fig. 4). As such, N-terminal modifications
and interactions can, directly or through modulation
of this UCR2/LR2 stretch, alter the conformation of

this connecting loop, thereby changing the way heli-
ces 10 and 11 stabilize catalytic metal binding. Conse-
quently, catalytic activity and metal-mediated
inhibitor binding will be influenced. Vice versa, inhib-
itor binding can impact the ability of PDE4 forms to
engage in protein-protein interactions via inside-out
signaling, which supports the notion that conforma-
tional changes are relayed between the catalytic do-
main and N-terminal regions. (Terry et al., 2003; Day
et al., 2011). Interestingly, as the LR2 region is not
conserved among PDE4 subtypes, its effect on metal
coordination through interaction with the helix 10-11
connecting loop may be different per PDE4 subtype.
Indeed, deletion of the UCR2 and LR2 regions signifi-
cantly decreases the sensitivity of PDE4D, but not
PDE4A or PDE4B, to bind Mg21 (Saldou et al., 1998).
PDE4 enzymes exhibiting increased activity are not

analogous to increased inhibitor affinity, as interac-
tions that do not increase PDE4 activity also influ-
ence inhibitor binding. Binding of the proteins XAP2
and Lyn enhances the sensitivity to rolipram but has
a negative or no effect on PDE4 activity, respectively
(Table 1) (McPhee et al., 1999; Bolger et al., 2003).
Furthermore, it has been postulated that the HARBS
conformer is constituted of long isoforms since their
dimerized state stabilizes HARBS (Richter and Conti,
2004). However, HARBS is not dependent on dimer-
ization or the presence of UCR1 but rather is formed
by inhibitor-UCR2 interactions, indicating that
(super)short isoforms can also exhibit HARBS (Jaco-
bitz et al., 1996). Indeed, truncated proteins similar
to supershort forms that do possess the inhibitory
UCR2 helix exhibit both HARBS and LARBS, where-
as further deletion of the entire UCR2 only displays
LARBS (Rocque et al., 1997a,b). These findings corre-
spond to the fact that UCR2/LR2 residues may bind
the connecting loop between helices 10 and 11 to reg-
ulate catalytic metal ion coordination. Absence of
these residues would ablate the ability to change met-
al coordination and the consequent change in enzyme
activity and metal-engaging inhibitor binding. Thus,
both HARBS and LARBS comprise different states
that depend on dimerization, degree of metal binding,
interaction with partner proteins, and phosphoryla-
tion but which display similar affinities to inhibitors.
Selective inhibition of PDE4 forms in HARBS or
LARBS conformation has been shown to yield distinct
biologic effects, although the exact PDE4 isoforms
and/or conformation mediators remain to be specified.
For example, inhibition of HARBS in the brain was
found to produce antidepressant-like effects in rats
(Zhang et al., 2006). Moreover, using PDE4 inhibitors
that selectively bind HARBS or LARBS, Boomkamp
et al. (2014) identified that inhibition of HARBS, but
not LARBS, mediates myelination and neurite out-
growth in vitro.

Fig 4. Tertiary structure of dimerized PDE4B demonstrating helices 10
and 11 and its connecting loop. One monomer is colored dark gray, and
helices 10 and 11, flanking the catalytic metals, of the other monomer are
now colored dark blue. The connecting loop between helices 10 and 11 is
indicated in orange. The C terminus of UCR2 (red loose end in the mid-
dle) is connected to the N terminus of the catalytic domain (loose end in
cyan in right-bottom corner) via LR2, which is not modeled but which
would fold across the helix 10-11 connecting loop. Modifications and inter-
actions in the N terminus are hypothesized to be relayed, via UCR2/LR2-
associated changes, to the connecting loop of helices 10 and 11 to change
catalytic metal ion coordination, which subsequently impacts cAMP ca-
talysis and affinity toward certain metal-interacting inhibitors.
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The notion that inhibitors can display divergent af-
finities toward isoforms in different conformational
states and that conformation-specific inhibition can
exert different biologic effects has implications for
drug discovery and development. Hence, it is crucial
to understand which isoforms, in what conformational
state, should be targeted in the disease of interest
that determine the most potent inhibitor (see also sec-
tion IV. Phosphodiesterase 4 Inhibitors).

E. Intracellular Phosphodiesterase 4 Localization and
Anchoring

1. A-Kinase Anchoring Proteins. In addition to ac-
tivity-altering interactions, PDE4 engages in protein-
protein interactions that contribute to specific intra-
cellular localization patterns. Accurate localization of
PDE4 enzymes is crucial for the directed breakdown
of compartmentalized cAMP. Many studies have indi-
cated an essential role for A-kinase anchoring pro-
teins (AKAP) in tethering signaling molecules
regulating cAMP signaling, including PDE4 subtypes
and isoforms [reviewed in, e.g., McConnachie et al.
(2006), Wild and Dell’Acqua (2018), and Omar and
Scott (2020)]. Through specific binding domains, the
extensive collection of AKAPs allows the assembly of
signaling modules consisting of PKA and PDE4 that
are anchored to specific organelles, receptors [e.g., to
the 5HT4b receptor (Weninger et al., 2014)], or cyto-
skeletal proteins (McConnachie et al., 2006). Impor-
tant to note is that phosphorylation of the PDE4D3-
specific PKA site facilitates its binding to mAKAP,
which localizes to the ryanodine receptor (Carlisle
Michel et al., 2004; Lehnart et al., 2005). Additionally,
as PKA is bound to AKAPs as well, tethering
PDE4D3 to mAKAP also promotes phosphorylation of
the common PKA site, causing PDE4 activation near
the ryanodine receptor (Dodge et al., 2001). Moreover,
PDE4D3 can be brought into contact with IK calcium-
activated potassium channels through selectively
binding AKAP9 (Terrenoire et al., 2009; Terrin et al.,
2012). Interestingly, the PDE4 residues involved in
binding AKAP18d are present in all isoforms, but tis-
sue-specific expression causes only PDE4D3 and
PDE4D9 to be associated with AKAP18d (also known
as AKAP7) in the kidney, highlighting the importance
of studying cellular-, tissue-, or disease-relevant
PDE4 expression (Stefan et al., 2007). Furthermore,
PDE4 has been shown to associate with AKAP450
(also known as AKAP350, centrosome and Golgi local-
ized PKN-associated protein (CG-NAP), Hyperion, or
Yotiao) (Tasken et al., 2001; McCahill et al., 2005),
AKAP95 (AKAP8) (Asirvatham et al., 2004; Clister et
al., 2019), AKAP3 (does not bind PDE4D) (Bajpai et
al., 2006), myeloid translocation gene on chromosome
16 (MTG16B) (Asirvatham et al., 2004), AKAP149
(Asirvatham et al., 2004), AKAP5 (also known as
AKAP79) (Choi et al., 2011; Kocer et al., 2012), and

Gravin (also called AKAP12, AKAP250, or Src-sup-
pressed C kinase substrate (SSeCKS), which binds
PDE4D3 and PDE4D5) (Willoughby et al., 2006). Al-
though direct effects of AKAP binding on PDE4 activity
remain largely undetermined, it is known that myome-
galin (PDE4DIP) utilizes the same PDE4 residues that
mediate UCR1-UCR2 interaction and dimerization and
hence could influence the conformational state and ac-
tivity of the bound PDE4 (Verde et al., 2001; Uys et al.,
2011). Moreover, interactions between specific PDE4
forms and specific AKAPs may only occur in specific cell
types or organs, as more specifically described else-
where (Baillie et al., 2019; Zaccolo et al., 2021).

2. Not A-Kinase Anchoring Protein–Related. Inde-
pendently of AKAPs, certain PDE4 isoforms can bind
to specific structures through subtype- or isoform-spe-
cific amino acids. For example, the PDE4D4 and
PDE4A4 isoforms have been found to localize to specific
organelles and the plasma membrane through interac-
tions with SRC homology 3 domains of the tyrosine kin-
ases Lyn, Src, and Fyn via their N-terminal proline
residues that possibly affect inhibitor binding (Table 1)
(O’Connell et al., 1996; Beard et al., 1999, 2002; McPhee
et al., 1999; Huston et al., 2000). Additionally, PDE4D4
is anchored to the cytoskeleton via interaction with aII
spectrin (Creighton et al., 2008). The PDE4D-specific
LR2 sequence allows interaction with integrin a5, which
brings PDE4D in vicinity to a phosphatase that rectifies
ERK-induced phosphorylation (Fig. 2) (Yun et al., 2016;
Yun et al., 2019). The supershort PDE4A1 is membrane-
bound via specific residues in its N terminus (Shakur et
al., 1993; Baillie et al., 2002), and similar observations
have been made for the short PDE4B2 isoform (Lobban
et al., 1994). Likewise, PDE4A4 is associated with the
membrane, but upon cleavage by caspase-3, it is redis-
tributed within the membrane (Huston et al., 2000).
Hence, post-translational modifications can alter intra-
cellular distribution and compartmentalization, which is
also supported by the fact that phosphorylation events
can translocate membrane-associated PDE4 to the cyto-
sol (Liu and Maurice, 1999). Through interactions in
UCR1 and UCR2, mainly long PDE4D forms have been
found to interact with Shank2 (Lee et al., 2007). As
Shank2 also binds cystic fibrosis transmembrane con-
ductance regulator (CFTR), this may explain the associ-
ation of PDE4 enzymes with CFTR (Lee et al., 2007;
Blanchard et al., 2014). Lastly, PDE4 enzymes can be in-
tracellularly recruited to the p75NTR and neuropilin re-
ceptors, which are involved in neuronal growth (Sachs
et al., 2007; Ge et al., 2015; Houslay et al., 2019). Vice
versa, PDE4 enzymes can modulate cellular signaling
cascades through scaffolding other molecules away from
their usual binding partners. This is exemplified by the
fact that PDE4 can recruit lissencephaly-1 (LIS1), caus-
ing it to disassociate from dynein. Subsequently, dynein
function will be impaired, causing changes in
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microtubule transport and directed cell migration (Mur-
doch et al., 2011). As many interactions between PDE4
and partner proteins rely on isoform-specific amino acid
stretches, these interactions can localize PDE4 isoforms
to distinct subcellular compartments. Consequently, dif-
ferent PDE4 isoforms may regulate spatially distinct
cAMP signaling cascades, and isoform-specific PDE4 in-
hibition would enable more precise modulation of these
different cAMP cascades.

IV. Phosphodiesterase 4 Inhibitors

As an important cellular regulator of cAMP levels
and associated intracellular signal transduction,
PDE4 has been investigated as a therapeutic target
in a wide variety of disorders. Based on promising ob-
servations upon treatment with nonselective PDE in-
hibitors and the prototypical PDE4-selective inhibitor
rolipram, PDE4 inhibitors have been developed with
improved potency. Despite increased potency, clinical
progression of PDE4 inhibitors has been hampered pri-
marily because of the occurrence of severe adverse side
effects (see also below in section V. Adverse Effects of
Phosphodiesterase 4 Inhibition). Therefore, to improve
treatment efficacy and safety, PDE4 inhibitor specificity
next to potency may have to be considered. As discussed
above, the diversity in PDE4 isoforms that display dis-
tinct enzymatic properties, the amino acid differences
among subtypes, and isoform-specific N termini allow
for complex activity regulation by post-translational
modifications and interactions with partner proteins.
Eventually, this regulatory control can influence the en-
zyme’s activity through conformational changes. These
specific interactions, nonconserved amino acids, and dis-
tinct conformational states can provide the opportunity
to target PDE4 activity more specifically at the subtype
and isoform level.
This section will outline several aspects that should

be considered when determining PDE4 inhibitor spe-
cificity toward subtypes or isoforms by providing an ex-
tensive overview of inhibitor screening literature.
Furthermore, this section will summarize which PDE4
inhibitors have been developed to show more specific
targeting of subtypes, isoform, and/or conformations.

A. Phosphodiesterase 4 Inhibitors and High-Affinity
and Low-Affinity Rolipram Binding Sites

As mentioned above, HARBS and LARBS represent
different conformational states that exhibit different
inhibitor affinities and can be influenced through sev-
eral mechanisms (e.g., metal binding, phosphoryla-
tion, or binding of partner proteins). Based on the
observation that preferential inhibition of HARBS
was correlated with adverse effects, efforts were
made to develop PDE4 inhibitors with reduced
HARBS binding (Barnette et al., 1995; Duplantier et
al., 1996). Selective inhibition of HARBS or LARBS

can produce distinct cellular effects, which provides
additional support for improved therapeutic potential
of conformation-specific inhibitors (Zhang et al., 2006;
Boomkamp et al., 2014). However, HARBS and
LARBS conformations can occur in all PDE4 sub-
types, and HARBS seems to require a part of the
UCR2 domain, suggesting that both long and short
PDE4 isoforms can exert HARBS (Souness and Rao,
1997). Thus, although HARBS and LARBS can be
preferentially bound by certain inhibitors, selective
binding of these conformations does not directly allow
for PDE4 subtype or isoform selectivity. However, as
described in subsection III.D., HARBS and LARBS
conformations may, in part, be a consequence of dif-
ferences in the orientation of two helices that flank
the catalytic domain and that coordinate the catalytic
metals (Houslay and Adams, 2003). The positioning of
these helices is likely impacted by LR2 residues,
which are nonconserved among PDE4 subtypes. Asso-
ciated with these PDE4 subtype-specific LR2 resi-
dues, changes in metal orientation between HARBS
and LARBS may be different among the PDE4 sub-
types, which is supported by subtype-specific sensitiv-
ities to Mg21 depending on whether LR2 is present or
not (Saldou et al., 1998). Hence, although highly spec-
ulative, it may be possible to alter PDE4 activity sub-
type-selectively by means of allosteric modulation in
the LR2 region, which subsequently modifies enzyme
activity through changes in metal orientation. In sup-
port of this hypothesis, the kinases CaMKII and the
oxidative stress kinase both phosphorylate residues
in the LR2 region and have been shown to modulate
PDE4 activity (Fig. 2; Table 1) (Hill et al., 2006; Mika
et al., 2015).
As PDE4 subtypes and isoforms regulate distinct

cellular and behavioral functions, PDE4 subtype-se-
lective inhibition, rather than preferential binding of
HARBS or LARBS, may show superior treatment effi-
cacy compared with nonselective PDE4 inhibition
(Blackman et al., 2011; Zhang et al., 2017).

B. Determining Phosphodiesterase 4 Inhibitor
Subtype and Isoform Selectivity in Assays

1. The Influence of Phosphodiesterase 4 Construct and
Assay Type on Phosphodiesterase 4 Inhibitor Screen-
ings. Given the importance of subtype-, isoform-, or
conformation-specific inhibition for treatment efficacy
and safety, it is crucial to assess these properties of
PDE4 inhibitors. Initial high-throughput screenings
often used the catalytic domain of a single PDE4 sub-
type only to determine the ability of a compound to
inhibit PDE4 activity. Since these catalytic domain
constructs may not express UCR2 domains, these en-
zymes do not resemble cellular PDE4 activity, as
UCR2-mediated autoinhibition or capping is not pos-
sible. Furthermore, the lack of the UCR2 alters the
Mg21 sensitivity of the enzyme and could therefore
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skew screening results, as both enzyme activity and
Mg21-mediated inhibitor binding may be impacted
(Saldou et al., 1998). Hence, compound screening for
PDE4 inhibitory activity using the catalytic domain of
a single PDE4 subtype only will provide limited in-
sight into the compound’s potential subtype selectivi-
ty. Subtype selectivity should therefore be assessed by
using constructs of these different PDE4 subtypes
and constituting a full-length protein rather than the
catalytic domain only. Linked to this, as catalytic do-
mains show large similarity among PDE4 subtypes,
selectivity can more likely be achieved through inter-
actions with amino acid residues outside of the cata-
lytic domain (Wang et al., 2007a). Thus, to determine
potential subtype selectivity of PDE4 inhibitors, the
use of full-length PDE4 constructs will provide a bet-
ter understanding compared with using only PDE4
catalytic domains.
PDE4 inhibitors can be tested in both cellular as-

says and assays utilizing purified PDE4, but affinity
values cannot be directly compared across studies, as
they are dependent on the used assay. For example,
affinity values derived from assays using purified
PDE4 versus overexpressed PDE4 constructs in a cel-
lular assay can show an 80-fold difference (Wunder et
al., 2013). Moreover, other studies showed that inhibi-
tor affinity to isolated PDE4 enzymes does not reflect
its potency in intact tissue (Harris et al., 1989). Fur-
thermore, differences exist regarding which cell lines
and heterologous expression systems are used for cel-
lular assays or purified protein assays, respectively,
which prevents comparison across studies that use
different methodologies. Although assays using puri-
fied protein can provide a detailed understanding on
the affinity and potency of an inhibitor, these assays
do not reflect dynamic changes in (subtype-specific)
PDE4 conformational states and associated affinity
changes that would occur in a cellular environment.
Hence, when assessing potential subtype specificity of
PDE4 inhibitors, affinity values can only be compared
within studies, and the most accurate approximation
of in vivo PDE4 inhibition can be assessed by using
full-length enzymes that contain all regulatory
elements.
Table 2 provides a comprehensive overview of stud-

ies in which affinities of PDE4 inhibitors toward dif-
ferent PDE4 subtypes were assessed. As mentioned,
affinity values, indicated as nanomolar concentrations
that cause half-maximum inhibition (IC50), cannot be
compared across studies, as different assays may
have been used. For each subtype construct, it is indi-
cated whether a particular isoform was used and
whether the construct entailed the full-length protein
or was truncated. From this overview, it becomes evi-
dent that several studies have assessed compound se-
lectivity for PDE4 subtypes by using constructs of

different isoform categories (i.e., long, short, or super-
short) per subtype. Several studies indicate that inhibi-
tors can exhibit different affinities toward PDE4
subtypes. For example, cilomilast seems to show slightly
higher affinity toward PDE4D, irrespective of whether
truncated supershort or long isoforms are used (Huang
et al., 2007; Asaka et al., 2010). Interestingly, many com-
pounds show notably lower affinity toward PDE4C,
whereas other compounds (e.g., UFM24) preferentially
bind PDE4C (Tsai et al., 2017). As PDE4C shows the
least homology with the other subtypes, PDE4C-specific
residues therefore may either promote or impede inhibi-
tor binding, yielding PDE4C-specific or PDE4C-aversive
binding, respectively.
Importantly, subtype selectivity may seemingly be a

result of or biased by preferred binding to an isoform
of particular length rather than specificity to the
PDE4 subtype. Since isoforms of different lengths ex-
hibit different properties as a result of the presence
or absence of regulatory domains (e.g., long forms can
dimerize via UCR1-UCR2 interactions), isoform cate-
gories of the same PDE4 subtype may be preferential-
ly bound by certain inhibitors. To reveal potential
isoform-specific binding, Table 3 presents an overview
of compounds that were tested, in the same assay, for
their affinity toward PDE4 constructs of different
lengths of the same PDE4 subtype. Various com-
pounds show increased affinity toward the long iso-
forms compared with its catalytic domain only, in
which the regulatory UCR1, UCR2, and C-terminal
domains are deleted (Wunder et al., 2013). As these
regulatory domains convey effects of post-translation-
al modifications and interactions with partner pro-
teins, these modifications and interactions themselves
may exert an effect on inhibitor affinity within the
same PDE4 isoform, as explained earlier. Indeed, for
example, PKA phosphorylation has been shown to
profoundly impact inhibitor affinity (Hoffmann et al.,
1998), which supports the notion that assays using
purified, nonphosphorylated enzyme cannot be com-
pared with cellular assays in which PDE4 activity is
dynamically regulated (Wunder et al., 2013). As cer-
tain modifications or interactions can only occur in
specific PDE4 subtypes or isoforms to induce confor-
mational changes (Fig. 2), these conformations actual-
ly provide other means of achieving more specific
PDE4 inhibition. Therefore, it is crucial to under-
stand how different conformational states, caused by
modifications or interactions, impact inhibitor affinity.
Several studies have investigated these effects of

conformational state on PDE4 inhibitor affinity, and
these findings are summarized in Table 4. By means
of mutations that mimic phosphorylation by PKA and
ablate phosphorylation by ERK, the effects of PKA
phosphorylation per se on inhibitor affinity can be
simulated (Hoffmann et al., 1998; Burgin et al.,
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TABLE 2
PDE4 inhibitors tested for their selectivity against different PDE4 subtypes

Compound Study PDE4 Form Construct Category IC50

nM
A-33 Naganuma et al., 2009 PDE4B cat dom 1 C terminus 15

PDE4D cat dom 1 C terminus 1700
Hagen et al., 2014 PDE4B1 Long 55

PDE4D7 Long 1997
CDP840 Perry et al., 1998 PDE4A4 Long 3.5

PDE4B3 Long 3.8
PDE4C2 Long 30
PDE4D3 Long 2.6

Aoki et al., 2001b PDE4A4 Long 27
PDE4B1 Long 10
PDE4C1 Long 63
PDE4D3 Long 14

Cilomilast Huang et al., 2007 PDE4A Truncated (supershort) 42.9
PDE4B Truncated (supershort) 40.7
PDE4C Truncated (supershort) 160
PDE4D Truncated (supershort) 6.9

Asaka et al., 2010 PDE4A1 Supershort 62
PDE4B1 Long 56
PDE4C1 Long 302
PDE4D3 Long 19

Pruniaux et al., 2010 PDE4A4 Long 34
PDE4B2 Short 70
PDE4C2 Long 238
PDE4D3 Long 7

Huang et al., 2006 PDE4A Truncated (supershort) 37
PDE4B Truncated (supershort) 34
PDE4C Truncated (supershort) 133
PDE4D Truncated (supershort) 7

CI-1044 Pruniaux et al., 2010 PDE4A4 Long 290
PDE4B2 Short 80
PDE4C2 Long 560
PDE4D3 Long 90

CT-2450 Robichaud et al., 2002b PDE4A Truncated (supershort) 0.9
PDE4B Truncated (supershort) 0.7
PDE4C Truncated (supershort) 1.6
PDE4D Truncated (supershort) 0.5

EPPA-1 Davis et al., 2009 PDE4A4 Long 93.0
PDE4B2 Short 45.7
PDE4C1 Long 142.2
PDE4D3 Long 35.1

GEBR4d Brullo et al., 2020 PDE4B2 Short 550
PDE4D3 Long 1050

GEBR5d Brullo et al., 2020 PDE4B2 Short 550
PDE4D3 Long 1220

GPD-1116 Nose et al., 2016 PDE4A4 Long 100
PDE4B2 Short 500
PDE4C2 Long 100
PDE4D3 Long 50

GPD-1133 Nose et al., 2016 PDE4A4 Long 40
PDE4B2 Short 200
PDE4C2 Long 63
PDE4D3 Long 50

Ibudilast Huang et al., 2006 PDE4A Truncated (supershort) 54
PDE4B Truncated (supershort) 65
PDE4C Truncated (supershort) 239
PDE4D Truncated (supershort) 166

L-454.560 Huang et al., 2007 PDE4A Truncated (supershort) 1.6
PDE4B Truncated (supershort) 0.5
PDE4C Truncated (supershort) 9.1
PDE4D Truncated (supershort) 1.2

L-826,141 Claveau et al., 2004 PDE4A Truncated (supershort) 1.26
PDE4B Truncated (supershort) 0.38
PDE4C Truncated (supershort) 2.38
PDE4D Truncated (supershort) 0.26

Moexipril Cameron et al., 2013 PDE4A4 Long 160
PDE4B2 Short 38
PDE4D5 Long 230

PMNPQ Bureau et al., 2006 PDE4A Truncated (supershort) 0.1
PDE4B Truncated (supershort) 0.1
PDE4C Truncated (supershort) 0.1
PDE4D Truncated (supershort) 0.1

Roflumilast Nose et al., 2016 PDE4A4 Long 0.17
PDE4B2 Short 0.27
PDE4C2 Long 1

(continued)
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TABLE 2—Continued
Compound Study PDE4 Form Construct Category IC50

PDE4D3 Long 0.15
Claveau et al., 2004 PDE4A Truncated (supershort) 0.16

PDE4B Truncated (supershort) 0.11
PDE4C Truncated (supershort) 0.61
PDE4D Truncated (supershort) 0.11

Huang et al., 2007 PDE4A Truncated (supershort) 0.16
PDE4B Truncated (supershort) 0.11
PDE4C Truncated (supershort) 0.61
PDE4D Truncated (supershort) 0.11

Roflumilast N-oxide Claveau et al., 2004 PDE4A Truncated (supershort) 0.58
PDE4B Truncated (supershort) 0.37
PDE4C Truncated (supershort) 3.2
PDE4D Truncated (supershort) 0.31

Huang et al., 2007 PDE4A Truncated (supershort) 0.58
PDE4B Truncated (supershort) 0.37
PDE4C Truncated (supershort) 3.2
PDE4D Truncated (supershort) 0.31

Rolipram Aoki et al., 2001b PDE4A4 Long 690
PDE4B1 Long 270
PDE4C1 Long 1900
PDE4D3 Long 260

Asaka et al., 2010 PDE4A1 Supershort 565
PDE4B1 Long 402
PDE4C1 Long 888
PDE4D3 Long 234

R-rolipram Claveau et al., 2004 PDE4A Truncated (supershort) 4.8
PDE4B Truncated (supershort) 5.4
PDE4C Truncated (supershort) 40.5
PDE4D Truncated (supershort) 3.9

Perry et al., 1998 PDE4A4 Long 84.4
PDE4B3 Long 69
PDE4C2 Long 612
PDE4D3 Long 84.3

RP73401 Aoki et al., 2001b PDE4A4 Long 0.9
PDE4B1 Long 0.32
PDE4C1 Long 4.8
PDE4D3 Long 0.42

TAS-203 Asaka et al., 2010 PDE4A1 Supershort 47
PDE4B1 Long 35
PDE4C1 Long 227
PDE4D3 Long 43

UFM24 Tsai et al., 2017 PDE4A1 Supershort 7510
PDE4B2 Short 8580
PDE4C1 Long 1750
PDE4D2 Supershort 3530

YM976 Aoki et al., 2001b PDE4A4 Long 3.5
PDE4B1 Long 1
PDE4C1 Long 13
PDE4D3 Long 1.7

9 Hagen et al., 2014 PDE4B1 Long 770
PDE4D7 Long 5611

29 Hagen et al., 2014 PDE4B1 Long 165
PDE4D7 Long 7

5 Skoumbourdis et al., 2009 PDE4A1 Supershort 12.9
PDE4B1 Long 48.2
PDE4B2 Short 37.2
PDE4C1 Long 452
PDE4D2 Supershort 49.2

10 Skoumbourdis et al., 2009 PDE4A1 Supershort 0.26
PDE4B1 Long 2.3
PDE4B2 Short 1.6
PDE4C1 Long 46
PDE4D2 Supershort 1.9

18 Skoumbourdis et al., 2009 PDE4A1 Supershort 0.6
PDE4B1 Long 4.1
PDE4B2 Short 2.9
PDE4C1 Long 106
PDE4D2 Supershort 2.1

11r Tang et al., 2019 PDE4B1 Long 340
PDE4D7 Long 380

16a Huang et al., 2019 PDE4B1 Long 293
PDE4D7 Long 312

44 Goto et al., 2014 PDE4B2 Short 4.6
PDE4D2 Supershort 620

5a Brullo et al., 2014 PDE4B2 Short 1600
PDE4D3 Long 660

10b Brullo et al., 2014 PDE4B2 Short 18,000
(continued)
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2010). This phosphorylation-mimicking mutation pro-
foundly increases the affinity of rolipram and
BPN14770 to bind the long-form PDE4D7 (Zhang et
al., 2018) (see Table 4), indicating that inhibitors can
preferentially bind PKA-phosphorylated PDE4 states.
Mechanistically, increased inhibitor affinity upon
phosphorylation by PKA could be due to a more fa-
vorable positioning of UCR2, increased Mg21 sensi-
tivity to aid inhibitor binding, or a combination of
both. Interestingly, although PDE4 phosphorylation
by PKA also increases enzymatic activity as a biolog-
ic feedback loop, this feedback mechanism would ac-
tually facilitate or strengthen binding of these
inhibitors. Since PKA-phosphorylated PDE4 displays
higher enzymatic activity, preferential inhibition of
this activated state may actually produce more po-
tent effects on cAMP levels in an in vitro or in vivo
setting. Conversely, as inhibitors may bind only the
phosphorylated fraction of PDE4 forms, inhibition of
nonphosphorylated PDE4 may be minimal, yielding
only a partial inhibition of total PDE4 activity.
Therefore, it is essential to consider the potency of

PDE4 inhibitors in addition to their affinity when
determining which inhibitor, with its affinity profile
against different PDE4 subtypes, isoforms, and con-
formations, shows the most therapeutic benefit in
the disease of interest.
In addition to specific PDE4 phosphorylation, PDE4

isoforms can show different affinities toward inhibi-
tors depending on whether these isoforms are located
in the cytosol or have complexed with other cellular
structures, as elaborately investigated by Houslay
and collaborators (Bolger et al., 1997; Huston et al.,
1996, 1997; Rena et al., 2001; Wallace et al., 2005). By
subcellular fractionation, both cytosolic and particu-
late fractions of PDE4 forms can be separated, which
can show differential affinities to inhibitors in an iso-
form-dependent manner (Table 4). Per cellular frac-
tion, PDE4 isoforms may engage in different protein-
protein interactions, which subsequently can alter
their conformation, leading to divergent effects on in-
hibitor affinity. Thus, based on its specific subcellular
localization and local interactions or modifications,
the same PDE4 isoform can adopt different

TABLE 2—Continued
Compound Study PDE4 Form Construct Category IC50

PDE4D4 Long 210
1 Purushothaman et al., 2018 PDE4A4 Long 45

PDE4B1 Long 31
PDE4C1 Long 77
PDE4D7 Long 220

2 Purushothaman et al., 2018 PDE4A4 Long 152
PDE4B1 Long 15
PDE4C1 Long 57
PDE4D7 Long 108

A Manning et al., 1999 PDE4A4 Long 6.46
PDE4B2 Short 14.13
PDE4D3 Long 39.81

B Manning et al., 1999 PDE4A4 Long 100.00
PDE4B2 Short 77.62
PDE4D3 Long 13.49

C Manning et al., 1999 PDE4A4 Long 33.11
PDE4B2 Short 30.20
PDE4D3 Long 295.12

D Manning et al., 1999 PDE4A4 Long 1318.26
PDE4B2 Short 316.23
PDE4D3 Long 257.04

E Manning et al., 1999 PDE4A4 Long 208.93
PDE4B2 Short 173.78
PDE4D3 Long 36.31

F Manning et al., 1999 PDE4A4 Long 63.10
PDE4B2 Short 57.54
PDE4D3 Long 11.75

G Manning et al., 1999 PDE4A4 Long 588.84
PDE4B2 Short 389.05
PDE4D3 Long 54.95

H Manning et al., 1999 PDE4A4 Long 1.23
PDE4B2 Short 1.51
PDE4D3 Long 10.96

I Manning et al., 1999 PDE4A4 Long 0.25
PDE4B2 Short 0.69
PDE4D3 Long 4.17

J Manning et al., 1999 PDE4A4 Long 0.27
PDE4B2 Short 1.35
PDE4D3 Long 3.98

cat dom, catalytic domain.
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TABLE 3
PDE4 inhibitors tested for their selectivity against different PDE4 isoforms or construct lengths of the same PDE4 subtype

Compound Study Construct Construct Category Truncation/Modification IC50

nM
CDP840 Perry et al., 1998 PDE4B2 Short 1.9

PDE4B3 Long 3.8
PDE4D2 Supershort 2.9
PDE4D3 Long 2.6

Chlorbipram Zhang et al., 2013 PDE4B2 Short 99,300
PDE4B5 Supershort 8320

Cilomilast Wunder et al., 2013 PDE4D3 cat dom 20.5
PDE4D3 Long 10.1

Denbufylline Owens et al., 1997a PDE4A4 Long 295
PDE4A4 cat dom UCR1-UCR2 deleted 550

D159153 Wunder et al., 2013 PDE4D3 cat dom 20,500
PDE4D3 Long 68.3

D159404 Wunder et al., 2013 PDE4D3 cat dom 20,000
PDE4D3 Long 380

Etazolate Wunder et al., 2013 PDE4D3 cat dom 143
PDE4D3 Long 240

GEBR-32a Ricciarelli et al., 2017 PDE4D1 Short 4970
PDE4D2 Supershort 2890
PDE4D3 Long 2420
PDE4D5 Long 3180
PDE4D7 Long 1140

Prosdocimi et al., 2018 PDE4D cat dom cat dom, no C-term 2300
PDE4D3 Long PKA-mimetic, ERK-ablative 1000

(S)-(1)-GEBR-32a Cavalloro et al., 2020 PDE4D cat dom cat dom, no C-term 19,500
PDE4D3 Long PKA-mimetic, ERK-ablative 2100

(R)-(-)-GEBR-32a Cavalloro et al., 2020 PDE4D cat dom cat dom, no C-term 31,800
PDE4D3 Long PKA-mimetic, ERK-ablative 15,500

GEBR-7b Prosdocimi et al., 2018 PDE4D cat dom cat dom, no C-term 1600
PDE4D3 Long PKA-mimetic, ERK-ablative 1100

GEBR-20b Prosdocimi et al., 2018 PDE4D cat dom cat dom, no C-term 800
PDE4D3 Long PKA-mimetic, ERK-ablative 600

GEBR-4a Prosdocimi et al., 2018 PDE4D cat dom cat dom, no C-term 7000
PDE4D3 Long PKA-mimetic, ERK-ablative 2100

GEBR-11b Prosdocimi et al., 2018 PDE4D cat dom cat dom, no C-term 900
PDE4D3 Long PKA-mimetic, ERK-ablative 400

GEBR-26g Prosdocimi et al., 2018 PDE4D cat dom cat dom, no C-term 17,000
PDE4D3 Long PKA-mimetic, ERK-ablative 3500

GEBR-54 Prosdocimi et al., 2018 PDE4D cat dom cat dom, no C-term 20,000
PDE4D3 Long PKA-mimetic, ERK-ablative 4600

GEBR-18b Prosdocimi et al., 2018 PDE4D cat dom cat dom, no C-term 16,000
PDE4D3 Long PKA-mimetic, ERK-ablative 4800

GEBR-18a Prosdocimi et al., 2018 PDE4D cat dom cat dom, no C-term 23,000
PDE4D3 Long PKA-mimetic, ERK-ablative 5000

Lirimilast Wunder et al., 2013 PDE4D3 cat dom 3725
PDE4D3 Long 54.3

Oglemilast Wunder et al., 2013 PDE4D3 cat dom 0.5
PDE4D3 Long 1.1

Piclamilast Wunder et al., 2013 PDE4D3 cat dom 0.064
PDE4D3 Long 0.12

PMNPQ Wunder et al., 2013 PDE4D3 cat dom 115
PDE4D3 Long 0.43

Roflumilast Wunder et al., 2013 PDE4D3 cat dom 0.039
PDE4D3 Long 0.076

Roflumilast N-oxide Wunder et al., 2013 PDE4D3 cat dom 0.079
PDE4D3 Long 0.26

Rolipram Bruno et al., 2009 PDE4D1 Short 910
PDE4D2 Supershort 1170
PDE4D3 Long 550

Wunder et al., 2013 PDE4D3 cat dom 510
PDE4D3 Long 72.8

Zhang et al., 2013 PDE4D4 Long 470
PDE4D5 Long 190

Wang et al., 2003 PDE4D6 Supershort 57
PDE4D7 Long 42

R-rolipram Perry et al., 1998 PDE4B2 Short 60.5
PDE4B3 Long 69
PDE4D2 Supershort 26.9
PDE4D3 Long 84.3

Ro20-1724 Owens et al., 1997a PDE4A4 Long 1450
PDE4A4 cat dom UCR1-UCR2 deleted 4154

YM976 Wunder et al., 2013 PDE4D3 cat dom 0.34
PDE4D3 Long 0.73

Zardaverine Wunder et al., 2013 PDE4D3 cat dom 163
PDE4D3 Long 65.3

(continued)

1034 Paes et al.

at A
SPE

T
 Journals on M

arch 20, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


conformations that may be preferentially bound by
certain inhibitors (e.g., the different affinities of roli-
pram toward particulate and cytosolic PDE4A4; Table
4). As such, these inhibitors can modulate PDE4 ac-
tivity with different potency at the subcellular level.

2. Optimizing Phosphodiesterase 4 Inhibitor Screen-
ings. The involvement of PDE4 in various cellular pro-
cesses makes these enzymes attractive pharmacological
targets, but it simultaneously makes nonspecific PDE4
inhibition prone to modulating unwanted biologic mech-
anisms. Hence, to optimize the efficacy and safety of
PDE4 inhibitors, it is crucial to specify which PDE4 sub-
types or isoforms are involved in the (disease-affected) cel-
lular functions that are to be modified. In this subsection,
we highlight how the choice of assay, target specification,
and the use of “toolbox” compounds that apply distinct
binding mechanisms can guide drug development toward
safe and efficacious PDE4 subtype/isoform inhibition.
Firstly, considering that PDE4 enzymes can dynami-

cally adopt several conformational states that can show
different affinities to inhibitors, screening assays using
purified PDE4 constructs are limited in predicting the in-
hibitory potential of a compound, as they assess affinities
against a static, rather than a dynamic, enzyme. Hence,
cell-based screening assays will more accurately indicate
the PDE4 inhibitory potential of compounds when other
influencing factors, including phosphorylation events,
interactor proteins, and biologic feedback mechanisms,
are present. When using cell-based assays, we argue it
is essential to assess a PDE4-regulated phenotypical or
physiologic readout that is relevant to a healthy or
pathologic process of interest rather than an overall
change in cAMP levels. Thus, the quality (i.e., cAMP el-
evation at the desired intracellular location) of PDE4 in-
hibition is more important than the quantity (i.e.,
profound cAMP elevation but not intracellularly con-
fined) to achieve efficacious treatment while minimizing
side effects. The use of cell-based assays that focus on a
phenotypical or physiologic readout may also lead to
discovery of efficacious PDE4 inhibitors with additional
activity on other relevant targets, which would be unde-
tectable in assays using solely purified PDE4 enzymes.
Using a cell-based, possibly disease-relevant, assay,

experiments can be conducted to specify which PDE4
subtypes and isoforms regulate the chosen phenotypi-
cal or physiologic readout. By means of genetic

knockout (e.g., using CRISPR-Cas9) or short-hairpin
RNA–mediated knockdown, it can be specified which
PDE4 subtypes or individual PDE4 isoforms regulate
the biologic readout process. Conveniently, the typical
PDE4 gene structures allow for targeting of isoforms
selectively, as they each contain (parts of) a unique
exon that can be targeted at the DNA level (e.g., us-
ing CRISPR-Cas9) or the transcript level (e.g., using
short-hairpin RNA) (Fig. 1). Validation of the role of
specific subtypes or isoforms in the chosen readout
can be performed by overexpressing the subtype/iso-
form to assess whether it induces an opposite effect
on the readout compared with subtype/isoform knock-
out. The involvement of specific isoforms in the pro-
cess of interest can also be corroborated using a
dominant-negative approach in which a catalytically
inactive PDE4 form is being overexpressed. Subse-
quently, overexpressed inactive PDE4 isoforms will
(partly) displace endogenous, active PDE4 isoforms,
inducing local decreases in PDE4 activity. Functional
roles of specific PDE4 isoforms have already been suc-
cessfully identified using this approach (Perry et al.,
2002; Campbell et al., 2017; Bolger et al., 2020). Al-
though dominant-negative PDE4 forms can isoform-
specifically displace endogenous forms, their overex-
pression may also cause excessive scaffolding of PDE4
interaction proteins that could alter cellular signal-
ing. Hence, depending on the biologic mechanism of
interest, validation of the role of specific PDE4 sub-
types and isoforms may be best supported by a combi-
nation of the abovementioned strategies. Upon target
specification and validation, drug design is suggested
to be conducted in a structure-based manner. In case
the functionally relevant PDE4 forms belong to a spe-
cific subtype, subtype-specific differences in PDE4
structure may be exploited to develop PDE4 subtype-
selective inhibitors, as described in section C. Mecha-
nisms for Phosphodiesterase 4 Subtype Selectivity:
Interactions with Regulatory Domains.
Since there already exist PDE4 inhibitors that pref-

erentially bind certain subtypes, isoforms, and/or con-
formations (Tables 2–4), these compounds can be used
as toolbox compounds to determine which binding
mechanism induces the most prominent effect on the
assay readout. Parallel insights from the target vali-
dation approaches and use of toolbox compounds

TABLE 3—Continued
Compound Study Construct Construct Category Truncation/Modification IC50

4a Bruno et al., 2009 PDE4D1 Short 7090
PDE4D2 Supershort 9180
PDE4D3 Long 2860

4e Liang et al., 2020 PDE4B2 Short cat dom 10
PDE4B1 Long 8
PDE4D2 Supershort cat dom 17
PDE4D7 Long 9

cat dom, catalytic domain; C-term, C terminus.
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TABLE 4
PDE4 inhibitors tested for their selectivity against different PDE4 conformational states or PDE4 isoforms in different cellular fractions

Compound Study Construct Construct Category Mutation/Modification/Cellular Fraction IC50

nM
A-33 Fox et al., 2014 PDE4B1 Long PKA-mimetic, ERK-ablative 32

PDE4B1 Long L674Q, PKA-mimetic, ERK-ablative 2035
PDE4D7 Long PKA-mimetic, ERK-ablative 1569
PDE4D7 Long Q594L, PKA-mimetic, ERK-ablative 21

BPN14770 Zhang et al., 2018 PDE4D7 Long — 1018
PDE4D7 Long PKA-mimetic, ERK-ablative 7.8
PDE4D3 Long PKA-mimetic, ERK-ablative 7.4
PDE4D2 Supershort ERK-ablative 127
PDE4B1 Long PKA-mimetic, ERK-ablative 2013

Cilomilast Wallace et al., 2005 PDE4A11 Long Cytosolic 34
PDE4A11 Long Particulate P2 34
PDE4A4 Long Cytosolic 61
PDE4A4 Long Particulate P2 59
PDE4A10 Long Cytosolic 130

Denbufylline Wallace et al., 2005 PDE4A11 Long Cytosolic 250
PDE4A11 Long Particulate P2 310
PDE4A4 Long Cytosolic 560
PDE4A4 Long Particulate P2 460
PDE4A10 Long Cytosolic 590

PMNPQ Burgin et al., 2010 PDE4D7 Long PKA-mimetic 5
PDE4D7 Long PKA-mimetic, Phe196Ala 170
PDE4D7 Long PKA-mimetic, Phe201Ala 310
PDE4D7 Long PKA-mimetic, ERK-ablative 0.52
PDE4D2 Supershort ERK-ablative 0.66
PDE4B1 Long PKA-mimetic 4.4

Roflumilast Wallace et al., 2005 PDE4A11 Long Cytosolic 4.8
PDE4A11 Long Particulate P2 3.9
PDE4A4 Long Cytosolic 9.0
PDE4A4 Long Particulate P2 2.5
PDE4A10 Long Cytosolic 4.1

Rolipram Zhang et al., 2018 PDE4D7 Long — 675
PDE4D7 Long PKA-mimetic, ERK-ablative 32
PDE4D3 Long PKA-mimetic, ERK-ablative 29
PDE4D2 Supershort ERK-ablative 142
PDE4B1 Long PKA-mimetic, ERK-ablative 175

Huston et al., 1996 PDE4A4 Long Particulate 195
PDE4A4 Long Cytosolic 1600

Wallace et al., 2005 PDE4A11 Long Cytosolic 720
PDE4A11 Long Particulate P2 660
PDE4A4 Long Cytosolic 1310
PDE4A4 Long Particulate P2 260
PDE4A10 Long Cytosolic 64

Rena et al., 2001 PDE4A10 Long Particulate P1 54
PDE4A10 Long Particulate P2 52
PDE4A10 Long Cytosolic 56

Huston et al., 1997 PDE4B1 Long Particulate P1 100
PDE4B1 Long Particulate P2 50
PDE4B1 Long Cytosolic 80
PDE4B3 Long Particulate P1 140
PDE4B3 Long Particulate P2 100
PDE4B3 Long Cytosolic 50
PDE4B2 Short Particulate P1 180
PDE4B2 Short Particulate P2 210
PDE4B2 Short Cytosolic 20

Bolger et al., 1997 PDE4D1 Short Particulate P2 n/a
PDE4D1 Short Cytosolic 50
PDE4D2 Supershort Particulate P2 n/a
PDE4D2 Supershort Cytosolic 50
PDE4D3 Long Particulate P2 320
PDE4D3 Long Cytosolic 140
PDE4D4 Long Particulate P2 50
PDE4D4 Long Cytosolic 60
PDE4D5 Long Particulate P2 590
PDE4D5 Long Cytosolic 80

Ro 20-1724 Wallace et al., 2005 PDE4A11 Long Cytosolic 990
PDE4A11 Long Particulate P2 910
PDE4A4 Long Cytosolic 2930
PDE4A4 Long Particulate P2 2900
PDE4A10 Long Cytosolic 1240

RS25344 Burgin et al., 2010 PDE4D7 Long PKA-mimetic 19
PDE4D7 Long PKA-mimetic, Phe196Ala 4.1
PDE4D7 Long PKA-mimetic, Phe201Ala 6.2
PDE4D7 Long PKA-mimetic, ERK-ablative 0.91
PDE4D2 Supershort ERK-ablative 0.81
PDE4B1 Long PKA-mimetic 9.4

(continued)
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would eventually provide the insight and understand-
ing to develop PDE4 inhibitors that apply a particular
binding mode to selectively bind and inhibit the most
relevant PDE4 forms to subsequently efficaciously at-
tenuate a biologic dysfunction of interest.

C. Mechanisms for Phosphodiesterase 4 Subtype
Selectivity: Interactions with Regulatory Domains

1. Interactions with the Upstream Conserved Re-
gion 2. Although the different subtypes possess highly
similar catalytic domains, subtle amino acid differences
exist in regulatory regions (i.e., UCR2 and C terminus)
that can be positioned across the catalytic pocket. When
the UCR2 is capped, certain residues can interact with
inhibitors as their side chains extend into the catalytic
domain (Fig. 3; Supplemental Video). UCR2 capping is
postulated to occur via intermolecular actions in long,
dimerized PDE4 isoforms in which the UCR2 of one
monomer folds across the catalytic domain of the other
monomer (Cedervall et al., 2015). As the UCR2 also is
autoinhibitory in monomeric, short PDE4D1, intramo-
lecular UCR2 capping may also occur (Kovala et al.,
1997). Irrespective of whether UCR2 capping occurs in
trans (intermolecularly) or in cis (intramolecularly), in-
hibitors can engage in interactions with UCR2 residues.
Intriguingly, in primates, a polymorphism has occurred
in PDE4D leading to the expression of a phenylalanine
instead of tyrosine in the UCR2 region. This subtype-
specific difference has been successfully exploited, and
validated by mutation studies, to generate PDE4D-se-
lective inhibitors (e.g., BPN14770) that interact with
the PDE4D-specific phenylalanine in the UCR2 region
(Table 4) (Burgin et al., 2010). Interestingly, Gurney et
al. (2019) have shown that certain compounds that use
UCR2 for binding, like BPN14770, behave as partial in-
hibitors. It is hypothesized that, in dimerized PDE4,
through inhibitor-UCR2 interactions at one monomer,
the other UCR2 cannot effectively trans-cap the other
monomer. Since this UCR2-capping is involved in com-
pound binding, inhibitor binding at this monomer will
be reduced, resulting in overall partial inhibition. Con-
versely to binding the UCR2 phenylalanine, inhibitors
can preferentially interact with the tyrosine residue in
PDE4A-C, producing PDE4D-sparing actions, as re-
ported for ABI-4 (PF-06266047) (Hedde et al., 2017).
Notably, several classes of PDE4 inhibitors have been
found to stabilize a UCR2-capped state, as elaborately
indicated by Day et al. (2011). Although PDE4 modifi-
cations and protein-protein interactions can influence

inhibitor affinity by influencing UCR2-capping, stabili-
zation of UCR2 capping by certain inhibitors can, con-
versely, also alter the conformation of regulatory
domains that affect PDE4 modifications and interac-
tions (Terry et al., 2003). In the case of PDE4A4, stabi-
lization of UCR2 capping by inhibitor binding causes
its intracellular redistribution, demonstrating that in-
hibitor binding can induce additional cellular changes
next to elevation of local cAMP levels (Day et al.,
2011). This use of UCR2 by certain compounds makes
their affinity also dependent on post-translational
modifications and interactions with partner proteins
as they can influence the UCR2 capping state, as ex-
plained before.

2. Interactions with the C Terminus. Similar to the
use of UCR2 residues to achieve subtype selectivity,
amino acid differences in the C terminus can be em-
ployed to achieve subtype-specific inhibitor binding.
Through interactions with residues unique to the
PDE4B C terminus, PDE4B selectivity has been
achieved for the compounds A33 and a tetrahydroben-
zothiophene inhibitor (see Table 4) (Kranz et al.,
2009; Naganuma et al., 2009; Fox et al., 2014). The C
terminus is capped across the catalytic domain in an
intramolecular manner, as the linker region between
the C terminus and the catalytic domain is too short
to achieve capping the other monomer in a PDE4 di-
mer. Inhibitors that employ C terminus residues may
therefore preferentially bind capped over uncapped
states producing a degree of conformation-dependent
binding. As both UCR2 and C terminus capping are
dependent on multiple cellular events, including
phosphorylation or interactions with partner proteins,
conformation-dependent inhibitors may bind PDE4 in
a selective spatial and/or temporal manner.

D. Stereoisomerism and Metabolites of
Phosphodiesterase 4 Inhibitors

In 1983, it had already been described that the en-
antiomer (R)-rolipram and racemic rolipram are more
potent in increasing cerebral cAMP levels than (S)-ro-
lipram (Wachtel, 1983a,b; Schneider, 1984). Accord-
ingly, several studies have indicated that (R)-rolipram
shows higher PDE4 affinity than (S)-rolipram (Torphy
et al., 1992; Barnette et al., 1996; Laliberte et al.,
2000). This suggests that stereoisomerism of PDE4
inhibitors can influence the inhibitor’s affinity de-
pending on whether a racemic mixture or purified en-
antiomer is tested. Both (R)-rolipram and (S)-

TABLE 4—Continued
Compound Study Construct Construct Category Mutation/Modification/Cellular Fraction IC50

Alvarez et al., 1996 PDE4D3 Long — 3.16
PDE4D3 Long PKA-mimetic 0.5

RS33793 Alvarez et al., 1996 PDE4D3 Long — 39.8
PDE4D3 Long PKA-mimetic 0.2

n/a, not applicable.
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rolipram seem to exhibit similar binding modes in
PDE4D2 crystal structures, but increased affinity of
(R)-rolipram may be conveyed via other isoforms and/
or conformational states than those captured by the
reported crystal structures (Huai et al., 2003). Indeed,
rolipram can adopt a slightly different conformation
in crystals that include UCR2 domains (Cedervall et
al., 2015). For another set of enantiomeric inhibitors
(L-869298 and L-869299), stereochemistry does
change the binding mode in a Mg21-interacting man-
ner, which is concurrent with differences in affinity
(Huai et al., 2006). Next to the aforementioned enan-
tiomeric inhibitors, also for the PDE4D-selective in-
hibitor GEBR32a, different affinities are reported for
its enantiomers (Table 3) (Cavalloro et al., 2020).
Hence, in the case of racemic inhibitors, it has to be
considered that enantiomers can exhibit different
binding modes and affinities for specific PDE4 confor-
mations. Consequently, certain enantiomers may dis-
play favorable pharmacological properties superior to
its racemic mixture. Enantiomer-specific effects can
provide important insights into the molecular binding
modes crucial for efficacy and can subsequently facili-
tate pharmacophore determination and inhibitor
optimization.
Similar to the use of racemic PDE4 inhibitor mix-

tures, metabolism of administered PDE4 inhibitors
can produce multiple metabolites that each show dif-
ferences in their binding mode and affinity. For exam-
ple, the PDE4 inhibitor roflumilast is metabolized
into roflumilast N-oxide, which shows distinct sub-
type selectivity compared with roflumilast itself (Ta-
bles 2 and 3) (Claveau et al., 2004; Huang et al.,
2007; Wunder et al., 2013). The inhibitory potential of
inhibitor metabolites on PDE4 activity should there-
fore be taken into account as combined actions of
PDE4 inhibitors, and its metabolites may cause cer-
tain PDE4 subtypes, isoforms, or conformations to be
more potently inhibited in vivo, resulting in a more
favorable or unfavorable pharmacological profile.

E. Modulators of Phosphodiesterase 4 Activity

Next to PDE4 inhibitors, molecules have been de-
scribed that influence PDE4 activity in a noninhibit-
ing manner. For example, atropine, a muscarinic
acetylcholine receptor antagonist, has been described
to allosterically inhibit PDE4 while also potentiating
rolipram binding (Perera et al., 2017). These effects
correspond to those of modulation by several intracel-
lular factors as discussed above in section III. Phos-
phodiesterase 4 Modifications and Interactions. In
contrast to allosterically inhibiting molecules, PDE4
activity can also be stimulated through allosteric
binding. For example, early studies by the Conti and
coworkers showed that binding of antibodies target-
ing the UCR2 autoinhibitory domain increased PDE4

activity similar to phosphorylation by PKA (Conti et
al., 1995; Lim et al., 1999).
More recently, also small molecules have been de-

scribed that increase PDE4 activity through allosteric
binding (Omar et al., 2019). More specifically, these
compounds bind and activate long, dimerized PDE4
and thereby mimic the activating actions of PKA.
This mechanistic similarity of activation is further
supported by the inability of these small molecules to
increase activity in PKA-mimicking PDE4 mutants.
Hence, these small molecule allosteric activators have
therapeutic utility in disorders in which cAMP signal-
ing is aberrantly increased. For example, in autoso-
mal dominant polycystic kidney disease, elevated
cAMP levels promote the formation of cysts. Omar et
al. (2019) have demonstrated that the use of allosteric
activators can successfully diminish cyst formation in
cell models of autosomal dominant polycystic kidney
disease . It can be speculated that allosteric PDE4 ac-
tivators also have therapeutic applicability in other
disorders displaying elevated cAMP signaling, such
as the genetic condition McCune-Albright syndrome,
in which gain-of-function Gs a subunit mutations lead
to exaggerated cAMP synthesis (Levine, 1999; Inna-
morati et al., 2018). Hence, PDE4 enzymes have ther-
apeutic utility as pharmacological targets in both
conditions displaying reduced and conditions display-
ing heightened levels of cAMP.
Lastly, PDE4 peptide fragments have been devel-

oped that can either stimulate PDE4 activity (Wang
et al., 2015) or reduce activation by scavenging the
PDE4-activating phosphorylation by Cdk5 (Plattner
et al., 2015).

V. Adverse Effects of Phosphodiesterase 4
Inhibition

Although PDE4 inhibition shows therapeutic poten-
tial in a variety of disease areas, clinical exploitation
of PDE4 inhibitors has often been held back by dose
limitations caused by adverse side effects. Side effects
upon PDE4 inhibitor administration are mainly gas-
trointestinal in nature (i.e., nausea, vomiting and di-
arrhea), but headaches and dizziness have also been
reported (Compton et al., 2001). These side effects
may be overcome by more precise targeting of PDE4
subtypes, isoforms, or conformational states. Accord-
ingly, subtype-selective PDE4 inhibitors have been
developed that exploit subtle sequence differences
and distinct conformational states that may result
from different PDE4 lengths and specific interactions
and modifications (Burgin et al., 2010; Fox et al.,
2014; Hedde et al., 2017). While this allows for more
precise targeting, insight into which PDE4 subtypes
or isoforms mediate unwanted effects is therefore cru-
cial to understand which subtypes/conformations not
to target. This section will discuss PDE4 expression
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and functionality in brain and bodily areas, and po-
tential molecular mechanisms related to the different
PDE4-mediated side effects. In addition, an overview
is provided of those PDE4 inhibitors that have been
tested for possible adverse side effects.

A. Hypothermia

Several preclinical studies using mice, rats, and
guinea pigs have demonstrated that PDE4 inhibitors
can induce hypothermia (Wachtel, 1983a,b,c; McDo-
nough et al., 2020b). These effects seem to be regulat-
ed via PDE4-mediated dopamine signaling in the
hypothalamus, which is supported by the fact that
PDE4 inhibitors that enter the brain with difficulty
have less profound effects on body temperature
(McDonough et al., 2020b). Although not explicitly de-
scribed as an adverse side effect in humans, hypother-
mia may contribute to uncomfortable feelings during
treatment with PDE4 inhibitors.

B. Dizziness

PDE4 inhibition has also been reported to cause
dizziness (Blokland et al., 2019). In cochlear and ves-
tibular nuclei in the brainstem, PDE4D was found to
be expressed higher than other PDE4 subtypes (Iwa-
hashi et al., 1996; Perez-Torres et al., 2000). More
specifically, PDE4D1, PDE4D2, and PDE4D3 mRNA
was expressed in the rat dorsal cochlear and vestibu-
lar nuclei (Miro et al., 2002b). As the cochlear and
vestibular nuclei relay signaling from the inner ear,
altered cAMP modulation by PDE4 inhibition in these
areas may provoke feelings of dizziness and, through
subsequent signaling to other brains stem areas, pro-
mote nausea and emesis. Interestingly, in the vestibu-
lar apparatus in the inner ear itself, PDE4D is
expressed, and rolipram induces endolymphatic hy-
drops in the mouse, which is associated with feelings
of dizziness (Nakashima et al., 2016; Degerman et al.,
2017).

C. Gastrointestinal

1. Diarrhea. Concerning effects of PDE4 inhibi-
tion on the gastrointestinal system, diarrhea has
been reported as an adverse effect. Through PKA-de-
pendent activation of the CFTR, PDE4 inhibition may
cause diarrhea by elevating intestinal Cl� secretion
(Chao et al., 1994). Specifically, PDE4D may mediate
this effect upon PDE4 inhibition, as PDE4D has been
found to be recruited to CFTR via binding the scaf-
folding protein Shank2 (Lee et al., 2007). Moreover,
PDE4 inhibition can facilitate 5HT4 receptor–medi-
ated acetylcholine release, causing contraction of
large intestinal circular smooth muscle (Pauwelyn et
al., 2018). Specifically, the PDE4D3 and PDE4D5 iso-
forms have been found to associate with 5HT4(b) re-
ceptors and may, therefore, be involved in
gastrointestinal effects caused by PDE4(D) inhibition

(Weninger et al., 2014). Despite the fact that diarrhea
has been reported as a PDE4-mediated adverse event,
it is striking that roflumilast has actually been found
to exhibit antidiarrheal effects in mice, which may be
associated with antispasmodic actions of roflumilast
in the jejunum (Rehman et al., 2020).

2. Nausea and Emesis. Regarding nausea and
emesis, PDE4 actions within both the central nervous
and gastrointestinal systems seem to be involved. In
an early study, intravenous administration of roli-
pram and Ro20-1724 was found to increase gastric
acid and pepsin secretion in anesthetized rats (Puuru-
nen et al., 1978). Correspondingly, Lamontagne et al.
(2001) suggested that, in the stomach, pepsinogen-re-
leasing chief cells primarily express the PDE4D sub-
type, whereas acid-releasing parietal cells expressed
PDE4A. Moreover, binding of specifically HARBS con-
figurations in gastric glands showed strong correla-
tion with the degree of gastric acid secretion
(Barnette et al., 1995). Interestingly, gastric transit
was found to be more strongly inhibited by roflumi-
last than by a selective PDE4B inhibitor, which may
suggest PDE4B inhibition contributes relatively little
to gastric side effects (Suzuki et al., 2013). Recently, it
was shown that nonselective PDE4 inhibition induces
gastroparesis (i.e., delayed gastric transit) in mice
(McDonough et al., 2020a). More importantly, this
study showed that genetic ablation of any of the four
PDE4 subtypes does not affect gastroparesis or pro-
tect against inhibitor-induced gastroparesis, which
suggests that two or more PDE4 subtypes contribute
to PDE4-mediated gastroparesis. As gastroparesis is
strongly associated with nausea and emesis in hu-
mans, this physiologic effect of PDE4 inhibition war-
rants further investigation as a possible predictive
measure for the side effect profile of PDE4 inhibitors
(Grover et al., 2019).
Although PDE4 inhibition causes profound local

gastric effects, emesis is eventually effectuated
through signaling in brainstem nuclei such as the no-
dose ganglion, area postrema (AP), and nucleus trac-
tus solitarius (NTS) (Miller and Leslie, 1994; du Sert
et al., 2012). In the nodose ganglion of the squirrel
monkey, cell bodies of gastric vagal nerve fibers can
be found in which predominantly PDE4D is present
compared with lower expression levels of PDE4C or
long PDE4A forms (Lamontagne et al., 2001). Similar-
ly, the AP and NTS were found to mainly express
PDE4D and, to a lesser extent, PDE4B in mouse
(Cherry and Davis, 1999), rat (Iwahashi et al., 1996;
Takahashi et al., 1999; Perez-Torres et al., 2000), and
human brain (Mori et al., 2010). PDE4D expression
was also found in medulla oblongata neurons that are
innervated by substance P, which has been reported
to be involved in emetic responses upon PDE4 inhibi-
tion (Robichaud et al., 1999; Lamontagne et al.,
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2001). At the PDE4D transcript variant level, mRNA
of PDE4D1 and PDE4D4 showed high expression in
the rat AP compared with lower levels of PDE4D2 and
PDE4D5 and absence of PDE4D3. Furthermore, low
levels of PDE4D2, PDE4D4, and PDE4D5 were de-
tected in the NTS (Miro et al., 2002b). Strikingly, in
another study by Miro et al. (2002a), no PDE4D4
mRNA was detected in the rat AP. Human data re-
garding PDE4D mRNA content in the AP also suggest
that PDE4D4 is not abundantly present, and the high-
est expression was found for PDE4D3 and PDE4D9
(Vanmierlo et al., 2019).
In addition to localization studies showing high ex-

pression of PDE4D in emesis-related brainstem areas,
mechanistically, PDE4D also seems to mediate emetic
responses. In a study by Robichaud et al., (2002b),
PDE4D, but not PDE4B, knockout mice displayed re-
duced sleeping time under xylazine/ketamine-induced
anesthesia, a measure of emetic-like behavior. Fur-
thermore, the PDE4 inhibitor PMNPQ did reduce an-
esthesia duration in wild-type and PDE4B-deficient
mice but not in PDE4D-deficient mice, which again
indicates an involvement of PDE4D in emetic-like be-
havior. Xylazine/ketamine-induced anesthesia as-
sesses emetic-like behavior in nonvomiting species
through a2-adrenergic receptor antagonism (Robi-
chaud et al., 2001; Robichaud et al., 2002a; Nelissen
et al., 2019). The involvement of PDE4D in this mech-
anism corresponds with the expression of both a2
adrenoceptor and PDE4D mRNA in the NTS (Schei-
nin et al., 1994; Lamontagne et al., 2001). However,
PDE4A and PDE4B also seem to mediate a2-depen-
dent signaling, at least in retinal rod bipolar cells
(Dong et al., 2014). PDE4 inhibitors may enhance
neuronal firing in both the AP and NTS of rats, as
higher expression of the neuronal activity marker Fos
was observed in these regions upon administration of
rolipram or PMNPQ in rats (Bureau et al., 2006). Ac-
cordingly, AP neurons could be excited by cAMP,
which would be elevated upon inhibitor administra-
tion (Carpenter et al., 1988). Notably, AP neurons ex-
hibit a hyperpolarization-activated cation current (Ih)
that acts as pacemaker current and is found to be ac-
tivated through stimulation of cAMP signaling (Funa-
hashi et al., 2003). Consequently, PDE4 inhibition
may increase the frequency of this pacemaker cur-
rent, leading to an increased firing rate. Actually, the
influence of PDE4 on pacemaker currents has already
been demonstrated in the sinoatrial node of the heart
(St Clair et al., 2017). The xylazine/ketamine-induced
anesthesia test suggests that PDE4 inhibition alters
AP activity through antagonizing a2-adenergic recep-
tor signaling (Nelissen et al., 2019). Accordingly, a2-
adrenergic receptor stimulation was shown to inhibit
cAMP and close hyperpolarized cyclic nucleotide–-
gated channels (Wang et al., 2007b). Vice versa, PDE4

inhibition could enhance cAMP, open hyperpolarized
cyclic nucleotide–gated channels, increase hyperpolar-
ization-activated currents (Ih), and increase the firing
rate of AP neurons, leading to an emetic response.
Anesthesia induced by injecting an a2-adrenergic ago-
nist into the locus coeruleus, which innervates the
AP, of rats could be reversed by rolipram. However,
pretreatment of a PKA inhibitor blocked the effects of
rolipram, suggesting emetogenic effects by PDE4 in-
hibitors are mediated through actions requiring
cAMP-PKA signaling (Correa-Sales et al., 1992).
Moreover, phosphorylation of PKA and ERK, down-
stream kinases of cAMP, was found to be highest dur-
ing peak emesis in AP neurons (Zhong and Darmani,
2017).
These findings support the notion that PDE4-medi-

ated cAMP signaling and its downstream effectors
contribute to emetic behavior. Still, the exact mecha-
nism underlying these adverse side effects caused by
PDE4 inhibitors remains to be resolved. Since the AP
may in part be outside of the blood-brain barrier,
emetic effects can be dependent on both peripheral
and central actions (Miller and Leslie, 1994). Based
on the gene deletion and localization studies dis-
cussed above, PDE4D seems to be involved in central
and peripheral actions, leading to the induction of
emesis. However, emetic(-like) effects cannot be at-
tributed entirely to PDE4D, as the PDE4D-selective
inhibitors GEBR32a, V11294A, and BPN14770 appear
to be well tolerated in animals and/or healthy volun-
teers [NCT02648672] [NCT02840279] (Rogers and
Giembycz, 1998; Gale et al., 2002, 2003; Sutcliffe et
al., 2014; Ricciarelli et al., 2017). It is likely that mul-
tiple PDE4 subtypes and isoforms in different bodily
tissues contribute collectively to PDE4-associated
side effects, as also suggested by Richter and
colleagues (McDonough et al., 2020a). Hence, sub-
type- or isoform-selective PDE4 inhibitor may yield
less severe side effects. As PDE4 subtypes and iso-
forms have nonredundant roles and show specific in-
tracellular localization, certain subtypes or isoforms
may be specifically involved in mechanisms that even-
tually evoke unwanted effects. The potency of the in-
hibitor to inhibit these particular isoforms would then
explain their potency to induce adverse effects. How-
ever, which exact PDE4 subtypes and isoforms medi-
ate these processes remains to be determined.
Another explanation may lie in the differential affini-
ties of the compound to different PDE4 conformation-
al states. Indeed, correlations have been found
between the degree of binding HARBS and emetic ef-
fects (Duplantier et al., 1996; Christensen et al.,
1998; Hirose et al., 2007). Inhibitors that preferential-
ly target LARBS or show no preference would there-
fore be safer, which is supported by the relatively low
emetogenicity of cilomilast and roflumilast (Davis et
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al., 2009). In contrast, the PDE4D-selective inhibitor
BPN14770 preferentially binds HARBS but appears
to be well tolerated in humans [NCT02648672]
[NCT02840279] (https://tetratherapeutics.com/wp-con
tent/uploads/2016/11/FINAL-Tetra-Phase-1-121616-
FINAL.pdf). Although BPN14770 can bind HARBS, its
relatively low emetogenicity may be explained by its
PDE4D-selective inhibition and/or the fact that it acts
as a partial inhibitor [see section IV. Phosphodiesterase
4 Inhibitors (Burgin et al., 2010)]. Thus, the occurrence
of adverse effects may not be fully attributed to prefer-
ential binding of HARBS or LARBS, or to PDE4D-
selective inhibition, but rather is more complex, involv-
ing inhibition of specific PDE4 subtypes and/or isoforms
in different central and peripheral tissues.

Thus, it has been shown that it is possible to devel-
op PDE4 inhibitors with safer pharmacological profile
compared with the prototypical rolipram. In Table 5,
an overview is provided of several compounds that
have been tested for their ability to elicit PDE4-asso-
ciated side effects compared with rolipram. Because
of discrepancies among studies regarding the type of
test, species, and administration routes used, results
can mainly be compared within studies using the
same procedures. Table 5 indicates that multiple
PDE4 inhibitors induce emetic and emetic-like effects
at doses more than 30-fold of those induced by roli-
pram (e.g., CT-2450 and D159687), whereas some
compounds require lower doses than rolipram (e.g.,
PMNPQ and D157140). Since adverse side effects are

TABLE 5
PDE4 inhibitors tested for their potential to induce emesis-like behavior (rodents) or emesis compared with rolipram

Compound Emetic(-like) Dose
Emetic(-like)

Dose Ratio to Rolipram
Administration

Route Species Test Study

mg/kg
Rolipram 300 — Intraperitoneal Mouse Xylazine/ketamine/

anesthesia test
Vanmierlo et al., 2016

Roflumilast 3000 10
R-rolipram 100 — Subcutaneous Mouse Xylazine/ketamine/

anesthesia test
Robichaud et al., 2002b

S-rolipram 1000 10
PMNPQ 1 0.01
CT-2450 >30,000 >300

Rolipram 100 — Intravenous Mouse Xylazine/ketamine/
anesthesia test

Burgin et al., 2010

D157140 10 0.1
D158681 >1000 >10
D159153 100 1
D159382 30 0.3
D159404 >3000 >30
D159687 >3000 >30

Rolipram 30 — Subcutaneous Mouse Xylazine/ketamine/
anesthesia test

Ricciarelli et al., 2017

GEBR32a >3000 >30
Rolipram 30 — Subcutaneous Mouse Xylazine/ketamine/

anesthesia test
Bruno et al., 2011

GEBR7b 300 10
Rolipram 500 — Intragastric Mouse Xylazine/ketamine/

anesthesia test
Zhou et al., 2017

10j >1500 >3
Rolipram 800 — Oral Dog Emesis incidence Zhou et al., 2017

10j >800 >1
Rolipram 400 — Oral Rat Pica feeding Davis et al., 2009

Roflumilast 1570 >3.5
Cilomilast 6410 >16
EPPA-1 24,260 >60

Rolipram 500 — Oral Dog Emesis incidence Zhang et al., 2013
Chlorbipram >1000 >2
Chlorbipram
hydrochloride

>1070 >2

Rolipram <100 — Oral Dog Emesis incidence Nose et al., 2016
Roflumilast 500 >5
GPD-1116 1000 >10

Rolipram 3000 — Oral Ferret Emesis incidence Aoki et al., 2001b
YM976 30,000 10
RP73401 3000 1
CPP840 30,000 10

Rolipram 10,000 — Oral Ferret Emesis incidence Gale et al., 2003
V11294 >30,000 >3

Rolipram 40 — Intraperitoneal Mouse Acute gastric
retention

measurement

McDonough et al., 2020a

Piclamilast 200 5
YM976 1000 25
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often assessed in nonprimate species (e.g., mice, rats,
dogs, and ferrets), it should be considered that these
tests do not accurately reflect the potential emetic ef-
fects of PDE4 inhibitors that exploit the primate
PDE4D-specific phenylalanine in the UCR2 region. In
addition, rodents cannot vomit and therefore require
an indirect emesis test like the xylazine/ketamine test
or pica feeding test. Despite the fact that several com-
pounds can be used safely at higher doses than roli-
pram, their therapeutic potential is also dependent on
the doses required for the desired therapeutic effect.
As such, the eventual therapeutic windows of these
compounds, i.e., the range of doses that elicit thera-
peutic, yet no adverse, effects may still be similar to
those of rolipram for a specific disease indication.
Nevertheless, a wide variety of PDE4 inhibitors have
been developed with improved affinities to specific
subtypes and/or conformational states (Tables 2–4)
and minimized emetogenicity compared with rolipram
(Table 5). Thus, to establish safer and more effica-
cious PDE4 inhibition for a disease, it should be de-
termined which PDE4 subtypes, isoforms, or
conformations have to be targeted to determine which
inhibitor displays the broadest therapeutic window.

D. Strategies to Minimize Phosphodiesterase
4–Mediated Adverse Side Effects

Although PDE4 inhibition can produce several ad-
verse side effects, as described above, multiple strate-
gies can be exploited to minimize or prevent these
unwanted responses while retaining efficacy. Most no-
tably, more selective inhibition of PDE4 forms may be
pursued to improve treatment efficacy and/or avoid
inhibiting PDE4 forms mediating adverse side effects.
Regardless, a mechanistic understanding of which
PDE4 subtypes, isoforms, and/or conformational
states mediate adverse effects will aid in the develop-
ment of new-generation PDE4 inhibitors that then
should actually avoid potently inhibiting these forms.
Several PDE4 inhibitors already exist that preferen-
tially bind nonconserved amino acids and different
conformational states (see Table 4). Moreover, partial
inhibitors may provide a safer pharmacological profile
compared with full inhibitors through distinct poten-
cies for different PDE4 conformations and/or subtypes
(Gurney et al., 2011). In case PDE4 inhibition is de-
sired in peripheral organs rather than the central
nervous system, PDE4 inhibitors with limited brain
penetrance may minimize the occurrence of side ef-
fects that are mediated through central actions (Aoki
et al., 2001a). Likewise, depending on the target or-
gan, a particular route of administration can be cho-
sen to minimize systemic exposure (e.g., intranasal or
topical administration, or via inhalation) (Tralau-
Stewart et al., 2011). More precise targeting of PDE4
inhibitors has also been achieved by using inhibitor-
antibody conjugates, which are internalized

specifically by cells that express the antibody’s anti-
gen (Yu et al., 2016). Systemic exposure can also be
minimized by using PDE4 inhibitors that are quickly
degraded, as recently reported (Larsen et al., 2020).
Finally, combination treatments may reduce the se-

verity of PDE4-mediated side effects. For example, it
has been described that diarrhea caused by high
doses of roflumilast can be attenuated when paired
with a cyclooxygenase inhibitor (Peter et al., 2011).
Furthermore, inhibition of different PDE families
(e.g., PDE4 and PDE5 or PDE2 and PDE4) can pro-
duce synergistic effects that enable the use of lower
doses, with reduced chances of adverse effects, to pro-
duce the same treatment effect (Bollen et al., 2015;
Gulisano et al., 2018; Paes et al., 2021b). Lastly, the
treatment of certain diseases in which cAMP eleva-
tion is desired may benefit from dual PDE4/PDE7 in-
hibitors, which may subsequently reduce PDE4-
selective inhibition and its associated side effects
(Sharma et al., 2019; Ru�cilov�a et al., 2021).

VI. Outlook

As important regulators of cAMP signaling in the
entire body, the PDE4 enzyme family presents an in-
teresting and promising pharmacological target in a

Fig 5. PDE4 as a pharmacological target in a variety of disease areas. In
a broad range of diseases, PDE4 inhibition shows therapeutic potential.
Nonselective PDE4 inhibition is associated with adverse effects, but the
existence of PDE4 subtypes (PDE4A–D) and associated isoforms allows
for more specific targeting. PDE4 subtypes and isoforms can undergo con-
formational changes upon post-translational modifications and interac-
tions with partner proteins. PDE4 inhibitors can display different
affinities toward PDE4 subtypes, isoforms, and conformations. Disease-
specific determination of which PDE4 isoform(s) should be inhibited will
facilitate the development of safe and efficacious PDE4 inhibitors. This
figure was created with BioRender.com. P, phosphorylation; SUMO,
SUMOylation.
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broad range of disease areas. Accordingly, PDE4 inhi-
bition has preclinically shown therapeutic potential
for many diseases, yet its nonselective inhibition is
associated with severe adverse effects, which has seri-
ously hampered its translation to the clinic. To in-
crease efficacy and avoid adverse effects, more
selective targeting is required. This is actually possi-
ble, as PDE4 enzymes consists of multiple similar, but
different, subtypes that each comprise different iso-
forms. In this review it is summarized how these sub-
types and isoforms can, through PDE4-inherent
regulation, post-translational modifications, and in-
teractions with other proteins, adopt different confor-
mational states to which PDE4 inhibitors can
selectively bind. Since PDE4 subtypes and isoforms
are expressed in specific tissue, cell type, and intra-
cellular expression patterns, selective PDE4 subtype/
isoform inhibition will enable a more directed modula-
tion of cAMP signaling in the target organ of interest.
To further improve PDE4 inhibitor treatment efficacy
and safety, it should also be investigated which PDE4
subtypes and isoforms contribute most to the organ’s
disease-specific aberrant cAMP signaling. Additional-
ly, upon PDE4 specification, the conformational state
of these enzymes in their disease context would have
to be determined to choose or develop the most effica-
cious inhibitors (Fig. 5). Consequently, it is crucial to
determine preferential binding of PDE4 inhibitors to
specific subtypes, isoforms, and conformations rather
than testing their affinity toward PDE4 catalytic do-
mains only. Moreover, a deeper insight into the mecha-
nisms underlying PDE4-mediated unwanted effects in
organs is also warranted to facilitate the development
and use of safe PDE4 inhibitors to treat diseases. In
conclusion, specification and subsequent selective inhi-
bition of PDE4 subtypes, isoforms, or conformations
grants the opportunity to effectively and safely modu-
late aberrant cAMP signaling in myriad diseases. This
will increase the chance of success of more PDE4 in-
hibitors reaching the patient eventually.
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Supplementary Table 1 
Human 
isoform 

Reference Rodent 
isoform 

Reference Comments 

PDE4A8 (Mackenzie et al., 2008) Pde4a8 (Bolger et al., 1996) 
homology at the nucleotide level, but encoding 
proteins with different N-termini 

PDE4A4 (Mackenzie et al., 2008) Pde4a5 (Naro et al., 1996) 
human isoform is named PDE4A4 whilst rodent 
equivalent is named PDE4A5 

PDE4A11 (Wallace et al., 2005) Pde4a11 (Wallace et al., 2005)  

PDE4A10 (Rena et al., 2001) Pde4a10 (Rena et al., 2001)  

PDE4A1 (Sullivan et al., 1998) Pde4a1 
(Olsen and Bolger, 
2000) 

 

PDE4A7 (Johnston et al., 2004) x x dead-short isoform, not (yet) identified in rodents 

x x Pde4a7 (Naro et al., 1996) 
long form found in rat testis, not (yet) characterized in 
human      

PDE4B1 (Bolger et al., 1993) Pde4b1 (Huston et al., 1997)  

PDE4B3 (Huston et al., 1997) Pde4b3 (Huston et al., 1997)  

x x Pde4b4 (Shepherd et al., 2003) 

not (yet) identified in humans, but a protein of similar 
weight as rodent PDE4D4 has been detected in 
immunoblots of human brain tissue (Fatemi et al., 
2008) 

PDE4B2 (McLaughlin et al., 1993) Pde4b2 (Swinnen et al., 1991)  

PDE4B5 (Cheung et al., 2007) Pde4b5 (Cheung et al., 2007)  
     

PDE4C1 (Engels et al., 1995) x x 
only partial clones have been obtained of rat PDE4C 
(Owens et al., 1997) 

PDE4C2 (Owens et al., 1997) x x 
only partial clones have been obtained of rat PDE4C 
(Owens et al., 1997) 

PDE4C3 (Obernolte et al., 1997) x x 
only partial clones have been obtained of rat PDE4C 
(Owens et al., 1997) 

     

PDE4D7 (Wang et al., 2003) Pde4d7 (Richter et al., 2005)  

PDE4D4 (Bolger et al., 1997) Pde4d4 (Richter et al., 2005)  

PDE4D5 (Bolger et al., 1997) Pde4d5 (Richter et al., 2005)  

PDE4D3 (Bolger et al., 1997) Pde4d3 (Richter et al., 2005)  

PDE4D8 (Wang et al., 2003) Pde4d8 (Richter et al., 2005)  

PDE4D9 (Gretarsdottir et al., 2003) Pde4d9 (Richter et al., 2005)  

x x Pde4d11 (Lynex et al., 2008) 
identical human genomic sequence identified in silico 
but not validated in vitro on the mRNA or protein level 

PDE4D1 (Bolger et al., 1997) Pde4d1 (Richter et al., 2005)  

PDE4D2 (Bolger et al., 1997) Pde4d2v2 
(Chandrasekaran et al., 
2008) 

 

x x Pde4d2v1 
(Chandrasekaran et al., 
2008) 

different 5'UTR sequence to PDE4D2v2, but same 
coding sequence as PDE4D2; not (yet) identified in 
humans 

x x Pde4d2v3 
(Chandrasekaran et al., 
2008) 

different 5'UTR sequence to PDE4D2v2, but same 
coding sequence as PDE4D2; not (yet) identified in 
humans 

x x Pde4d10 
(Chandrasekaran et al., 
2008) 

probably non-existing in humans 

PDE4D6 (Wang et al., 2003) Pde4d6 (Richter et al., 2005)  
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