INDEX

PHARMACOLOGICAL REVIEWS

Volume 23

1971

Actomyosin
 cardiac glycosides influence on ATPase activity, 209
 "contractile" behavior, 209
 viscosity of, 208
Adrenal cortex and medulla. (See also Adrenal medulla)
 anatomic relationship, 2, 5
 functional consequences of juxtaposition, 2
 functional interactions, 2
Adrenal cortical and chromaffin cells
 association in amphibia, 10
 fish, 10
 vertebrate species, 10
Adrenal medulla. (See also Adrenal cortex and medulla)
 chromaffin cells. (See Chromaffin cells)
 circulation, comparative anatomy of, 11
 effects of glucocorticoids, 18
 hypophysectomy, 18
 epinephrine- and norepinephrine-containing cells, variation among species, 11
 evolution in mammal, 9
 innervation
 age variation among species, 22
 segmental distribution, 6
 morphological changes after hypophysectomy, 19
 selective secretion of epinephrine and norepinephrine, 24
 vascular supply, 12
 d-Amphetamine effects on threshold to electrical stimulation in animals with indwelling brain electrodes (tables), 325, 326
Atelectasis, 42
Axelrod, Julius. (See Lemberger, Axelrod and Kopin), 371
Cannabichromene
 occurrence in marihuana, 270
Cannabicyclohexyl
 occurrence in marihuana, 269
Cannabidiol
 occurrence in marihuana, 268
Cannabigerol
 occurrence in marihuana, 269
Cannabinol
 occurrence in marihuana, 269
Cannabinoids, 269
 definition, 273
Cannabis. (See also c- and c^*-Tetrahydrocannabinol and Marihuana)
 dose-response relationships in human subjects, 339-347
 effect on barbiturate-induced sleeping time, 306
 oral ingestion and inhalation of smoke, pharmacological difference in, 339
 resin extract, hypothermic effect, 308
 tincture of, hypothermic effect, 309
 tolerance development in rats, 311
Cannabis sativa. (See also Marihuana)
 active principles of, 285
 extract of, 268
 source for manicured marihuana, 267
Carbon dioxide
 role in pulmonary oxygen toxicity, 96
Cardiac function
 cardiac glycosides action on, 196
Cardiac glycosides
 action on contractile proteins, 207
 nonfailing heart, 194
 binding on $Na^+\-K^+$ ATPase, 224
 $[Ca^{++}]_{i}$-dependence of action, 200
 cardiotonic factor, prevention of loss of, 203
 catecholamines released by, 202
 effect on electrophysiological properties of the myocardium, 227
 excitation-contraction coupling, 233
 myocardial potassium and sodium content, 215

381
Cardiac glycosides—(Continued)

Na⁺-K⁺ ATPase, 221
sarcolemmal reticulum, 226
frequency-dependence of action
magnitude of effect, 197
onset of action, 196
heart muscle, localization in, 203
subcellular distribution in, 204
uptake in, 204
influence on
action potential, 229
actomyosin ATPase activity, 209
"contractile" behavior of actomyosin preparations, 209
contractile mechanics of heart muscle, 195
diastolic membrane potential of myocardi¬
cardial cells, 228
enzymatic properties of myosin, 208
glycerol-extracted muscle preparations, 210
intracellular calcium distribution, 241
inward calcium current, 235
mechanical threshold, 235
myocardial calcium metabolism, 239
myocardial energy metabolism, 210
physicochemical properties of myosin, 208
polymerization of g-actin, 207
potassium efflux from heart muscle, 217
transmembrane potassium and sodium turnover, 219
viscosity of actomyosin, 208
inhibition of Na⁺-K⁺ ATPase, 221
inotropic action
digitalis effects, 202
subcellular basis for mechanism of, 193–261
interaction between Na⁺-K⁺ ATPase and, 224
myocardial uptake, influencing factors, 206
potassium-dependence of action, 198
sodium-dependence of action, 199
stimulation of Na⁺-K⁺ ATPase, 225

Catecholamines. (See also Epinephrine, Norepinephrine)

Catecholamines
enzymes involved in metabolism of, 18
release by
acetylcholine, 25
brain stimulation, 24
cardiac glycosides, 202
stimulation of splanchnic nerves, 25
release during insulin-induced hypoglycemia, 26
role in indirect inotropic effect of cardiac glycosides, 202

Catecholamine synthesis (See also Epinephrine synthesis)
chromaffin cells, 6, 7
enzymes involved in, 18
postganglionic sympathetic neurons, 7
rate control, 7
tyrosine hydroxylation, 7

Central nervous system
actions of synthetic tetrahydrocannabinol derivatives, 317–336
effects of
DMHP interactions with other drugs, 306
DMHP, MOP, and NAP, 298
tetrahydrocannabinols, 285, 292
interaction with pulmonary effects of oxygen poisoning, 82
protection from pulmonary oxygen poisoning by anesthetics, 82

Chromaffin cells
adult mammal, 4
catecholamine biosynthesis, 6
chromaffin granules, 5
chromaffin reaction, 4
distribution in
birds, 10
mammals, 10
reptiles, 10
ungulates, 11
histology of, 4
innervation of, 5

Clark, J. M., and C. J. Lambertsen. Pulmonary oxygen toxicity: a review, 37

Digitalis
effect on movement of myocardial potassium and sodium, 215
role in indirect inotropic effect of cardiac glycosides, 202

DMHP
analgesic properties, 317
methods to determine, 317
behavioral responses, 298
cardiovascular responses to (table), 299
cross tolerance with morphine, 311
dose-effect relationships, 339
drug interactions
d-amphetamine, 306
INDEX

behavioral interactions in the dog, 306; (table), 307
caffeine, 306
cocaine, 306
nalorphine, 306
effect on avoidance behavior
dog conditioned, 317
monkey two-way shuttle box, 317
rat pole jump, 317
barbiturate-induced sleeping time, 305
cerebral electrical activity in animals, 326, 325
common carotid occlusion pressor reflex, 300; (table), 301
conditioned behavior, 317
electrical correlates of conditioned avoidance response in the dog, 317
high spinal cats, 317, 332
patellar reflex
bulbar facilitation of, 317, 333
inhibition of, 317, 333
photic driving of electroencephalogram of dog, 317, 329
spinal reflexes, 317
threshold for response to electrical stimulation of amygdala, 325, 326
threshold for stimulation of posterior hypothalamus, 325, 326
threshold to stimulation in animals with indwelling brain electrodes, 325, 326; (tables), 325, 326
threshold to stimulation of brainstem reticular formation, 325, 326
electroencephalographic effects and partial antagonism by methylphenidate in monkey with indwelling brain electrodes, 326
hypotensive potency, 299; (table), 300
hypothermic effects, 308
hypothermic response, 309
pharmacological activity, 299
pharmacological comparison of old vs. new samples (table), 298
pharmacological potency and efficacy, 296
reserpine and, similarities of pharmacological actions, 306
solubility of, 297
structural formula, 298

tolerance development, 310-311
dogs, 310
monkeys, 310
treatment of essential hypertension, 305

Domino, Edward F., Harold F. Hardman and Maurice H. Seegers. Central nervous system actions of some synthetic tetrahydrocannabinol derivatives, 317

Domino, Edward F. (See Hardman, Domino and Seegers), 295

Epinephrine. (See also Catecholamines) effects of hypophysectomy and glucocorticoids, 18
isotopically labeled, recovery from adrenals, 8
secretion from adrenal medulla, 24
Epinephrine synthesis
adrenal medulla, 2
adrenocortical control, 1-35

Forney, Robert B. Toxicology of marihuana, 279

Gas exchange
pulmonary oxygen poisoning, 58

Gibbins, R. J. (See Kalant, LeBlanc and Gibbins), 135
Glucocorticoid concentration
relationship with phenylethanolamine-N-methyl transferase activity, 22

Glucocorticoids
effects of hypophysectomy and hormones on concentrations in blood, 18
suppression on epinephrine, 3
extra-adrenal
adult, 21
fetus, 20
influence on epinephrine biosynthesis, 2
phenylethanolamine-N-methyl transferase, 2

Glycosides, cardiac. (See Cardiac glycosides)

Hardman, Harold F., Edward F. Domino and Maurice H. Seegers. General pharmacological actions of some synthetic tetrahydrocannabinol derivatives, 295
(See Domino, Hardman and Seegers), 317

Harris, Louis S. General and behavioral pharmacology, 285

Hashish
Δ⁹-tetrahydrocannabinol content, 371

Heart. (See also entries beginning with Cardiac)
nonfailing, cardiac glycosides action, 194
Heart muscle
 cardiac glycosides
 action on
 contractile mechanics, 195
 contractile proteins, 207
 effect on
 electrophysiological properties, 227
 potassium and sodium content, 215
 influence on action potential, 229
 calcium metabolism, 239
 diastolic membrane potential, 228
 electrolyte metabolism, 219
 energy metabolism, 210
 potassium efflux from, 217
 localization in, 203
 subcellular distribution of, 204
 uptake of, 204
 effect of digitalis on potassium and sodium, 215
 Na⁺-K⁺ ATPase inhibitors with no inotropic effects, 227
Hollister, Leo E. Actions of various marihuana derivatives in man, 349
 Hyaline membranes
 pulmonary. (See under Pulmonary oxygen toxicity)
1-Hydroxy-3-(1,2-dimethylheptyl)-6,6,9-trimethyl 7,8,9,10-tetrahydro-6-dibenzopyran. (See DMHP)
1-Hydroxy-3-(n-amyl)-6,6,9-trimethyl 7,8,9,10-tetrahydro-6-dibenzopyran. (See NAP)
1-Hydroxy-3-(secondary nonyl)-6,6,9-trimethyl 7,8,9,10-tetrahydro-6-dibenzopyran. (See MOP)
Hyperoxia
 adrenocortical response, 76
Hypoxemia
 pulmonary oxygen poisoning, 60
Isbell, Harris. Clinical pharmacology of marihuana, 337
Jones, Reese T. Marihuana-induced "high": influence of expectation, setting and previous drug experience, 359
Kiplinger, Glenn F., and Joseph E. Manno. Dose-response relationships to cannabis in human subjects, 339
Klaus, Wolfgang. (See Lee and Klaus), 193
Kopin, Irwin J. (See Lemberger, Axelrod and Kopin), 371
Lambertsen, C. J. (See Clark and Lambertsen), 37
LeBlanc, A. E. (See Kalant, LeBlanc and Gibbins), 135
Lee, Kwang S. and Wolfgang Klaus. The subcellular basis for the mechanism of inotropic action of cardiac glycosides, 193
Lemberger, Louis, Julius Axelrod and Irwin J. Kopin. Metabolism and disposition of Δ-tetrahydrocannabinol in man, 371
Lungs. (See also entries beginning with Pulmonary)
 biochemical changes during oxygen poisoning, 103
 mitochondrial changes, 48
 toxic effects of oxygen, 39
Lung volumes
 oxygen poisoning effect on vital capacity, 57
Manno, Joseph E. (See Kiplinger and Manno), 339
Marihuana. (See also Cannabis, Cannabis sativa, and Δ⁹- and Δ⁸-Tetrahydrocannabinol)
 absorption, 274
 analysis, 269
 drug-type (table), 267
 hemp-type (table), 267
 and surrogates, 263-380
 cannabinichromene and its derivative in, 270
 cannabicyclic occurring in, 269
 cannabidiol and its derivatives in, 268
 cannabinol and its derivatives in, 269
 cannabigerol and its derivatives in, 269
 cannabis Prelude, 263
 chemistry of, 265-271
 comparison of cumulative excretion of radioactivity after injection of ¹⁴C-Δ⁹-THC, 576
 placebo and subjective symptoms (table), 306
 comparison with ethanol
 oral dose, 354, 355
 smoked dose, 355
MOP
behavioral responses, 298
pharmacological activity, 299
solubility of, 297
structural formula, 297
Myosin
cardiac glycosides influence on, 208
Na-K ATPase
cardiac glycosides binding on, 224
inhibition of, 221
interaction with, 224
stimulation by, 225
influence of erythrophleum alkaloids, 227
inhibitors without inotropic effects on heart muscle, 227
NAP
behavioral responses, 298
effects on common carotid occlusion pressor reflex, 300; (table), 301
hypotensive potency, 299; (table), 300
pharmacological activity, 299
solubility of, 297
structural formula, 296
Norepinephrine. (See also Catecholamines)
secretion from adrenal medulla, 24
Oxygen
physiological effects, 38
toxic effects, 38
direct, 79
on lung, 39
Oxygen tolerance
pulmonary. (See Pulmonary oxygen tolerance)
Oxygen toxicity
pulmonary (See Pulmonary oxygen toxicity)
Phenylethanolamine-N-methyl transferase (PNMT)
aminogluthethimide effects on activity of, 15
control of activity in man, 27
dose-response characteristics, 15
effects of chronic stresses, 13
hibernation, 13
extra-adrenal
adult, 21
fetus, 20
function of, 2
hormonal specificity, 13
Phenylethanolamine-N-methyl transferase
—(Continued)
hormone-induced alterations in epinephrine content of adrenal glands (table), 14
phenylethanolamine-N-methyl transferase activity in adrenal gland (table), 14
hypophysectomy effects on, 3
inducibility of isozymes, 19
induction by glucocorticoids, 12
inhibition of activity, 9
mechanisms of increased activity, 17
ontogenesis in adrenals, 21
role of glucocorticoids, 21
relationship between glucocorticoid concentration and PNMT activity, 22
substrate specificity, 8
synthesis, 2
Pohorecky, Larissa A., and Richard J. Wurtman. Adrenocortical control of epinephrine synthesis, 1

Proteins
contractile, action of cardiac glycosides, 207
Psychotropic drugs (non-opiate)
absorption, 141
changes during chronic treatment, 141
dependence, 160-191
dependence
concept of redundancy, 169
cross-dependence, 167
definition, 160
denervation supersensitivity hypothesis, 168
measurement, 165
physical, 163
biochemical mechanisms, 171
physiological mechanisms, 169
signs and symptoms, 163
specific cellular mechanisms, 169
physiological mechanism, 169
psychological, 160
relation to drug load, 165
relation to tolerance, 166
dependence mechanisms
hypothetical models, 167
distribution, 141
altered, significance of, 143
change during chronic treatment, 141
excretion, 141
change during chronic treatment, 141
metabolism, 143
changes in pathways, 146
microsomal mixed function oxidase system, 147
rate of, 143
significance of increased rate of, 145
tolerance, 137-159
acquired change, 137
acute, 147, 148
changes in dose-response, curves, 153
chronic, 147, 151
concept of redundancy, 169
cross-tolerance, 159
definition, 137
denervation supersensitivity hypothesis, 168
development in animals and man (table), 155
dispositional, 137, 141
duration and carry-over, 156
effect of drug dose, 154
extent, 152
functional, 137, 147
generalization, 157
identification of type, 140
initial, 137
kinetic formulations, 174
“learned”, 158
mathematical formulations, 174
measurement techniques, 157-140
physiological, 158
physiological mechanism, 169
psychological (learned), 158
relation between acute and chronic, 174
specific cellular mechanisms, 169
speed of production, 151
tolerance mechanisms
hypothetical models, 167
withdrawal reactions, 163-165
Pulmonary edema. (See under Pulmonary oxygen toxicity)
Pulmonary oxygen tolerance
adrenocortical response to hyperoxia, 76
immaturity associated with, 78
in animals, 64, 65; (table), 66
in animals exposed to 0.9-1.0 atm of oxygen (tables), 40, 41
in man, 68, (table), 70, 78, 73
intermittent interruption of oxygen breathing, 112
metabolic basis for acquired tolerance, 76
modification of, 109-114
nutritional factors, 77, 79
vital capacity as quantitative index, 69
Pulmonary oxygen toxicity, 37-133
adrenergic blocking agents, 87
INDEX

arterial P\textsubscript{02} influence, 81
atelectasis, 42
biochemical changes in lungs, 103
biochemical effects, 79
carbon dioxide
 acid-base factors, 99
 narcotic influence, 97
 role, 96
central nervous system
 interaction with pulmonary effects, 82
 protection by anesthetics, 82
drugs to delay onset or decrease severity, 111
effects of
 enzyme and cofactor inactivation, 105
 histamine, 104
 irradiation, 105
 serotonin, 104
 vagotomyl, 89
effect on
 alveolar-capillary tissue barrier in
 animals, 51
 control of respiration, 60
 lung volumes, 57
 pulmonary function, 56
 pulmonary gas exchange, 58
 pulmonary mechanics, 57
ganglionic blocking drugs, 87
 hypophyseal-adrenocortical interaction, 83
 biochemical studies, 84
 histological studies, 84
inert gas, respired, role of, 101
influence of
 sex hormones, 92
 thyroid activity, 91
 mechanisms, 79-109
mitochondrial changes in the lung, 48
pathological changes
 morphological techniques of study, 49, 50
 qualitative studies, 49
 reversibility during recovery, 53
 sequence of, 49
 serological techniques of study, 49, 50
 pathology, 39-56
 exudative phase, 54, 56
 in animals, 39-54
 in man, 54-56
 in newborn, 55
 proliferative phase, 54, 56
 physical findings, 62
post-mortem changes in animals, 42
protective influence of
 adrenalectomy, 84
 hypophysectomy, 83
pulmonary edema, 43
 chemical composition of fluid, 44
 mechanism of formation, 44
 pulmonary hyaline membranes, 45
 extra-uterine respiration factor, 46
 mechanical factors contributing to development, 46
 pathogenesis of formation, 45
 variation among species, 45
 pulmonary surfactant
 lipid composition, 95
 reduction of concentration, 93
 role, 93, (table), 94
 pulmonary vascular changes, 47
 radiological changes, 62
 in newborn infants, 63
 rate of development, 63
 influence of respired inert gas, 102
 influential factors (tables), 109, 110
 modification, 111
 rate of recovery, 113
resistance to
 acquired, 73
 avian species, 77
 cold-blooded animals, 77
 inherent, 77
 signs, 61
 sodium bicarbonate administration, 100
 sodium lactate administration, 100
 sympatho-adrenomedullary interaction, 86
 symptoms, 62
tolerance to, 63
 variation among species, 39, 41
Pulmonary surface activity
 effect of prolonged exposure to hyperoxia
 (table), 94
Reserpine
 effects on common carotid occlusion
 pressor reflex, 300; (table) 301
 hypotensive potency, 299; (table), 300
Seevers, Maurice H. (See Domino, Hardman and Seevers), 317
 (See Hardman, Domino and Seevers), 295
Sex hormones
 influence in pulmonary oxygen toxicity, 92
Synhexyl
 Comparison with \Delta- and \Delta\textalpha-tetrahydrocannabinols by smoking, 349
Synhexyl—(Continued)
oral dose
clinical syndromes, 349; (table), 352
comparison with Δ⁴-tetrahydrocannabinol, 349
physiological changes, 349
symptoms, 349
syndromes from smoking (table), 354

Tetrahydrocannabinol
absorption, 274
preparation for, 275
biological disposition, 273–278
biotransformation (reactions scheme), 277
cannabinoids and isomers and homologues, 551
distribution, 275
inhalation vs. intraperitoneal route, 275
effects on central nervous system, 285, 292
excretion, 276
intraperitoneal administration, 275
intravenous administration, 275
metabolism, 275
metabolites, biological activity of, 277
pharmacology
behavioral, 285–294
general, 285–294
solvent systems for formulating drugs, 285
structural formula, 287
synthetic compound with misplaced double bond (1940 vintage), 285
synthetic derivatives
behavioral responses, 288
cardiovascular pharmacology, 299–305
central nervous system actions, 317–336
DMHP, 295
drug interactions, 305–307
effects on spinal reflexes, 317
electroencephalic alterations, 317
MOP, 295
NAP, 295
pharmacological actions, 295–315
temperature regulation, 307–310
tolerance development, 310
Tetrahydrocannabinol, Δ⁴-
comparison with synhexyl and Δ⁴-tetrahydrocannabinols by smoking, 349
syndromes from smoking, 349; (table), 354

Tetrahydrocannabinol, Δ⁴-
albumin suspensions, 285
mouse hot-plate test (table), 287
toxicity of (table), 286
analgesic activity
abdominal-stretching test, 286
mouse hot-plate test, 286; (table), 287
antinociceptive activity, 286
solubility properties, 271
synthesis, 270, 271
tolerance, in pigeons, 289
Tetrahydrocannabinol, Δ⁴-
active constituent of cannabis, 339
acute toxicity (tables), 280
albumin suspension, 285
mouse hot-plate test (table), 287
toxicity of (table), 286
analgesic activity, 285
abdominal-stretching test, 286
mouse hot-plate test, 286; (table), 287
mouse tail-flick test (table), 287
antinociceptive activity, 286
biphasic action, 283–284
combined with ethanol, 280, 282, 283
hexobarbital, 280, 281
comparison with dextroamphetamine, 349
ethanol, 349
LSD, 349
synhexyl and Δ⁴-tetrahydrocannabinol by smoking, 349
cross tolerance with DMHP in pigeons, 311
synhexyl in pigeons, 311
disposition in man, 371
chronic marihuana users, 371
drug naive subjects, 371
distribution in marihuana smoke, 274
dose, problems in determination of, 349
dose-effect relationships
heart rate, 345
mental function, 339, 345
motor function, 339, 345
pulse rates, 339, 343
pulse rate, magnitude and duration, 339, 344
dose-response analysis, 339
pulse rate, 339
subjective response data, 339
effect on blood pressure, 286, 287, 288
body temperature, 283
cardiovascular parameters, 286, 288
conditioned behavior, 317
heart rate, 283
key pecking rates in pigeons, 289–293
mental functioning, 339
INDEX 389

respiratory parameters, 287, 288
respiratory rate, 283
excretion in man, 371
homologues and, future studies of, 349
hypothermic response, duration, 309
inhalation, psychological effects of, 371
initial phase of use, fate during (table), 375
intragastric injection, 280
intraperitoneal injection, 279
intravenous injection, 279
metabolism, 371
microsomal enzyme induction, 282
occurrence in marihuana, 268
oral dose
clinical syndromes, 349; (table), 352
comparison with synhexyl, 349
physiological changes, 349
psychological effects, 371
symptoms, 349
time course for psychic effects, 378
plasma levels after injection of ^{14}C-Δ^9-THC, 572, 574
plasma levels of ^{14}C-Δ^9-THC after oral administration of Δ^9-THC and ^{14}C-Δ^9-THC, 578
radioactivity
after injection of ^{14}C-Δ^9-THC, 572, 574
ether-extractable (table), 375
extraction from feces (table), 377
extraction from urine (table), 377
volumes of distribution (table), 375
radiohistogram of thin-layer chromatography of Δ^9-THC extracted from plasma, 373
sleeping time enhancement, 282
solubility properties, 271
syndromes from smoking (table), 354
synhexyl and
perceptual syndromes (table), 352
psychic syndromes (table), 352
somatic syndromes (table), 352
time course of clinical syndromes, 349; (table), 352
synthesis, 270, 271
tolerance
in dogs, 291
in pigeons, 289, 293
in rats, 291
toxicity, animal studies, 279–284
volume of distribution (table), 375
Truitt, Edward B., Jr. Biological disposition of tetrahydrocannabinols, 273
Waller, Coy W. Chemistry of marihuana, 265
Way, E. Leong. Cannabis prelude, 263
Wurtman, Richard J. (See Pohorecky and Wurtman), 1