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Abstract——Two types of cannabinoid receptor have
been discovered so far, CB1 (2.1: CBD:1:CB1:), cloned in
1990, and CB2 (2.1:CBD:2:CB2:), cloned in 1993. Distinc-
tion between these receptors is based on differences in
their predicted amino acid sequence, signaling mech-
anisms, tissue distribution, and sensitivity to certain
potent agonists and antagonists that show marked se-
lectivity for one or the other receptor type. Cannabi-
noid receptors CB1 and CB2 exhibit 48% amino acid
sequence identity. Both receptor types are coupled
through G proteins to adenylyl cyclase and mitogen-
activated protein kinase. CB1 receptors are also cou-
pled through G proteins to several types of calcium
and potassium channels. These receptors exist primar-
ily on central and peripheral neurons, one of their
functions being to inhibit neurotransmitter release.
Indeed, endogenous CB1 agonists probably serve as
retrograde synaptic messengers. CB2 receptors are

present mainly on immune cells. Such cells also ex-
press CB1 receptors, albeit to a lesser extent, with both
receptor types exerting a broad spectrum of immune
effects that includes modulation of cytokine release.
Of several endogenous agonists for cannabinoid re-
ceptors identified thus far, the most notable are
arachidonoylethanolamide, 2-arachidonoylglycerol,
and 2-arachidonylglyceryl ether. It is unclear whether
these eicosanoid molecules are the only, or primary,
endogenous agonists. Hence, we consider it premature
to rename cannabinoid receptors after an endogenous
agonist as is recommended by the International Union
of Pharmacology Committee on Receptor Nomencla-
ture and Drug Classification. Although pharmacolog-
ical evidence for the existence of additional types of
cannabinoid receptor is emerging, other kinds of sup-
porting evidence are still lacking.

I. Introduction: Overview of the Cannabinoid
Receptors

Cannabinoid receptors received their name as those
receptors that respond to cannabinoid drugs, such as
�9-tetrahydrocannabinol (�9-THC1; Fig. 1), derived from

1Abbreviations: �9-THC, �9-tetrahydrocannabinol; THC, tetrahy-
drocannabinol; NC-IUPHAR, International Union of Pharmacology
Committee on Receptor Nomenclature and Drug Classification;
ACEA, arachidonyl-2�-chloroethylamide; ACPA, arachidonylcyclo-
propylamide; anandamide, arachidonoylethanolamide; CBD, canna-
bidiol; CCK, cholecystokinin; CD40, cluster of differentiation 40;
CHO, Chinese hamster ovary; FAAH, fatty acid amide hydrolase;
FAK, focal adhesion kinase; GABA, �-aminobutyric acid; HU-210,

6aR,10aR analog of 11-hydroxy-�8-THC-dimethylheptyl; HU-211,
6aS,10aS analog of 11-hydroxy-�8-THC-dimethylheptyl; IFN-�, in-
terferon �; IL, interleukin; NOS, nitric-oxide synthase; iNOS, induc-
ible NOS; IP3, inositol-1,4,5-triphosphate; MAPK, mitogen-activated
protein kinase; NMDA, N-methyl-D-aspartate; NO, nitric oxide; PI3K,
phosphatidylinositol-3-kinase; PMA, phorbol 12-myristate 13-acetate;
PMA/Io, PMA plus calcium ionophore; R-(�)-WIN55212, (R)-(�)-[2,3-
dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1,4-
benzoxazin-6-yl]-1-naphthalenyl-methanonemesylate (WIN55212-2);
SAR, structure-activity relationship; [35S]GTP�S, [35S]guanosine-5�-O-
(3-thiotriphosphate); JWH-051, 1-deoxy-11-OH-�8-THC-dimethylhep-
tyl; BSA, bovine serum albumin; CNS, central nervous system; EM,
electron microscope; AM281, N-(morpholin-4-yl)-1-(2,4-dichlorophenyl)-
5-(4-iodophenyl)-4-methyl-1H-pyrazole-3-carboxamide; AM251, N-(pip-
eridin-1-yl)-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-1H-
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Cannabis sativa and its biologically active synthetic an-
alogs. As detailed under Section II., synthetic agonists
that bind to cannabinoid receptors include �9-THC-like
analogs and aminoalkylindole compounds typified by
R-(�)-WIN55212. Several endogenous ligands for can-
nabinoid receptors have also been identified, most nota-
bly arachidonoylethanolamide (anandamide), 2-arachi-
donoylglycerol, and 2-arachidonylglyceryl ether (noladin
ether) (Section II.). However, because it is not yet clear
whether these eicosanoid molecules are the only, or pri-
mary, endogenous agonists, we continue to call the re-
ceptors cannabinoid receptors rather than prematurely

renaming them after an endogenous agonist as is rec-
ommended by the NC-IUPHAR. Cannabinoid receptor
types are denoted by the abbreviation CB and numbered
in the order of their discovery by a subscript (CB1, CB2).
At present, two cannabinoid receptor types have been
determined, the distinction between them being based
on differences in their predicted amino acid sequence,
their signaling mechanisms, and their tissue distribu-
tion. It has also proved possible to develop potent ago-
nists and antagonists with marked selectivity for CB1 or
CB2 receptors (Section II.) as well as CB1, CB2, and
CB1/CB2 knockout mice (Section VI.).

The CB1 cannabinoid receptor (2.1:CBD:1:CB1:) has
been cloned from rat, mouse, and human tissues and
exhibits 97 to 99% amino acid sequence identity across
species (Section V.). Its structure is that of a seven-
transmembrane domain receptor, consistent with bio-
chemical and cellular determinations of signal transduc-
tion via G proteins (Section IV.). CB1 receptor mRNA
and protein are found primarily in brain and neuronal
tissue (Section VII.). The CB2 cannabinoid receptor (2.1:
CBD:2:CB2:) exhibits 48% homology with the CB1 can-
nabinoid receptor (Section V.). Expressed CB2 receptor
protein binds �9-THC-like, aminoalkylindole, and eico-
sanoid ligands (Section II.) and signals a response (Sec-
tion IV.), thereby defining this receptor as being of the
cannabinoid receptor class. The mouse CB2 receptor has
been cloned and has an 82% sequence identity to the
hCB2 receptor (Section V.). CB2 receptor mRNA is found
primarily in immune tissue and is notably absent from
normal nervous tissue (Section VII.). Any novel type(s)
of cannabinoid receptor will be defined based on multi-

pyrazole-3-carboxamide; CP55940, (1R,3R,4R)-3-[2-hydroxy-4-(1,1-
dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol; CP55244,
(�)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxy-
propyl)cyclohexan-1-ol; AM630, 6-iodo-2-methyl-1-[2-(4-morpholinyl)
ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (6-iodopravadoline);
RT-PCR, reverse transcription-polymerase chain reaction; SR141716A,
N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-
1H-pyrazole-3-carboxamide hydrochloride; 5-HT, 5-hydroxytrypta-
mine; JNK, c-Jun N-terminal kinase; kb, kilobase(s); L-759633,
(6aR,10aR)-3-(1,1-dimethylheptyl)-1-methoxy-6,6,9-trimethyl-
6a,7,10,10a-tetrahydro-6H-benzo[c]chromene; L-759656, (6aR,10aR)-3-
(1,1-dimethylheptyl)-1-methoxy-6,6-dimethyl-9-methylene-6a,7,
8,9,10,10a-hexahydro-6H-benzo[c]chromene; JWH-015, (2-methyl-
1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone; JWH-133,
3-(1,1-dimethylbutyl)-6,6,9-trimethyl-6a,7,10,10a-tetrahydro-6H-
benzo[c]chromene; JWH-139, 3-(1,1-dimethylpropyl)-6,6,9-trimethyl-
6a,7,10,10a-tetrahydro-6H-benzo[c]chromene; HU-308, {4-[4-(1,1-
dimethylheptyl)-2,6-dimethoxy-phenyl]-6,6-dimethyl-bicyclo[3.1.1]
hept-2-en-2-yl}-methanol; CP47497, 5-(1,1-dimethylheptyl)-2-(3-
hydroxy-cyclohexyl)-phenol; L-768242, (2,3-dichloro-phenyl)-[5-
methoxy-2-methyl-3-(2-morpholin-4-yl-ethyl)-indol-1-yl]-methanone;
WIN54461, 6-bromo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-
yl](4-methoxyphenyl)methanone; WIN56098, anthracen-9-yl-[2-
methyl-1-(2-morpholin-4-yl-ethyl)-1H-indol-3-yl]-methanone.

FIG 1. The structures of four constituents of cannabis: �9-THC, �8-THC, cannabinol, and cannabidiol.
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ple criteria of primary structure homology, pharmaco-
logical characteristics in biological systems, and signal
transduction mechanisms. Although some preliminary
pharmacological evidence for the existence of additional
types of cannabinoid receptor has already emerged (Sec-
tion XI.), other kinds of evidence are still lacking.

The CB1 cannabinoid receptor has been extensively
characterized for biological responses, and information
about the structure-activity relationships of ligands for
interaction with this receptor is extensive (Section II.).
Claimed central nervous system responses to �9-THC
and other cannabinoid receptor agonists include thera-
peutically beneficial effects of analgesia, attenuation of
the nausea and vomiting in cancer chemotherapy, reduc-
tion of intraocular pressure, appetite stimulation in
wasting syndromes, relief from muscle spasms/spastic-
ity in multiple sclerosis, and decreased intestinal motil-
ity (for reviews, see Pertwee, 2000b; 2001a,b, 2002; Pio-
melli et al., 2000). Untoward side effects accompanying
these therapeutic responses include alterations in cog-
nition and memory, dysphoria/euphoria, and sedation
(see Abood and Martin, 1992 for a review). Animal mod-
els that distinguish cannabinoid receptor activity in-
clude drug discrimination paradigms in rodents, pi-
geons, and nonhuman primates, a typical static ataxia
in dogs, and a tetrad of responses in rodents (hypother-
mia, analgesia, hypoactivity, and catalepsy; reviewed
under Section III.). Nerve-muscle tissue preparations
(e.g., mouse vas deferens and guinea pig small intestine)
respond to CB1 cannabinoid receptor agonists with an
inhibition of electrically evoked contraction, believed to
be the result of diminished release of neurotransmitter
(Section III.). CB2 mRNA has been found primarily in
cells of the immune system (Sections VII. and IX.). How-
ever, because CB1 receptor transcripts have also been
found in immune cells and tissues, it cannot be assumed
that immune responses are solely regulated by the CB2
cannabinoid receptor. Therapeutic applications or unto-
ward effects of cannabinoid receptor agonists in the im-
mune system remain unclear. CB1 and CB2 cannabinoid
receptors are both coupled to pertussis toxin-sensitive
Gi/o proteins to inhibit adenylyl cyclase activity and to

initiate the mitogen-activated protein kinase and imme-
diate early gene signaling pathway(s) (Section IV.). In
addition, CB1 receptors are coupled through Gi/o pro-
teins to various types of potassium and calcium channels
(Section IV.).

As to endogenous cannabinoid receptor agonists (en-
docannabinoids), it is likely that anandamide and
2-arachidonoylglycerol both function as neurotransmit-
ters or neuromodulators and that one of their roles may
be to serve as retrograde synaptic messengers (Section
VIII.). Thus, there is evidence that they are synthesized
by neurons “on demand”, that they can undergo depo-
larization-induced release from neurons, and that after
their release, they are rapidly removed from the extra-
cellular space by a membrane transport process yet to be
fully characterized (Di Marzo et al., 1998; Maccarrone et
al., 1998; Di Marzo, 1999; Piomelli et al., 1999; Hillard
and Jarrahian, 2000). Once within the cell, anandamide
is hydrolyzed to arachidonic acid and ethanolamine by
the microsomal enzyme, fatty acid amide hydrolase
(FAAH) (Di Marzo et al., 1998; Maccarrone et al., 1998;
Di Marzo, 1999; Ueda et al., 2000). 2-Arachidonoylglyc-
erol can also be hydrolyzed enzymically, both by FAAH
and by other hydrolases yet to be characterized (Di
Marzo et al., 1998; Di Marzo, 1999; Khanolkar and
Makriyannis, 1999). Mechanisms underlying the release
and fate of noladin ether remain to be identified.

This review summarizes the main features of the
structure, pharmacology, and function of cannabinoid
receptors that provide the basis for the classification of
these receptors. Because it does not set out to be a
comprehensive review of the literature, readers seeking
more detail should refer to the many relevant reviews in
the field (Table 1).

II. Classification of Ligands That Bind to
Cannabinoid Receptors

A. Cannabinoid Receptor Agonists

1. Classical Cannabinoids. This group of cannabi-
noids consists of ABC-tricyclic dibenzopyran derivatives
that are either compounds occurring naturally in the

TABLE 1
Recent reviews on cannabinoid receptors or endogenous cannabinoids

Coverage Authors

Pharmacology, coupling, localization Howlett, 1995a,b; Pertwee, 1997; Felder and Glass, 1998; Ameri,
1999

Agonists and antagonists Barth and Rinaldi-Carmona, 1999; Pertwee, 1999
Signal transduction Howlett and Mukhopadhyay, 2000
Localization and function of CB1 receptors in the central nervous system Elphick and Egertová, 2001
Molecular biology Onaivi et al., 1996; Matsuda, 1997
Molecular modeling Reggio, 1999
Regulation of immune response, coupling Berdyshev, 2000; Cabral, 2001
Biochemistry and pharmacology of the endocannabinoids Mechoulam et al., 1998; Di Marzo et al., 1999; Martin et al., 1999;

Palmer et al., 2000; Reggio and Traore, 2000
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Therapeutic potential Pertwee, 2000b; Piomelli et al., 2000; Porter and Felder, 2001

164 HOWLETT ET AL.

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


plant, C. sativa, or synthetic analogs of these com-
pounds. The most investigated of the classical cannabi-
noids have been �9-THC (Fig. 1), �8-THC (Fig. 1), 11-
hydroxy-�8-THC-dimethylheptyl (HU-210) (Fig. 2), and
desacetyl-L-nantradol (Fig. 2). Of these, �9-THC is the
main psychotropic constituent of cannabis. �8-THC is
also a psychotropic plant cannabinoid, whereas HU-210
and desacetyl-L-nantradol are synthetic cannabinoids.
All these cannabinoids have been demonstrated to elicit
cannabimimetic responses both in vivo and in vitro
(Johnson and Melvin, 1986; Howlett et al., 1988; Martin
et al., 1991; Martin et al., 1995; Pertwee, 1999).

�9-THC was first isolated from C. sativa in pure form
by Gaoni and Mechoulam (1964), who also elucidated its
structure. Its absolute stereochemistry was subse-
quently shown to be (6aR,10aR) (Mechoulam and Gaoni,
1967). �9-THC undergoes significant binding to canna-
binoid receptors at submicromolar concentrations, with
similar affinities for CB1 and CB2 receptors (Table 2). At
CB1 receptors, it behaves as a partial agonist, the size of
its maximal effect in several CB1 receptor-containing
systems falling well below that of cannabinoid receptor
agonists with higher relative intrinsic activity, such as
CP55940 and R-(�)-WIN55212 (Gérard et al., 1991;
Breivogel et al., 1998; Griffin et al., 1998; Pertwee,
1999). The relative intrinsic activity of �9-THC at CB2
receptors is even less than its relative intrinsic activity
at CB1 receptors (Bayewitch et al., 1996; Pertwee, 1999).
Indeed, in one set of experiments with CHO cells trans-
fected with hCB2 receptors, in which the cyclic AMP
assay was used, �9-THC failed to show any agonist
activity at all, behaving instead as a CB2 receptor an-
tagonist (Bayewitch et al., 1996). �9-THC has also been
reported to behave as an antagonist at CB1 receptors
both in the [35S]GTP�S assay performed with rat cere-
bellar membranes (Sim et al., 1996; Griffin et al., 1998)
and when the measured response was cannabinoid-in-

duced inhibition of glutamatergic synaptic transmission
in rat cultured hippocampal neurons (Shen and Thayer,
1999).

�8-THC has affinities for CB1 and CB2 receptors that
are similar to those of �9-THC (Table 2) and also resem-
bles �9-THC in behaving as a partial agonist at CB1
receptors (Matsuda et al., 1990; Gérard et al., 1991).
However, its synthetic analog, HU-210, has relative in-
trinsic activities at CB1 and CB2 receptors that match
those of the high-efficacy agonists, CP55940 and (�)-
WIN55212 (Slipetz et al., 1995; Song and Bonner, 1996;
Burkey et al., 1997; Griffin et al., 1998). HU-210 also has
affinities for CB1 and CB2 receptors that exceed those of
these other cannabinoids (Table 2). As a result, it is a
particularly potent cannabinoid receptor agonist. Its
pharmacological effects in vivo are also exceptionally
long lasting. The enhanced affinity and relative intrinsic
activity shown by HU-210 at cannabinoid receptors can
be largely attributed to the replacement of the pentyl
side chain of �8-THC with a dimethylheptyl group (see
also below).

Like THC and HU-210, most classical cannabinoids
that bind to CB1 have affinity for CB2 as well, without
major selectivity for either of these receptors. Thus, �9-
THC-dimethylheptyl, 5�-F-�8-THC, 11-OH-cannabinol,
11-OH-cannabinol-dimethylheptyl, and cannabinol-dim-
ethylheptyl-11-oic acid bind to both CB1 and CB2 recep-
tors without major differences in their Ki values, al-
though there are significant differential levels of potency
between the various compounds (Showalter et al., 1996;
Rhee et al., 1997). For example, the Ki for �9-THC is
about 40 nM for either receptor, whereas that for HU-
210 is about 100 times lower (Showalter et al., 1996).
Because binding values differ due to experimental con-
ditions, data from different laboratories may vary con-
siderably, but the general trend is apparently retained
(Table 2).

The first SAR determinations based on the �9-THC
structure were summarized by Edery et al. (1971), and
numerous reviews on this topic have since appeared
(Mechoulam and Edery, 1973; Pars et al., 1977; Razdan,
1986; Mechoulam et al., 1987; Mechoulam et al., 1992;
Martin et al., 1995). Most of the originally proposed
SARs have withstood the erosion of time, although ex-
ceptions have been noted and certain refinements have
had to be made. The SARs for classical cannabinoids at
CB1 receptors are summarized below (see Mechoulam et
al., 1992 for references). They were established by ani-
mal experimentation (overt behavior in rhesus monkeys
or baboons, dog static ataxia, the mouse ring test, spon-
taneous activity in rats and mice, and drug discrimina-
tion in THC-trained rats and pigeons, etc.; see Section
III.). These tests are all presumed to involve CB1 recep-
tor-mediated activity, and, indeed, a good correlation
has been established between some of the above animal
data and CB1 binding (Compton et al., 1993). However,
since receptor binding is only the first step in a signal

FIG 2. The structures of the synthetic classical cannabinoid receptor
agonists, HU-210 and desacetyl-L-nantradol, and of HU-211, the (�)-
enantiomer of HU-210.
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transduction pathway, lack of activation at some other
point of the mechanistic cascade may result in a discrep-
ancy between binding and activity. Thus, for example,
�8-THC-11-oic-dimethylheptyl acid binds well to the
CB1 receptor, but its inhibition of adenylyl cyclase is
poor (Rhee et al., 1997). Current SAR information about
classical cannabinoids is summarized below.

• A dihydrobenzopyran-type structure with a hy-
droxyl group at the C-1 aromatic position and an
alkyl group on the C-3 aromatic position seems to
be a requirement. Opening of the pyran ring gener-
ally leads to complete loss of activity if both phe-
nolic groups are present and are not substituted.
Thus, (�)-cannabidiol (Fig. 1) has markedly less

TABLE 2
Ki values of certain ligands for the in vitro displacement of [3H]CP55940, [3H]R-(�)-WIN55212, or [3H]HU-243 from CB1- and CB2-specific binding

sites

Ligand CB1 Ki Value CB2 Ki Value Reference

nM
CB1-selective ligands in order of decreasing CB1/CB2 selectivity

ACEA 1.4a,b �2,000a,b Hillard et al., 1999
O-1812 3.4b 3,870b Di Marzo et al., 2001a
SR141716A 11.8 13,200 Felder et al., 1998

11.8 973 Felder et al., 1995
12.3 702 Showalter et al., 1996
5.6 �1,000 Rinaldi-Carmona et al., 1994
1.98b �1,000b Rinaldi-Carmona et al., 1994

AM281 12b 4,200c Lan et al., 1999a
ACPA 2.2a,b 715a,b Hillard et al., 1999
2-Arachidonylglyceryl ether 21.2b �3,000 Hanus et al., 2001
LY320135 141 14,900 Felder et al., 1998
R-(�)-methanandamide 17.9a,b 868a,c Lin et al., 1998

20a,b 815c Khanolkar et al., 1996
Ligands without any marked CB1/CB2 selectivity

Anandamide 61a,b 1,930a,c Lin et al., 1998
89a 371a Showalter et al., 1996

543 1,940 Felder et al., 1995
71.7a,b 279a,b Hillard et al., 1999

252b 581 Mechoulam et al., 1995
2-Arachidonoylglycerol 472b 1,400 Mechoulam et al., 1995

58.3d 145d Ben-Shabat et al., 1998
HU-210 0.0608 0.524 Felder et al., 1995

0.1b 0.17 Rhee et al., 1997
0.73 0.22 Showalter et al., 1996

CP55940 5 1.8 Ross et al., 1999a
3.72 2.55 Felder et al., 1995
1.37b 1.37b Rinaldi-Carmona et al., 1994
0.58 0.69 Showalter et al., 1996
0.50a,b 2.80a,b Hillard et al., 1999

�9-THC 53.3 75.3 Felder et al., 1995
39.5b 40 Bayewitch et al., 1996
40.7 36.4 Showalter et al., 1996
80.3b 32.2 Rhee et al., 1997
35.3b 3.9b Rinaldi-Carmona et al., 1994

�8-THC 47.6b 39.3c Busch-Petersen et al., 1996
R-(�)-WIN55212 9.94b 16.2b Rinaldi-Carmona et al., 1994

4.4a,b 1.2a,b Hillard et al., 1999
1.89 0.28 Showalter et al., 1996

62.3 3.3 Felder et al., 1995
123 4.1 Shire et al., 1996a

CB2-selective ligands in order of increasing CB2/CB1 selectivity
JWH-015 383 13.8 Showalter et al., 1996
JWH-051 1.2b 0.032 Huffman et al., 1996
L-768242 1,917 12 Gallant et al., 1996
JWH-139 2,290b 14 Huffman et al., 1998
AM 630 5,152 31.2 Ross et al., 1999a
JWH-133 677b 3.4 Huffman et al., 1999
L-759633 1,043 6.4 Ross et al., 1999a

15,850 20 Gareau et al., 1996
L-759656 4,888 11.8 Ross et al., 1999a

�20,000 19.4 Gareau et al., 1996
HU-308 �10,000b 22.7 Hanus et al., 1999
SR144528 437 0.60 Rinaldi-Carmona et al., 1998

305b 0.30b Rinaldi-Carmona et al., 1998
�10,000 5.6 Ross et al., 1999a

DMH, dimethylheptyl.
a With phenylmethylsulfonyl fluoride.
b Binding to rat cannabinoid receptors on transfected cells or on brain (CB1) or spleen tissue (CB2).
c Binding to mouse spleen cannabinoid receptors.
d Species unspecified. All other data from experiments with human cannabinoid receptors.
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affinity for CB1 or CB2 receptors than �8- or �9-
THC (Tables 2 and 3).

• The aromatic hydroxyl group has to be free or es-
terified for significant CB1 activity. Blocking of the
hydroxyl group as an ether inactivates the mole-
cule. It is possible that the esters are actually inac-
tive but undergo hydrolysis to the free phenols in
vivo. Thus, �9-THC acetate, when tested in vitro,
shows negligible activity in biochemical reactions in
which �9-THC is active (Banerjee et al., 1975).

• The length of the chain on C-3 is of major impor-
tance. Some activity may be noted with propyl or
butyl substitution; �9-THC has a pentyl group. A
1�,1�-dimethylheptyl or 1�,2�-dimethyl heptyl side
chain strongly potentiates the cannabimimetic ac-
tivity of compounds that have low activity in the
n-pentyl series. An all carbon side chain on C-3 is
not an absolute requirement. The side chain may
contain an etheric oxygen (Loev et al., 1973).

• 11-Hydroxy THCs, which are major metabolites of
classical cannabinoids, are potent cannabimimet-
ics. Monohydroxylation on other positions of the
terpene ring also usually leads to active derivatives.
Dihydroxylation generally causes loss of activity.
Further oxidation of the C-11 hydroxyl group to a
carboxyl group causes inactivation.

• Hydroxylation of C-1 of the side chain on C-3 abol-
ishes activity. Hydroxylation at the other C-3 side
chain carbons retains activity, with hydroxylation
on C-3 of the side chain potentiating activity. Some
of these hydroxylated compounds have been de-
tected as major metabolites.

• Alkylation of the C-2 aromatic position retains ac-
tivity; alkylation on the C-4 position eliminates ac-
tivity. Electronegative groups, such as carbonyl or
carboxyl, at either C-2 or C-4 eliminate activity.

• The methyl group on C-9 is not an absolute require-
ment for activity; 9-nor-�9-THC and 9-nor-�8-THC
are active in the dog static ataxia test (Martin et al.,
1975).

• The double bond in the terpene ring is not essential
for activity (Mechoulam and Edery, 1973; Mechou-
lam et al., 1980), and, indeed, this ring may be
exchanged by some heterocyclic systems (Pars et
al., 1977; Lee et al., 1983).

Changes in the stereochemistry at various carbons of
THC-type molecules may cause significant changes in
pharmacological activity. The following tentative SARs
have been proposed (Mechoulam et al., 1992):

• The stereochemistry at 6a,10a in the natural active
cannabinoids is trans (6aR,10aR). A few cis isomers
have been tested and have shown very low activity.
However, cis compounds have not been studied over
a wide range of tests. (6aS,10aS) THCs are either
completely inactive or show very low activity both
in animal tests and in binding assays. Thus, al-
though the 6aR,10aR analog HU-210 is a highly
potent cannabinoid, its 6aS,10aS enantiomer (HU-
211), when well purified, has been shown to be less
active by more than three orders of magnitude
(Järbe et al., 1989; Howlett et al., 1990; Mechoulam
et al., 1991; Felder et al., 1992; Pertwee et al.,
1992). With �8- and �9-THC, the picture is less
clear. In the original publications, the synthetic
(�)-enantiomers of these cannabinoids were appar-
ently not completely separated from the corre-
sponding (�)-enantiomers, such that activity was
determined to be about 5 to 10% of the (�) com-
pounds (Mechoulam et al., 1992). For �9-THC, care-
ful purification led to a (�)-enantiomer with activ-
ity less than 1% of the (�)-enantiomer (Herkenham
et al., 1990; Matsuda et al., 1990; Felder et al.,
1992; Pertwee, 1997).

• Reduction of �9-THC leads to hexahydrocannabinol
epimers that are both active, the equatorial epimer
being considerably more active than the axial one
(Mechoulam and Edery, 1973; Mechoulam et al.,
1980). The same relationship is observed with the
11-hydroxyhexahydrocannabinols (Mechoulam et
al., 1991). Thus, it seems that an equatorial substi-
tution (i.e., one in which the C-9 methyl or hydroxy-
methyl group is in the plane of the cyclohexane
ring) is preferable to an axial one.

• Several hydroxylated metabolites of �9-THC and
�8-THC are known in both epimeric forms. For ex-
ample, 8�- and 8�-hydroxy-�9-THC and 7�- and
7�-hydroxy-�8-THC have been identified as rela-
tively minor metabolites, and slight differences in
activity between the epimers in each pair have been
observed (Mechoulam and Edery, 1973; Razdan,
1986).

Recent experiments have shown that stereochemical
changes can also affect the pharmacological activity of
cannabidiol-type molecules (Bisogno et al., 2001). More
specifically, (�)-CBD, (�)-5�-dimethylheptyl-CBD, and
(�)-7-OH-5�-dimethylheptyl-CBD each has significantly
greater affinity for CB1 and CB2 receptors than its cor-
responding (�)-enantiomer (Table 3). Unexpectedly,
these findings indicate that the stereochemical prereq-
uisites for binding to CB1 and CB2 receptors are not the
same in the cannabidiol series in which the (�) (3S,4S)

TABLE 3
CB1 and CB2 Ki values of stereoisomers of cannabidiol and of two

cannabidiol analogs

Ligand CB1 Ki
Value

CB2 Ki
Value Reference

nM
(�)-CBD 4,350 2,860 Showalter et al., 1996

�10,000 �10,000 Bisogno et al., 2001
(�)-CBD 842 203 Bisogno et al., 2001
(�)-5�-DMH-CBD �10,000 1,800 Bisogno et al., 2001
(�)-5�-DMH-CBD 17.4 211 Bisogno et al., 2001
(�)-7-OH-5�-DMH-CBD 4,400 671 Bisogno et al., 2001
(�)-7-OH-5�-DMH-CBD 2.5 44 Bisogno et al., 2001

DMH, dimethylheptyl.
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enantiomers show the greater cannabinoid receptor af-
finity as in the THC series in which the (�) (6aR,10aR)
enantiomers show the greater cannabinoid receptor af-
finity. It is also noteworthy that both (�)- and (�)-CBD
behave as vanilloid receptor agonists. Interestingly,
these two enantiomers are equipotent at vanilloid recep-
tors, each having an EC50 in the low micromolar range
(Bisogno et al., 2001).

Despite the lack of CB1/CB2 selectivity shown by the
first generation of classical cannabinoids, it has proved
possible to develop CB2-selective agonists from this se-
ries by making relatively minor changes to the THC
molecule (Gareau et al., 1996; Huffman et al., 1996;
Hanus et al., 1999). More specifically, Huffman et al.
(1996) discovered that removal of the phenolic OH group
from HU-210 to form 1-deoxy-11-OH-�8-THC-dimethyl-
heptyl (JWH-051; Fig. 3) greatly enhanced affinity for
CB2 receptors without significantly affecting CB1 affin-
ity (Table 2). More remarkable still is the high degree of
CB2 selectivity shown in binding experiments by JWH-
133, JWH-139, and HU-308 (Fig. 3) and by the Merck
Frosst compounds L-759633 and L-759656 (Fig. 3)
(Merck Frosst Canada Ltd., Kirkland, QC, Canada), all
of which bind to CB2 receptors at concentrations in the
low nanomolar range (Table 2). L-759633 and L-759656
are both equipotent and equiefficacious with the high
relative intrinsic activity agonist CP55940 at inhibiting
forskolin-stimulated cyclic AMP accumulation in CHO
cells expressing recombinant CB2 receptors (Ross et al.,
1999a). It has also been found that L-759656 (10 �M) is
inactive at CB1 receptors and that L-759633 behaves as
a weak agonist at these receptors, with an EC50 of about
10 �M (Ross et al., 1999a). Similarly, HU-308 and JWH-
133 are much more potent inhibitors of forskolin-stimu-
lated cyclic AMP production by CB2- than by CB1-trans-
fected CHO cells (Hanus et al., 1999; Pertwee, 2000a).

2. Nonclassical Cannabinoids. During the course of
their extensive SAR studies on the analgesic activity of

classical cannabinoids, researchers at Pfizer synthe-
sized new analogs lacking the dihydropyran ring of
THC. CP47497 (Fig. 4) represents the prototypical com-
pound of this series of AC-bicyclic and ACD-tricyclic
cannabinoid analogs (Melvin et al., 1984; Melvin et al.,
1993). Further developments ultimately led to the bicy-
clic analog, CP55940 (Fig. 4), which has become one of
the major cannabinoid agonists. Less lipophilic than
THC, [3H]CP55940 has allowed the discovery and char-
acterization of the CB1 cannabinoid receptor (Devane et
al., 1988), and it is still the most used radiolabeled
cannabinoid ligand. It binds to CB1 and CB2 receptors
with similar affinity (Table 2) and displays high activity
in vivo as well, being 10 to 50 times more potent than
�9-THC in the mouse tetrad model (Johnson and Melvin,
1986; Little et al., 1988). CP55940 behaves as a full
agonist for both receptor types, its maximal effects in
CB1 and CB2 receptor assay systems often matching or
exceeding the maximal effects of several other cannabi-
noid receptor agonists (Pacheco et al., 1993; Slipetz et
al., 1995; Burkey et al., 1997; Griffin et al., 1998; Ma-
cLennan et al., 1998; Pertwee, 1999). One potent ACD-
tricyclic nonclassical cannabinoid is CP55244 (Fig. 4),
which also displays signs of high affinity and high rela-
tive intrinsic activity, at least for CB1 receptors (Howlett
et al., 1988; Little et al., 1988; Herkenham et al., 1990;
Gérard et al., 1991; Griffin et al., 1998). Indeed,
CP55244 seems to have even higher CB1 affinity and
relative intrinsic activity than CP55940. It seems likely
that other nonclassical cannabinoids share the ability of
CP55940 to interact with CB2 receptors; however, this

FIG 3. The structures of the CB2-selective cannabinoid receptor ago-
nists, HU-308, L-759633, L-759656, JWH-133, JWH-139, and JWH-051.

FIG 4. The structures of the (�)-enantiomers of three nonclassical
cannabinoid receptor agonists: CP55940, CP47497, and CP55244.
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remains to be established. Like classical cannabinoids,
nonclassical cannabinoids with chiral centers exhibit
significant stereoselectivity, those compounds with the
same absolute stereochemistry as (�)-�9-THC at 6a and
10a (6aR,10aR) exhibiting the greater pharmacological
activity (Little et al., 1988; Herkenham et al., 1990;
Melvin et al., 1993).

3. Aminoalkylindoles. Until the early 1990s, all the
compounds known to act as cannabimimetics were struc-
turally derived from THC. The situation changed when
Sterling Winthrop researchers reported a new family of
aminoalkylindoles possessing cannabimimetic proper-
ties. This discovery resulted from the development of
structurally constrained analogs of pravadoline (Bell et
al., 1991; Pacheco et al., 1991), a series of compounds
with reduced ability to behave as nonsteroidal anti-in-
flammatory agents that inhibit cyclooxygenase but in-
creased ability to bind to the CB1 receptor (D’Ambra et
al., 1992; Eissenstat et al., 1995). R-(�)-WIN55212 (Fig.
5) is the most highly studied, commercially available
compound of the series. It displays high affinity for both
cannabinoid receptors, with moderate selectivity in fa-
vor of the CB2 receptor (Table 2), and exhibits high
relative intrinsic activity at both CB1 and CB2 receptors
(Bouaboula et al., 1997; Griffin et al., 1998; Tao and
Abood, 1998; Pertwee, 1999). In vivo, it produces the full
spectrum of pharmacological effects of THC and substi-
tutes totally for other cannabinoids in discriminative
stimulus tests, whereas its S-(�)-enantiomer,
WIN55212-3, lacks activity both in vivo and in vitro
(Martin et al., 1991; Compton et al., 1992a; Pacheco et
al., 1993; Slipetz et al., 1995; Wiley et al., 1995b; Pert-
wee, 1997; Pertwee, 1999). A [3H]R-(�)-WIN55212 as-
say has been developed, which has been used to charac-
terize and map cannabinoid receptors in rat brain
(Jansen et al., 1992; Kuster et al., 1993). There is evi-
dence that R-(�)-WIN55212 binds differently to the CB1
receptor than classical or nonclassical cannabinoids, al-
beit in a manner that still permits displacement by

R-(�)-WIN55212 of other known types of cannabinoid
from CB1 binding sites (Petitet et al., 1996; Song and
Bonner, 1996; Pertwee, 1997; Chin et al., 1998; Tao and
Abood, 1998; see also Section V.).

A number of cannabinoid receptor agonists based on
the aminoalkylindole structure have been prepared (see
Huffman, 1999). As a result, it has been possible to
demonstrate that activity is retained when the amino-
alkyl substituent is replaced by simple n-alkyl chains
(Huffman et al., 1994) or when the indole nucleus is
replaced by a pyrrole ring (Lainton et al., 1995; Wiley et
al., 1998) or an indene ring (Kumar et al., 1995). Inter-
estingly, some of these newer aminoalkylindoles have
been found to display significant selectivity for the CB2
receptor. Among these are JWH-015 (Fig. 5) and a series
of Merck Frosst compounds that includes L-768242 (Fig.
5) (Gallant et al., 1996; Showalter et al., 1996) (see also
Table 2).

4. Eicosanoids. The prototypic member of the eico-
sanoid group of cannabinoid receptor agonists is anan-
damide, which belongs to the 20:4, n-6 series of fatty acid
amides (Fig. 6). This is the first of five endogenous
cannabinoid receptor agonists to have been discovered in
mammalian brain and certain other tissues (Devane et
al., 1992b), the other compounds being homo-�-lino-
lenoylethanolamide and docosatetraenoylethanolamide
(Hanus et al., 1993), 2-arachidonoylglycerol (Mechoulam
et al., 1995; Sugiura et al., 1995), and noladin ether (Fig.
6) (Hanus et al., 2001). Of these endocannabinoids, the
most investigated to date have been anandamide and
2-arachidonoylglycerol.

Anandamide resembles �9-THC in behaving as a par-
tial agonist at CB1 receptors and in exhibiting less rel-
ative intrinsic activity at CB2 than CB1 receptors
(Bayewitch et al., 1995; Rinaldi-Carmona et al., 1996a;
Griffin et al., 1998; Pertwee, 1999). In line with this
classification as a CB2 receptor partial agonist, it shares
the ability of �9-THC (Section II.A.1.) to attenuate CB2
receptor-mediated responses to an agonist with higher
relative intrinsic activity (2-arachidonoylglycerol) (Gon-

FIG 5. The structures of three aminoalkylindole cannabinoid receptor
agonists: R-(�)-WIN55212, JWH-015, and L-768242. FIG 6. The structures of five endogenous cannabinoids.
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siorek et al., 2000). The anandamide molecule does not
contain any chiral centers; however, some of its syn-
thetic analogs do, one example being methanandamide,
the R-(�)-isomer, which has nine times greater affinity
for CB1 receptors than the S-(�)-isomer (Abadji et al.,
1994). Structural modification of the anandamide mole-
cule, which itself displays marginally higher affinity for
CB1 than CB2 receptors, has led to the development of
the first generation of CB1-selective agonists. Notable
examples are R-(�)-methanandamide (Khanolkar et al.,
1996; Lin et al., 1998), arachidonyl-2�-chloroethylamide
(ACEA), arachidonylcyclopropylamide (ACPA) (Hillard
et al., 1999), and O-1812 (Fig. 7) (Di Marzo et al., 2001a).
The CB1 selectivity of R-(�)-methanandamide stems
from the introduction of a methyl group on the 1� carbon
of anandamide, a structural change that also confers
greater resistance to the hydrolytic action of FAAH.
Neither ACEA nor ACPA show any sign of reduced sus-
ceptibility to enzymic hydrolysis by FAAH, presumably
because they lack a methyl substituent. Indeed, the ad-
dition of a methyl group to the 1�-carbon of ACEA mark-
edly decreases the susceptibility of this compound to
FAAH-mediated hydrolysis (Jarrahian et al., 2000).
However, another consequence of this addition is a re-
duction of about 14-fold in CB1 receptor affinity. O-1812
also possesses a 1�-methyl substituent, and it too ap-
pears to lack significant susceptibility to hydrolysis by
FAAH (Di Marzo et al., 2001a). Compared with anand-
amide, O-1812 exhibits higher affinity for the CB1 re-
ceptor, greater CB1/CB2 selectivity, and higher in vivo
potency as a CB1 receptor agonist.

The following SARs have been proposed by Martin et
al. (1999) for the production of CB1-like effects by the
anandamide series of compounds (see Di Marzo et al.,
1999; Palmer et al., 2000 for other recent reviews on the
anandamide SAR).

• Monosubstitution of the amide is a requirement for
activity. Substitution by an alkyl, fluoroalkyl, or

hydroxyalkyl increases activity, with a two- or
three-carbon chain being optimal. Branching of the
chain (methyl is optimal) retains activity.

• Substitution of the hydroxyl in anandamide by a
methyl ether, phenyl ether, or forming a phosphate
derivative of anandamide decreases activity,
whereas introduction of an amino or a carboxyl
group eliminates activity.

• Highest potencies are observed when structural
changes are carried out in both the arachidonoyl
and ethanolamide moieties of anandamide.

• The introduction of an alkyl substituent (methyl is
optimal) on the carbon � to the carbonyl or on the
carbon adjacent to the nitrogen increases metabolic
stability.

• The SAR of the end pentyl chain (C-16 to C-20) in
anandamide is very similar to that of classical canna-
binoids; however, by branching the chain, the effect
on pharmacological measures is not as dramatic in
the anandamide series as in the classical series.

• As a requirement for activity in the 20:x, n-6 series,
x has to be three or four; however, activity is
strongly reduced when n-6 is changed to n-3.

• Activity is retained by increasing the chain length
of anandamide by two methylenes (i.e., 22:4 and
n-6) but is dramatically reduced or eliminated if the
chain length is decreased by two methylenes.

Interpretation of SAR data for anandamide is compli-
cated by evidence firstly, that this fatty acid amide is
also an agonist for non-CB1, non-CB2 receptors, and
secondly, that some of its metabolites also have pharma-
cological activity (Adams et al., 1998; Craib et al., 2001;
Pertwee and Ross, 2002).

Turning now to 2-arachidonoylglycerol, there is evi-
dence that this compound is an agonist for both CB1 and
CB2 receptors (Stella et al., 1997; Sugiura et al., 1997b;
Ben-Shabat et al., 1998) and that it exhibits higher
relative intrinsic activity than anandamide at both CB1
and CB2 receptors (Pertwee, 1999; Gonsiorek et al.,
2000; Savinainen et al., 2001). Like anandamide,
2-arachidonoylglycerol has marginally higher affinity
for CB1 than CB2 receptors, its affinity for each of these
receptors matching that of anandamide when the latter
is protected from enzymic hydrolysis by phenylmethyl-
sulfonyl fluoride (Table 2). Rather few structure-activity
experiments have been performed with analogs of
2-arachidonoylglycerol thus far. The available data sug-
gest that 1(3)-arachidonoylglycerol has similar CB1 and
CB2 binding properties to 2-arachidonoylglycerol
(Mechoulam et al., 1998) and that it is about three times
more potent than 2-arachidonoylglycerol as a CB1 recep-
tor agonist in vitro (Stella et al., 1997). There is also
evidence that 2-palmitoylglycerol and 2-linoleoylglycerol
lack significant affinity for CB1 or CB2 receptors
(Mechoulam et al., 1995, 1998; Ben-Shabat et al., 1998)
and that 1(3)-palmitoylglycerol and 1(3)-stearoylglycerol

FIG 7. The structures of the CB1-selective synthetic cannabinoid re-
ceptor agonists, methanandamide, ACEA, ACPA, and O-1812.
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(10 �M) do not share the ability of 1(3)- and 2-arachido-
noylglycerol to behave as CB1 receptor agonists in vitro
(Stella et al., 1997).

As yet, few pharmacological experiments have been
performed with noladin ether. These have generated
data indicating that in contrast to anandamide and
2-arachidonoylglycerol, noladin ether has much higher
affinity for CB1 receptors than for CB2 receptors (Hanus
et al., 2001; Table 2). It also appears to have less relative
intrinsic activity at CB1 receptors than 2-arachidonoyl-
glycerol (Savinainen et al., 2001). As expected for a CB1
receptor agonist, noladin ether produces hypokinesia,
antinociception, catalepsy, and hypothermia in mice
(Hanus et al., 2001).

B. Cannabinoid Receptor Antagonists/Inverse Agonists

1. Diarylpyrazoles. The prototypic members of this
series of compounds are the Sanofi compounds
SR141716A, a potent CB1-selective ligand, and
SR144528, a potent CB2-selective ligand (Fig. 8). These
ligands readily prevent or reverse effects mediated re-
spectively by CB1 and CB2 receptors (Rinaldi-Carmona
et al., 1994, 1998). There are many reports that, by
themselves, SR141716A and SR144528 can act on CB1
or CB2 receptors to produce effects that are converse to
those produced by cannabinoid receptor agonists (Pert-
wee, 1999). Although these effects of the arylpyrazole
antagonists may be attributable to the inhibition of en-
dogenously produced agonists in the biological prepara-
tion, there is evidence that SR141716A and SR144528
can evoke inverse agonist responses (Bouaboula et al.,
1997; MacLennan et al., 1998; Pan et al., 1998; Rinaldi-
Carmona et al., 1998; Portier et al., 1999; Ross et al.,
1999a; Coutts et al., 2000; Sim-Selley et al., 2001). This
notion rests on the ability of the CB1 and CB2 receptors
to exhibit signal transduction activity in the absence of
endogenous or exogenous agonists (constitutive activi-

ty). As such, arylpyrazoles can behave as “inverse ago-
nists” to reduce the constitutive activity of these signal
transduction pathways. In some experiments,
SR141716A has been found to be more potent in blocking
the actions of CB1 receptor agonists than in eliciting
inverse cannabimimetic responses by itself (Gessa et al.,
1997, 1998a; Schlicker et al., 1997; Acquas et al., 2000;
Sim-Selley et al., 2001). Sim-Selley et al. (2001) have
obtained evidence that this may be because SR141716A
binds with relatively low affinity to a site on the CB1
receptor that is distinct from the agonist binding site for
which it has higher affinity. Their data also suggest that
it is this lower affinity site that is responsible for the
inverse agonist properties of SR141716A.

Two analogs of SR141716A that have also been used
to block CB1 receptor-mediated effects are AM251 and
AM281 (Fig. 8). AM281 has 350 times greater affinity for
CB1 than CB2 receptors (Table 2), and both analogs
share the ability of SR141716A to attenuate responses to
established cannabinoid receptor agonists (Gifford et al.,
1997b; Al-Hayani and Davies, 2000; Cosenza et al.,
2000; Izzo et al., 2000; Huang et al., 2001; Maejima et
al., 2001; Simoneau et al., 2001; Wilson and Nicoll,
2001). There are also reports that like SR141716A,
AM281 behaves as an inverse agonist when adminis-
tered alone (Gifford et al., 1997b; Cosenza et al., 2000;
Izzo et al., 2000). Current information about the SARs
for SR141716A-like compounds can be summarized as
follows.

• Disubstitution of the amide nitrogen of SR141716A
strongly decreases CB1 affinity (Lan et al., 1999b).

• Replacement of the amide function by ketone, alcohol,
or ether also greatly decreases CB1 binding affinity
(Wiley et al., 2001). Interestingly, some of the ether or
alkylamide derivatives display partial agonist activity
in mice in vivo. The highly hindered endo-fenchyl

FIG 8. The structures of the cannabinoid receptor antagonists/inverse agonists, SR141716A, AM251, AM281, SR144528, and LY320135.
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amide was used to design the CB2 receptor antagonist
SR144528 (Rinaldi-Carmona et al., 1998).

• Although the 2,4-dichlorophenyl substituent at the
1-position of the pyrazole ring seems to be optimal
(Barth and Rinaldi-Carmona, 1999), its replace-
ment by a 1-(5-isothiocyanato)-pentyl group de-
creases CB1 affinity only by a factor 4 (Howlett et
al., 2000). The phenyl group has been replaced by a
4-methylbenzyl group in SR144528 (Rinaldi-Car-
mona et al., 1998).

• In the 3-position of the pyrazole ring of SR141716A,
replacement of the N-aminopiperidine substituent
by the related 5- or 7-membered rings or by cyclo-
hexyl does not alter CB1 binding affinity, whereas
replacement by aminomorpholine or linear alkyl
chains leads to a reduction in CB1 affinity (Lan et
al., 1999b; Wiley et al., 2001).

• Compounds with methyl, bromine, or iodine in the
4-position of the pyrazole ring are approximately
equipotent, whereas replacement of methyl with
hydrogen at this position results in a 12-fold de-
crease in CB1 affinity (Wiley et al., 2001). Methyl
has been replaced by hydrogen at the 4-position of
the pyrazole ring in SR144528.

• In the 5-position of the pyrazole ring, replacement
of the 4-chloro substituent of the phenyl group by
other halogen or alkyl groups does not alter CB1
binding affinity (Thomas et al., 1998; Lan et al.,
1999b). However, replacement by nitro or amino
groups or displacement from the 4-(para) position to
the 2-position of the phenyl group leads to poor CB1
receptor ligands, and replacement of the aromatic
ring by alkyl groups abolishes CB1 affinity (Lan et
al., 1999b).

• A particularly potent compound in the SR141716A
series is AM251 (Fig. 8). This contains a para-iodo-
phenyl group at the 5-position, a piperidinyl carbox-
amide at the 3-position, and a 2,4-dichlorophenyl

group at the 1-position of the pyrazole ring (Lan et
al., 1999b).

2. Other Chemical Series. The most notable mem-
bers of these series are the substituted benzofuran,
LY320135, and the aminoalkylindole, 6-iodopravadoline
(AM630) (Fig. 9). LY320135, developed by Eli Lilly,
shares the ability of SR141716A to bind with much
higher affinity to CB1 than CB2 receptors (Table 2).
However, it has less affinity for CB1 receptors than
SR141716A and, at concentrations in the low micromo-
lar range, also binds to muscarinic and 5-HT2 receptors
(Felder et al., 1998). Like SR141716A, LY320135 not
only blocks the effects of CB1 receptor agonists (Felder et
al., 1998; Coruzzi et al., 1999; Holland et al., 1999;
Molderings et al., 1999; Christopoulos et al., 2001) but
also exhibits inverse agonist activity at some signal
transduction pathways of the CB1 receptor (Felder et al.,
1998; Christopoulos et al., 2001).

AM630 is a CB2-selective antagonist/inverse agonist.
Thus, experiments with hCB2-transfected CHO cell
preparations have shown that it potently reverses
CP55940-induced inhibition of forskolin-stimulated cy-
clic AMP production (EC50 � 128.6 nM) and that when
administered by itself, it enhances forskolin-stimulated
cyclic AMP production (EC50 � 230.4 nM) and inhibits
[35S]GTP�S binding (EC50 � 76.6 nM) (Ross et al.,
1999a). The inverse agonist activity of AM630 at CB2

receptors appears to be less than that of SR144528 (Ross
et al., 1999b). As to the ability of AM630 to interact with
CB1 receptors, results from several investigations, when
taken together, suggest that this ligand has mixed ago-
nist-antagonist properties and that it is a low-affinity
partial CB1 agonist (Pertwee et al., 1996; Hosohata et
al., 1997a,b; Pertwee, 1999; Ross et al., 1999a). There is
also one report that it can behave as a low-potency
inverse agonist at CB1 receptors (Landsman et al.,
1998). The ability of AM630 to behave as a cannabinoid
receptor antagonist was first noted in experiments with
the mouse isolated vas deferens, which yielded dissoci-
ation constant (KB) values for AM630 against �9-THC
and CP55940 of 14.0 and 17.3 nM, respectively (Pertwee
et al., 1995a). The pharmacological properties of AM630
in vivo have yet to be investigated. Two other aminoal-
kylindoles that have been found to attenuate responses
to cannabinoids in the mouse isolated vas deferens are
the Sterling Winthrop compounds, WIN56098 and
WIN54461 (Fig. 9). WIN56098 is the weaker antagonist,
its KB value for antagonism of �9-THC being 1.85 �M
(Pacheco et al., 1991). Corresponding potency values for
WIN54461 against R-(�)-WIN55212 and �9-THC have
been reported to be 159 and 251 nM, respectively (Eis-
senstat et al., 1995). The IC50 value of WIN54461 for
displacement of [3H]R-(�)-WIN55212 from rat cerebel-
lar membranes has been reported to be 515 nM by Eis-
senstat et al. (1995). However, they also found

FIG 9. The structures of the pravadoline analogs, AM630, WIN56098,
and WIN54461 (6-bromopravadoline).
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WIN54461 to lack detectable antagonist properties in
vivo.

One compound that is close to being a CB1/CB2 recep-
tor antagonist that lacks any agonist or inverse agonist
activity is the classical cannabinoid 6�-azidohex-2�-yne-
�8-THC (O-1184) (Fig. 10). In addition to a terminal N3
group, the C-3 alkyl side chain of this ligand contains a
carbon-carbon triple bond, a structural modification that
decreases relative intrinsic activity at CB1 and CB2 re-
ceptors without affecting CB1 or CB2 affinity (Ross et al.,
1999b). At CB1 receptors, O-1184 behaves as a high-
affinity, low-efficacy agonist, whereas at CB2 receptors,
it behaves as a high-affinity, low-efficacy inverse agonist
(Ross et al., 1998, 1999b). O-1238 (Fig. 10), in which the
carbon-carbon triple bond of O-1184 is replaced by a
carbon-carbon double bond, has higher efficacy than
O-1184 at CB1 receptors and behaves as a high-affinity,
low-efficacy partial agonist at CB2 receptors (Ross et al.,
1999b).

III. Bioassay

A. In Vivo Bioassay Systems

1. Introduction. Cannabinoids produce a complex ar-
ray of behavioral effects that have been characterized in
numerous animal species as well as in humans. Al-
though the diverse behavioral effects of cannabinoids
provide ample opportunity for quantitating the pharma-
cological actions of this class of compounds, they provide
a challenge to the elucidation of mechanism of action. A
major focus of cannabinoid research has been the iden-
tification of pharmacological effects that are receptor-
mediated. Until the recent development of a specific CB1
receptor antagonist, SARs provided the only in vivo ap-
proach for implicating receptor mechanisms. A major
goal of cannabinoid research is elucidating the mecha-
nisms responsible for the behavioral “high”. Of course,
the psychotomimetic effects can only be assessed in hu-

mans, which imposes severe restrictions on SAR studies.
Few cannabinoid analogs have sufficient toxicological
histories to qualify for human experimentation. The dif-
ficulties with human studies have necessitated close
examination of pharmacological effects in several ani-
mal species, many of which vary in their response to
cannabinoids. However, it has now been established
that numerous pharmacological effects are mediated via
the cannabinoid receptor. There are several fundamen-
tal principles that have guided this undertaking. One of
the most critical aspects of the choice is whether the
pharmacological measure in animals is representative of
cannabinoid effects in humans. Equally important is the
characterization of behavioral effects that are unique to
cannabinoids (i.e., mediated through cannabinoid recep-
tors). Finally, there are the practical aspects of selecting
pharmacological effects that can be quantitated and
readily obtained. Using these criteria, several pharma-
cological effects in vivo can be attributed to the activa-
tion of cannabinoid receptors.

2. Dog Static Ataxia. Walton et al. (1937) described
the effects of cannabinoids in dogs, which represented
one of the first animal models that was highly unique for
this class of compounds. These effects include sedation,
catalepsy, motor incoordination, and hyperexcitability;
however, it is the combination of these effects that
causes dogs to weave to and fro while remaining fixed in
one spot that led to the somewhat anomalous term “stat-
ic ataxia”. Again, the primary advantage of this model is
that these behaviors describe a highly specific profile for
cannabinoids that is not confused with that produced by
other behaviorally active compounds. These behaviors
can also be semiquantitated, and extensive SAR studies
have revealed both dramatic changes in potency with
modest changes in structure (Walton et al., 1937; Martin
et al., 1975; Beardsley et al., 1987) and enantioselectiv-
ity (Dewey et al., 1984; Little et al., 1989). The strength
of this model is that the results obtained correlate well
with psychoactivity. These findings strongly suggest
that cannabinoid-induced static ataxia is receptor-medi-
ated. Moreover, the CB1 receptor antagonist,
SR141716A, antagonizes the effects of �9-THC in this
model, a finding that strongly supports CB1 involvement
(Lichtman et al., 1998).

3. Overt Behavior in Monkeys. Mechoulam and col-
leagues (Edery et al., 1971) synthesized a large number
of cannabinoid analogs that allowed them to develop the
first framework for describing the structural features
that were critical for cannabinoid pharmacological activ-
ity. Their model was based on the gross observation of
overt behavioral effects in monkeys. The cannabinoids
produced sedation, ptosis, body sag, etc., which was rea-
sonably selective for cannabinoids and could be rated in
a semiquantitative fashion. They described a SAR that
also included enantioselectivity (Edery et al., 1971);
however, there have been no reports of reversal of these
effects by the CB1 receptor antagonist, SR141716A.

FIG 10. The structures of O-1184 and O-1238.
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4. Rat Drug Discrimination. Drug discrimination is
considered one of the most reliable means of predicting
whether test drugs produce subjective effects similar to
those of a known drug. Initially, an animal is trained to
press a lever for food reward and then subsequently
trained to press a specific lever for this reward when
under the influence of �9-THC and another lever when
any other drug is administered. Therefore, on test days,
which lever the animal chooses tells the experimenter
whether the test compound is perceived as THC-like or
not. Much of the early rat drug discrimination literature
for the cannabinoids was generated by Järbe’s labora-
tory (Järbe and Ohlin, 1977; Järbe and McMillan, 1979,
1980; Järbe et al., 1989; Järbe and Mathis, 1992). Rats
have also been trained to discriminate between
CP55940, a potent cannabinoid agonist, and vehicle
(Gold et al., 1992). These animals perceived �9-THC as
being like CP55940. Furthermore, the �9-THC-discrim-
inative cue has been shown to be selective for cannabi-
noids (Barrett et al., 1995).

SAR data have been obtained in drug discrimination
experiments conducted with the aminoalkylindoles
(Compton et al., 1992a), various other structurally dis-
similar cannabinoids (Wiley et al., 1995b), and anand-
amide (Wiley et al., 1995a). The results from all of these
studies are consistent with receptor affinity for the CB1
receptor. In addition, SR141716A was shown to block
the discriminative properties of rats trained on CP55940
(Wiley et al., 1995b) and on �9-THC (Wiley et al., 1995c).
Therefore, the discriminative properties of cannabinoids
appear to be mediated through CB1 receptors. More
importantly, there is an excellent correlation between
drugs that engender cannabinoid responding in the drug
discrimination paradigm and psychoactivity in humans
(Balster and Prescott, 1992).

5. Monkey Drug Discrimination. The above descrip-
tion of drug discrimination in rats applies to monkeys;
however, it has been argued that primates may provide
a more accurate reflection of cannabinoid behavioral
effects in humans. This model has provided reassuring
data that novel cannabinoids, such as CP55940 (Gold et
al., 1992), R-(�)-WIN55212 (Compton et al., 1992a), and
the endogenous ligand anandamide (Wiley et al., 1997),
are likely to produce cannabinoid behavioral effects in
humans. Establishing this fact is particularly crucial
since these compounds are being used widely as canna-
binoid probes. As with the rat drug discrimination,
SR141716A was shown to block the discriminative prop-
erties of �9-THC (Wiley et al., 1995c), thereby implicat-
ing CB1 receptors.

6. Mouse Tetrad Model. As mentioned earlier, can-
nabinoids are known to produce a wide range of phar-
macological effects that include hyperstimulation, seda-
tion, catalepsy, and several other depressant properties.
Individually, none of these effects can be considered
unique for cannabinoids, since all of these properties are
shared by numerous classes of centrally active agents.

Several years ago, it was discovered that i.v. adminis-
tration of cannabinoids in mice produced sedation, hy-
pothermia, antinociception, and catalepsy in the same
dose range and within the same time frame, so that all
four behaviors could be determined in the same animal
for each injection (Martin et al., 1987). Compounds ac-
tive in this composite model also produce effects in mod-
els that we traditionally consider to be highly predictive
of cannabinoid effects, such as drug discrimination
(Compton et al., 1993). Furthermore, the SAR studies in
the mouse tetrad model are consistent with affinity for
the CB1 receptor for CP55940 and related analogs (Little
et al., 1988; Compton et al., 1992b), enantiomers of dim-
ethylheptyl analogs of THC (Little et al., 1989), amino-
alkylindoles (Compton et al., 1992a; Huffman et al.,
1994), and endocannabinoids (Adams et al., 1998). It has
also been shown that SR141716A is highly effective in
blocking the effects of most cannabinoid analogs in the
mouse tetrad model (Rinaldi-Carmona et al., 1994;
Compton et al., 1996), confirming the involvement of
CB1 receptors. The one exception has been the endocan-
nabinoids (Adams et al., 1998). Although SR141716A
fails to block the effects of anandamide, it is capable of
blocking the effects of metabolically stable anandamide
analogs (Adams et al., 1998). However, some anandam-
ide analogs are effective in the mouse tetrad and appar-
ently bind with little affinity for the CB1 receptor (Di
Marzo et al., 2001a). There are several possible expla-
nations for these discrepancies, one of which is that the
mouse tetrad may not be selective for cannabinoids. If
future studies reveal that false positives can occur in
this model, then it will be necessary to verify the results
in this model with antagonism studies using a CB1-
selective antagonist.

7. Memory Models. The naturally occurring cannabi-
noids, as well as a wide range of synthetic compounds,
have been demonstrated to impair learning and memory
in rodents (Carlini et al., 1970), nonhuman primates
(Ferraro and Grilly, 1973), and humans (Abel, 1971).
�9-THC has been found to disrupt memory as assessed
in the delayed match-to-sample task (Heyser et al.,
1993), Lashley III maze (Carlini et al., 1970), and the
eight-arm radial maze (Nakamura et al., 1991). �9-THC,
CP55940, and R-(�)-WIN55212 all impaired working
memory in rats in the eight-arm radial maze and the
delayed nonmatch-to-sample task. Lichtman and Mar-
tin (1996) also found that �9-THC, CP55940, and R-(�)-
WIN55212, administered systemically, impaired spatial
memory in rats as assessed by the eight-arm radial
maze and retarded completion time. Direct injection of
CP55940 into the hippocampus impaired memory,
which appeared specific to cognition since no other phar-
macological effects were produced (Lichtman et al.,
1995). The effects of cannabinoid on memory in rats are
also blocked by SR141716A, providing strong evidence
that these effects are mediated through CB1 receptors
(Lichtman and Martin, 1996). Furthermore, the eight-
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arm radial maze has also been modified to evaluate
agents for their potential to enhance memory perfor-
mance. Under these conditions, SR141716A administra-
tion improved the performance of rats (Lichtman, 2000).
Another learning and memory paradigm that has be-
come increasingly popular in recent years is the Morris
water maze. Reference memory can be assessed by re-
quiring a well trained rat or mouse to navigate to a
hidden platform that always remains in the same loca-
tion, whereas working memory is assessed by requiring
the animal to learn a new platform location each session.
In this model, �9-THC disrupts working memory at
doses much lower than those required to interfere with
reference memory (Varvel et al., 2001). Additionally,
SR141716A reverses the effects of �9-THC, demonstrat-
ing CB1-mediated effects. This model is ideal for assess-
ing the SARs of cannabinoid agonists and antagonists.

8. Human Assays. Cannabinoids that have been
evaluated in humans include the active constituents in
marihuana, their metabolites, and some agents with
therapeutic potential (Razdan, 1986). Some of the ear-
lier studies demonstrated that SAR could be conducted
in humans (Perez-Reyes et al., 1972; Hollister, 1974).
These evaluations in humans provided the basis for
correlating psychotomimetic potency to potency in ani-
mal models. For the more than 20 cannabinoids that
have been evaluated in humans, an excellent correlation
exists between the cannabinoid subjective effects in hu-
mans and drug discrimination in laboratory animals
(Balster and Prescott, 1992). Since CB1 receptors have
been implicated in mediating drug discrimination, as
discussed above, it seems most plausible that the behav-
ioral effects in humans are mediated through the CB1
receptor. More conclusive evidence came from recent
studies demonstrating that SR141716A blocks cannabi-
noid subjective effects as well as cannabinoid-induced
tachycardia in humans (Huestis et al., 2001).

B. In Vitro Bioassay Systems

1. Binding Assays. As detailed elsewhere (Pertwee,
1997, 1999), the most widely used radiolabeled cannabi-
noid receptor probe is [3H]CP55940. Because CP55940
has approximately equal affinity for CB1 and CB2 bind-
ing sites (Table 2), displacement assays with
[3H]CP55940 that are directed at characterizing the
binding properties of novel unlabeled ligands are gener-
ally performed with membranes that are known to con-
tain either CB1 or CB2 receptors but not both receptor
types. These membranes are often obtained from cells
transfected with CB1 or CB2 receptors. An alternative
practice has been to use tissues that express dense pop-
ulations of CB1 or CB2 receptors naturally, usually brain
tissue for CB1 receptors and spleen tissue for CB2 recep-
tors. However, although brain tissue is largely popu-
lated with CB1 receptors, some CB2 receptors may also
be present on microglia (Kearn and Hillard, 1999; see
also Section VII.B.). Similarly, although most cannabi-

noid receptors in the spleen are CB2, some CB1 receptors
are expressed by this tissue as well (Bouaboula et al.,
1993; Galiègue et al., 1995; Ishac et al., 1996). The
possibility also exists that brain and/or spleen express
types of cannabinoid receptor yet to be identified. In-
deed, there is already some evidence that mammalian
brain, spinal cord, and peripheral nervous system can
express additional types of cannabinoid receptor (Sec-
tion XI.).

Other commercially available probes with high affin-
ity for cannabinoid receptors are [3H]SR141716A, which
is CB1-selective (Rinaldi-Carmona et al., 1996b; Table
2), [3H]HU-243, which binds more or less equally well to
both CB1 and CB2 receptor (Devane et al., 1992a;
Bayewitch et al., 1995), and [3H]R-(�)-WIN55212,
which has marginally greater affinity for CB2 than CB1
binding sites (Slipetz et al., 1995; Song and Bonner,
1996; see also Pertwee, 1999). Tritiated 11-hydroxy-�9-
THC-1�,1�-dimethylheptyl has also been synthesized
and used in cannabinoid binding assays (Thomas et al.,
1992). However, this ligand is not generally available.
Three other radiolabeled ligands have been developed as
potential probes for human single photon emission com-
puted tomography or positron emission tomography ex-
periments. These are 123I-labeled analogs of AM251 and
AM281 (Lan et al., 1996; Gatley et al., 1997; Gatley et
al., 1998) and an 18F-labeled analog of SR141716A
(SR144385) (Barth, 1998). Particularly promising single
photon emission computed tomography results have
been obtained from animal experiments with
[123I]AM281 (Gatley et al., 1998).

2. Inhibition of Cyclic AMP Production. The ability
of cannabinoid CB1 and CB2 receptor agonists to inhibit
basal or drug-induced cyclic AMP production is widely
exploited for the quantitative, functional bioassay of
cannabinoids in vitro (see Pertwee, 1997, 1999). Al-
though many types of receptor are negatively coupled to
adenylyl cyclase, it is still possible to achieve selectivity
by using a CB1 or CB2 receptor antagonist or by per-
forming assays with cells transfected with CB1 or CB2
receptors. Preparations that are particularly sensitive to
the inhibitory effect of cannabinoids on cyclic AMP pro-
duction are cultured cells transfected with CB1 or CB2
receptors, certain cultured cell lines that express CB1
receptors naturally, and CB1 receptor-containing mem-
brane preparations obtained from the brain (see Pert-
wee, 1997, 1999). Cells expressing CB2 receptors natu-
rally (e.g., mouse spleen cells and human lymphocytes)
are relatively insensitive to cannabinoid-induced inhibi-
tion of cyclic AMP production (Pertwee, 1997).

3. [35S]Guanosine-5�-O-(3-thiotriphosphate) Binding
Assay. This bioassay exploits the coupling of CB1 and
CB2 receptors to G proteins. It relies on the increase in
G protein affinity for GTP (and hence [35S]GTP�S) that
is triggered by the occupation by agonist molecules of
CB1 or CB2 receptors, the measured response being net
agonist-stimulated [35S]GTP�S binding to G protein.
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The assay can be performed with the same range of
tissue preparations that are used for the cyclic AMP
assay, again in the presence or absence of selective CB1
or CB2 antagonists. In addition, [35S]GTP�S is some-
times used in autoradiography experiments with tissue
sections (Sim et al., 1995; Selley et al., 1996; Breivogel et
al., 1997). To minimize [35S]GTP�S binding that occurs
in the absence of the agonist and so maximize agonist-
induced stimulation of binding, high amounts of GDP
and sodium chloride are usually added to the bioassay
system (Sim et al., 1995; Selley et al., 1996; Breivogel et
al., 1998). Since GDP decreases basal binding of
[35S]GTP�S to a greater extent than agonist-stimulated
binding, the overall consequence of adding GDP is an
increase in net agonist-stimulated [35S]GTP�S binding
(Breivogel et al., 1998). The extent to which net agonist-
stimulated [35S]GTP�S binding can be enhanced in this
way is limited by the concentration-related inhibitory
effect that GDP has on absolute levels of both basal and
agonist-stimulated binding. Thus, as GDP concentra-
tions are progressively raised, a point is eventually
reached at which [35S]GTP�S binding has fallen to a
level that is too low to be measured reproducibly (Selley
et al., 1996). The optimal GDP concentration appears to
be higher for the assay of agonists with high than with
low relative intrinsic activities, such that the ability of
an agonist with low relative intrinsic activity to increase
[35S]GTP�S binding above basal levels may be com-
pletely abolished when the concentration of GDP is in-
creased (Breivogel et al., 1998; Griffin et al., 1998).

The [35S]GTP�S assay is less sensitive than the cyclic
AMP and isolated tissue assays described under Sec-
tions III.B.2. or III.B.4. Presumably, this is because the
measured responses in these other bioassays are located
further along the signaling cascade than G protein, so
that there is greater signal amplification. The
[35S]GTP�S assay should be independent of any varia-
tions that may exist between tissues in the relative
contribution made by different G protein-coupled effec-
tor mechanisms. This is because it provides a total mea-
sure of G protein-mediated cannabinoid receptor activa-
tion rather than a measure of the activation of just one
particular cannabinoid receptor effector mechanism as
in the cyclic AMP assay. However, the [35S]GTP�S assay
will be affected by both the type and the relative abun-
dance of G protein � subunits. For example, if more Go�
is expressed than Gi�, the Go� response will dominate.
Also, some G protein � subunits, such as Gq/11, are
difficult to detect in the [35S]GTP�S assay.

4. Inhibition of Electrically Evoked Contractions of
Isolated Smooth Muscle Preparations. Smooth muscle
preparations most often used for the bioassay of canna-
binoids are the mouse isolated vas deferens and the
myenteric plexus-longitudinal muscle preparation of
guinea pig small intestine. These bioassays, which are
particularly sensitive, rely on the ability of cannabinoid
receptor agonists to act through CB1 receptors to inhibit

electrically evoked contractions (Pertwee et al., 1992;
Pertwee, 1997, Pertwee, 2001a). The CB1 receptors are
located on prejunctional neurons and mediate inhibition
of electrically evoked contractile transmitter release
(Coutts and Pertwee, 1997; Pertwee, 1997; Schlicker and
Kathmann, 2001). It is also possible that CB2-like recep-
tors (see Section XI.) share the ability of CB1 receptors to
mediate inhibition of evoked contractions of the mouse
vas deferens (Griffin et al., 1997). Several types of non-
cannabinoid receptor can mediate inhibition of evoked
contractions of the mouse vas deferens or myenteric
plexus-longitudinal muscle preparation. Consequently,
to achieve selectivity, it is necessary to establish the
susceptibility of agonists to antagonism by a selective
CB1 antagonist, such as SR141716A (Pertwee et al.,
1995b, 1996).

C. Practical Difficulties

One practical difficulty associated with the bioassay of
cannabinoids both in vivo and in vitro is the high li-
pophilicity and low water solubility of these compounds,
as this necessitates the use of nonaqueous vehicles. In-
deed, it was this difficulty that prompted the develop-
ment of the water-soluble cannabinoid receptor agonist
O-1057 (Pertwee et al., 2000). Commonly used vehicles
for the in vivo or in vitro administration of cannabinoid
receptor agonists and antagonists include ethanol, di-
methyl sulfoxide, polyvinylpyrrolidone, Tween 80, Cre-
mophor, Emulphor, and bovine serum albumin (BSA).
These are used singly or in combination, either by them-
selves or mixed with water or saline. Results obtained
using such vehicles should be interpreted with caution
because the vehicles may themselves produce pharma-
cological changes, for example, by perturbing membrane
phospholipids. Consequently, vehicle control experi-
ments are vital. These vehicles may also affect the ap-
parent potencies of cannabinoid receptor ligands. In-
deed, as detailed elsewhere (Pertwee, 1997), there are
reports that [3H]CP55940 binding to CB1-containing
membranes can be markedly influenced by the concen-
tration of BSA used for cannabinoid solubilization. For
example, in binding experiments with rat brain sections,
Herkenham et al. (1991) found the apparent dissociation
constant of [3H]CP55940 to be 2.6 nM in the presence of
1% BSA but 15 nM in the presence of 5% BSA. For
endocannabinoids, a second practical difficulty is that
they are substrates both of membrane transporters and
of hydrolytic enzymes such as FAAH (Section I.). It is for
this reason that experiments with anandamide are often
performed in the presence of a FAAH inhibitor, such as
the general protease inhibitor phenylmethylsulfonyl flu-
oride (see Pertwee, 1997). Alternative strategies have
been to perform experiments with FAAH�/� mice (Cra-
vatt et al., 2001) or with analogs that are more resistant
than anandamide to enzymic hydrolysis, for example,
R-(�)-methanandamide (Section II.).
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IV. Cellular Signal Transduction

Agonist stimulation of CB1 and CB2 cannabinoid re-
ceptors activates a number of signal transduction path-
ways via the Gi/o family of G proteins (see reviews by
Howlett, 1995a; Pertwee, 1997, 1999). CB1 receptor sig-
naling through G proteins has been demonstrated by
[35S]GTP�S binding using rat brain membranes and
brain slices (see Section III.B. for references). For CB1
receptor-stimulated [35S]GTP�S binding, anandamide
and R-(�)-methanandamide are partial agonists com-
pared with R-(�)-WIN55212, levonantradol, CP55940,
2-arachidonoylglycerol, and desacetyl-L-nantradol (see
Howlett and Mukhopadhyay, 2000 for review and orig-
inal references). In CHO cells expressing recombinant
hCB2 receptors, [35S]GTP�S binding was stimulated by
anandamide as a partial agonist compared with HU-
210, whereas 2-arachidonoylglycerol was a full agonist
(Hillard et al., 1999; Gonsiorek et al., 2000). Inverse
agonist activity exhibited by SR141716A and analogs
has been most clearly demonstrated by a decrement in
[35S]GTP�S binding to G proteins in brain preparations
(Landsman et al., 1997; Meschler et al., 2000).

Free Gi� proteins regulate adenylyl cyclase, leading to
an inhibition of cyclic AMP production. The consequent
damping of phosphorylation by protein kinase A may
modulate signaling pathways, such as that of ion chan-
nels and focal adhesion kinase. It is believed that free ��
dimers mediate the regulation of ion channels, mitogen-
activated protein kinase (MAPK), and phosphatidylino-
sitol-3-kinase (PI3K). However, it is not clear which
Gi/o� subtypes might be associated with the �� dimers in
heterotrimers responsible for those responses. It should
be noted that values of potency and relative intrinsic
activity may differ for the various signal transduction
pathways. The relative intrinsic activities of various
cannabinoid receptor agonists to evoke a response via G
proteins has been discussed by Breivogel et al. (1998)
and Kearn et al. (1999). This section will summarize the
most well characterized signaling pathways for canna-
binoid receptors.

A. Regulation of Adenylyl Cyclase

Inhibition of adenylyl cyclase has been characterized
in brain tissue and neuronal cells expressing CB1 and in
human lymphocytes and mouse spleen cells expressing
CB2 receptors (see Howlett and Mukhopadhyay, 2000
and Pertwee, 1997, 1999 for review). The finding that
cultured cell lines that express recombinant CB1 or CB2
receptors lead to inhibition of cyclic AMP production is
supportive evidence that these receptor types can initi-
ate this response (Matsuda et al., 1990; Felder et al.,
1992; Vogel et al., 1993; Slipetz et al., 1995). CB1 and
CB2 receptor-mediated inhibition of adenylyl cyclase is a
pertussis toxin-sensitive cellular event, indicating the
requirement for Gi/o proteins (Howlett et al., 1986;
Felder et al., 1992; Pacheco et al., 1993; Vogel et al.,

1993). Adenylyl cyclase activity in N18TG2 membranes
possessing endogenous CB1 receptors was inhibited by
anandamide, R-(�)-methanandamide, and 2-arachido-
noylglycerol, with relative intrinsic activities similar to
desacetyl-L-nantradol, R-(�)-WIN55212, or CP55940
(Childers et al., 1994; Pinto et al., 1994; Howlett and
Mukhopadhyay, 2000). In CHO cells expressing CB2
receptors, anandamide and R-(�)-methanandamide par-
tially inhibited forskolin-stimulated cyclic AMP accumu-
lation at high concentrations (Felder et al., 1995; Hillard
et al., 1999; Gonsiorek et al., 2000). The data suggest
that anandamide is an agonist with low relative intrin-
sic activity for CB2 receptor- compared with CB1 recep-
tor-mediated cyclic AMP production. 2-Arachidonoyl-
glycerol has been found to behave as a full agonist when
the measured effect is inhibition of forskolin-stimulated
cyclic AMP accumulation in CHO cells expressing re-
combinant CB2 receptors (Gonsiorek et al., 2000).

Stimulation of adenylyl cyclase has been reported in
pertussis toxin-treated cells, suggesting that in the ab-
sence of functional Gi/o coupling, the CB1 receptor can
activate Gs (Glass and Felder, 1997). The isoform of
adenylyl cyclase expressed in cells is predicted to be a
major determinant of the outcome of cannabinoid recep-
tor activation, as demonstrated by studies in Vogel’s
laboratory (Rhee et al., 1998). These researchers found
that expression of CB1 or CB2 cannabinoid receptors in
a host cell coexpressing adenylyl cyclase isoforms 1, 3, 5,
6, or 8 resulted in inhibition of cyclic AMP accumulation.
However, coexpression of either cannabinoid receptor
type with adenylyl cyclase isoforms 2, 4, or 7 resulted in
stimulation of cyclic AMP accumulation.

B. Regulation of Ion Channels

1. Ion Channel Modulation by Protein Kinase A. CB1
cannabinoid receptors activate A-type potassium cur-
rents in rat hippocampal cells (Childers and Deadwyler,
1996). This response is due to the modulation of the
intracellular cyclic AMP concentrations, thereby regu-
lating the net phosphorylation of ion channel proteins by
protein kinase A.

2. K� Channel Activation. Exogenously expressed
CB1 receptors couple to the inwardly rectifying Kir chan-
nels in AtT-20 pituitary tumor cells in a pertussis toxin-
sensitive manner, indicating that Gi/o proteins serve as
transducers of the response (Henry and Chavkin, 1995;
Mackie et al., 1995). Anandamide was a full agonist
compared with R-(�)-WIN55212 in the Kir current acti-
vation in the AtT-20 cell model (Mackie et al., 1995);
however, it was a partial agonist in Xenopus laevis oo-
cytes coexpressing the CB1 receptor and G protein-cou-
pled inwardly rectifying potassium channel 1 and G
protein-coupled inwardly rectifying potassium channel 4
channels (McAllister et al., 1999).

3. Inhibition of Voltage-Gated L, N, P, and Q Ca2�

Channels. L-type Ca2� channels were inhibited by
anandamide and R-(�)-WIN55212 in cat brain arterial
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smooth muscle cells, which express mRNA for the CB1
receptor (Gebremedhin et al., 1999). The cannabinoid-
evoked inhibition of L-type Ca2� currents was blocked
by pertussis toxin and SR141716A and was pharmaco-
logically correlated with vascular relaxation in cat cere-
bral arterial rings (Gebremedhin et al., 1999).

The CB1 receptor inhibits N-type voltage-gated Ca2�

channels in neuronal cells through Gi/o protein (Caul-
field and Brown, 1992; Mackie and Hille, 1992; Felder et
al., 1993; Mackie et al., 1993; Pan et al., 1996). Anand-
amide was a partial agonist compared with R-(�)-
WIN55212 or CP55940 (Mackie et al., 1993). 2-Arachi-
donoylglycerol and analogs inhibited the depolarization-
evoked rise in intracellular Ca2� as detected by Fura-2
in differentiated NG108-15 cells (Sugiura et al., 1997b).
Anandamide was a partial agonist, and arachidonic acid
was without effect.

R-(�)-WIN55212 and anandamide were both full ago-
nists to inhibit Q-type Ca2� currents in AtT-20 pituitary
cells expressing recombinant CB1 receptors (Mackie et
al., 1995). This response was pertussis toxin-sensitive,
implicating Gi/o proteins as transducers. Anandamide
inhibited P/Q-type Ca2� fluxes (i.e., blocked by �-aga-
toxin-IVa) as detected by Fura-2 fluorescence in rat cor-
tical and cerebellar brain slices (Hampson et al., 1998).
This response was blocked by SR141716A and pertussis
toxin, indicating mediation by CB1 receptors and Gi/o
proteins. Neither R-(�)-WIN55212 nor anandamide
were able to inhibit Q-type Ca2� currents in AtT-20 cells
expressing CB2 receptors, indicating that the CB2 recep-
tor fails to couple to this current (Felder et al., 1995).

C. Regulation of Intracellular Ca2� Transients

Cannabinoid agonists evoked a rapid, transient increase
in intracellular free Ca2� in undifferentiated N18TG2 neu-
roblastoma and NG108-15 neuroblastoma-glioma hybrid
cells (Sugiura et al., 1996, 1997a). This response was
blocked by SR141716A, confirming mediation by the CB1
receptor (Sugiura et al., 1996, 1999). For this response,
HU-210, CP55940, �9-THC, anandamide, and R-(�)-
methanandamide behaved as partial agonists compared
with 2-arachidonoylglycerol or 1(3)-arachidonoylglycerol
(Sugiura et al., 1996, 1997a, 1999). The 2-arachidonoylg-
lycerol-evoked intracellular Ca2� transient was blocked by
pertussis toxin and by a phospholipase C inhibitor, sug-
gesting a mechanism whereby a receptor-mediated release
of Gi/o �� subunits might activate phospholipase C�, lead-
ing to inositol-1,4,5-triphosphate (IP3) release (Sugiura et
al., 1996, 1997a). An interaction between CB1 cannabinoid
receptors and phospholipase C was shown in cultured cer-
ebellar granule neurons, in which cannabinoid agonists
augmented the Ca2� signal in response to NMDA receptor
stimulation or K� depolarization (Netzeband et al., 1999).
The response was antagonized by SR141716A, pertussis
toxin, and the phospholipase C inhibitor 1-[6-((17�-3-
methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-

pyrrole-2,5-dione (Netzeband et al., 1999). The source of
the released Ca2� was a caffeine-sensitive and IP3 recep-
tor-sensitive pool. In contrast, studies of CHO cells ex-
pressing recombinant CB1 or CB2 receptors were unable to
detect release of IP3 or phosphatidic acid in response to
anandamide or R-(�)-WIN55212, under conditions in
which other exogenously expressed receptors coupled to
phospholipases C could evoke IP3 release (Felder et al.,
1992, 1995). This suggests that the cellular milieu may be
a factor in this CB1 receptor signal transduction pathway.

D. Regulation of Focal Adhesion Kinase, Mitogen-
Activated Protein Kinase, Phosphatidylinositol-3-
Kinase, and Ceramide Metabolism

1. Signal Transduction via Focal Adhesion Kinase. Can-
nabinoid agonists stimulated tyr-phosphorylation of focal ad-
hesion kinase (FAK) (pp125) in hippocampal slices (Derkin-
deren et al., 1996). The response could be blocked with
SR141716A and pertussis toxin as evidence for mediation by
CB1 receptors and Gi/o. The tyr-phosphorylation of FAK in
brain slices was reversed by 8-Br-cyclic AMP and mimicked
by protein kinase A inhibitors, suggesting that Gi-mediated
inhibition of adenylyl cyclase is integral to this pathway (Der-
kinderen et al., 1996). FAK is important for integrating cy-
toskeletal changes with signal transduction events, perhaps
playing a role in synaptic plasticity.

2. Signal Transduction via Mitogen-Activated Protein
Kinase and Phosphatidylinositol-3-Kinase. MAPK
(p38) was activated in CHO cells expressing recombi-
nant CB1 receptors (Rueda et al., 2000) and in human
umbilical vein endothelial cells possessing endogenous
CB1 receptors (Liu et al., 2000). MAPK (p42/p44) was
activated via CB1 receptors in U373MG astrocytic cells
and in host cells expressing recombinant CB1 receptors
(Bouaboula et al., 1995b). In C6 glioma and primary
astrocyte cultures, �9-THC and HU-210 activated
MAPK (p42/p44) (Sánchez et al., 1998; Guzmán and
Sánchez, 1999). These effects were mediated by CB1
receptors and Gi/o proteins inasmuch as they were
blocked by SR141716A and pertussis toxin. In WI-38
fibroblasts, anandamide promoted tyr-phosphorylation
of extracellular signal-regulated kinase 2 and increased
MAPK activity (Wartmann et al., 1995). In some cells,
CB1 receptor signaling via MAPK was blocked by wort-
mannin (Bouaboula et al., 1995b; Wartmann et al.,
1995), implicating PI3K as a mediator along this path-
way. �9-THC promoted Raf-1 translocation to the mem-
brane and phosphorylation in cortical astrocytes
(Sánchez et al., 1998). From these studies, one could
envisage a pathway whereby CB1 receptor-mediated Gi/o
release of �� subunits leads to activation of PI3K, re-
sulting in tyrosine phosphorylation and activation of
Raf-1, and subsequent MAPK phosphorylation. Regard-
ing functions regulated by the MAPK pathway,
CP55940-stimulated MAPK activity led to activation of
the Na�/H� exchanger in CHO cells stably expressing
the CB1 receptor (Bouaboula et al., 1999). Anandamide-
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stimulated MAPK activity was associated with phos-
phorylation of cytoplasmic phospholipase A2, release of
[3H]arachidonic acid, and subsequent synthesis of pros-
taglandin E2 in WI-38 cells (Wartmann et al., 1995).

In C6 glioma and primary astrocyte cultures, �9-THC
and HU-210 increased glucose metabolism and glycogen
synthesis (Guzmán and Sánchez, 1999). The activation
of Gi/o and PI3K by cannabinoid agonists led to activa-
tion of protein kinase B/Akt (isoform IB) in U373MG
astrocytic cells and in CHO cells expressing recombinant
CB1 receptors (Gómez del Pulgar et al., 2000). Protein
kinase B phosphorylation and inhibition of glycogen syn-
thase kinase-3 could account for increased glycogen syn-
thase activity and increased glycolysis in responsive
cells.

MAPK was activated in cultured human promyelo-
cytic HL-60 cells possessing endogenous CB2 receptors
and in CHO cells expressing recombinant CB2 receptors
(Bouaboula et al., 1996). However, cannabinoid drugs
failed to activate protein kinase B in HL-60 cells, sug-
gesting that a PI3K mechanism may not be regulated by
CB2 receptors in this model (Gómez del Pulgar et al.,
2000).

3. Signal Transduction via Ceramide. Studies with
primary astrocyte cultures showed that anandamide,
�9-THC, and HU-210 increased glucose metabolism,
phospholipid synthesis, and glycogen synthesis via an
SR141716A-inhibitable but pertussis toxin-resistant
mechanism (see reviews by Guzmán and Sánchez, 1999
and Guzmán et al., 2001 for commentary and original
references). Data supported a pathway that utilizes the
adaptor protein Fan (factor associated with neutral
sphingomyelinase) to couple CB1 receptor stimulation to
sphingomyelinase activation, release of ceramide, and
subsequent activation of the Raf-1/MAPK cascade
(Sánchez et al., 2001). In a second mechanism, ceramide
activated carnitine palmitoyltransferase I within astro-
cyte mitochondrial membranes to stimulate ketogenesis
and fatty acid oxidation (Blázquez et al., 1999).

Prolonged (days) elevation of intracellular ceramide
has been associated with events leading to decreased
proliferation and apoptosis in glioma cells (see Guzmán
et al., 2001 for review). This response was initiated by
chronic stimulation of both CB1 and CB2 receptors on a
susceptible C6 glioma strain and involves increased cer-
amide synthesis via serine palmitoyltransferase, Raf-1
activation, and MAPK (p42/44) activation.

E. Immediate Early Gene Expression and Protein
Synthesis Regulation

MAPK activation can be linked to expression of im-
mediate early genes, as has been demonstrated for
Krox-24 expression mediated by CB1 receptors in
U373MG human astrocytoma cells (Bouaboula et al.,
1995a). Krox-24 expression was stimulated via CB2 re-
ceptors in HL-60 promyelocytes (Bouaboula et al., 1996).
Intracerebroventricular injection of anandamide evoked

an increase in c-FOS immunoreactive protein in rat
brain (Patel et al., 1998). Cannabinoid receptor agonists
activated c-Jun N-terminal kinase (JNK1 and JNK2) in
CHO cells expressing recombinant CB1 receptors
(Rueda et al., 2000). The pathway for JNK activation
involves Gi/o proteins, PI3K, and Ras (Rueda et al.,
2000).

The suppression of prolactin receptor and trk nerve
growth factor receptor synthesis by anandamide in hu-
man breast cancer MCF-7 cells may be due to a CB1
receptor-mediated decrease in protein kinase A and in-
crease in MAPK activities (De Petrocellis et al., 1998;
Melck et al., 1999). This CB1-mediated response ulti-
mately led to an antiproliferative effect on the cells.

F. Regulation of Nitric Oxide Synthase

Nitric oxide (NO) production was stimulated by anan-
damide in rat median eminence fragments (Prevot et al.,
1998) and by anandamide or CP55940 in leech or muscle
ganglia (Stefano et al., 1997a,b; 1998). Responses in
these tissues were blocked by SR141716A, implicating
the involvement of a CB1-like receptor. Antagonism by
NG-nitro-L-arginine methyl ester suggests that a signal
transduction pathway must lead to regulation of NOS
(Prevot et al., 1998). Because both anandamide and the
NO-generating agent S-nitroso-N-acetyl-penicillamine
could inhibit the release of preloaded radiolabeled dopa-
mine from invertebrate ganglia, a role for NO in medi-
ating the effects of anandamide on neurotransmitter
release was implied (Stefano et al., 1997a).

Anandamide and HU-210 stimulated NO production
in human saphenous vein segments (Stefano et al.,
1998), cultured human arterial endothelial cells (Fimi-
ani et al., 1999; Mombouli et al., 1999), cultured human
umbilical vein endothelial cells (Maccarrone et al.,
2000), and human monocytes (Stefano et al., 1996).
These responses were blocked by SR141716A, implicat-
ing CB1 receptors. In cultured human arterial endothe-
lial cells, NO generation was preceded by a rapid in-
crease in intracellular Ca2� concentration (Fimiani et
al., 1999; Mombouli et al., 1999), consistent with the
stimulation of a Ca2�-regulated constitutive NOS. In
saphenous vein endothelia, the generation of NO re-
quired Ca2� in the perfusate, suggesting that an extra-
cellular source of Ca2� might be required for NOS acti-
vation (Stefano et al., 1998). In human vein arterial
cells, generation of NO and peroxynitrite was associated
with activation of the anandamide transporter (Maccar-
rone et al., 2000).

Anandamide inhibited induction of inducible NOS
(iNOS) by lipopolysaccharide plus interferon-� in saphe-
nous vein endothelium (Stefano et al., 1998) and neona-
tal mouse astrocytes (Molina-Holgado et al., 1997). The
modulation of iNOS induction by anandamide required
NO production, and this was blocked by SR141716A,
implicating the CB1 receptor. The response could be
mimicked by S-nitrosyl-N-acetyl-penicillamine, suggest-
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ing that transient NO production (presumably via a
constitutive type of NOS) regulated the induction of
iNOS (Stefano et al., 1998). Because both anandamide
and S-nitrosyl-N-acetyl-penicillamine diminished the
cyclic AMP accumulation evoked by lipopolysaccharide
plus interferon-�, these authors suggested that the
mechanism for suppression of iNOS induction involved
the inhibition of cyclic AMP production by NO (Stefano
et al., 1998). It is well recognized that NO reversibly
inhibits adenylyl cyclase isoforms 5 and 6 by a cys-
nitrosylation mechanism (Tao et al., 1998; McVey et al.,
1999), providing a basis for postulating this mechanism.

The attenuation of iNOS induction by �9-THC in RAW
264.7 cells implicated the CB2 receptor and a mecha-
nism involving a decrement in cyclic AMP (Jeon et al.,
1996). In mouse peritoneal macrophages, the attenua-
tion of iNOS induction by a series of cannabinoid drugs
exhibited a relative order of potency that did not resem-
ble the expected profile for CB1 or CB2 receptors (Coffey
et al., 1996).

V. Molecular Biology of Cannabinoid Receptors

Although the existence of cannabinoid receptors was
known before their cloning, the receptors presently
known as CB1 and CB2 cannabinoid receptors were
cloned as part of strategies based on conserved sequence
motifs to clone G protein-coupled receptors in general
rather than specifically trying to clone cannabinoid re-
ceptors. It was only after extensive screening of an ex-
pressed rat brain cDNA clone that it was identified as
the CB1 cannabinoid receptor (Matsuda et al., 1990).
Human (Gérard et al., 1990, 1991) and mouse homo-
logues (Chakrabarti et al., 1995) have since been re-

ported. They encode proteins of 472 (human) or 473 (rat,
mouse) amino acids, including a rather long and well
conserved amino terminal extracellular domain of 116 to
117 residues (Fig. 11). Overall, these three receptors
have 97 to 99% amino acid sequence identity. A recent
sequence-based phylogenetic study of placental mam-
mals (Murphy et al., 2001) included partial sequences
from 60 placental mammals covering amino acids 53 to
381 of the rat or mouse sequence (i.e., from the middle of
the amino terminal domain to the beginning of the sev-
enth transmembrane domain). There are 24 positions of
329 where more than one sequence differs from the
consensus (Table 4). Seven are highly variable positions
(67–68, 75–79, and 94) where more than 25% of the
sequences differ from the consensus, all of which occur
in the amino terminal domain. Except for positions 75 to
79, where the variation is concentrated in Rodentia and
Lagomorpha, these variations are broadly distributed
across phylogenetic groups. Of potentially greater phar-
macological significance are four positions (176, 187,
259, and 271) at which humans and three of the four
most closely related primates share common alterations.
Except for position 176, where there is a conservative
isoleucine for valine substitution at the extracellular
end of helix 1, these are highly nonconservative changes
located in extracellular loops close to helices 3 to 5,
where they might affect binding of large ligands.

The CB1 coding sequence is contained in a single exon
(see, for example, the human gene sequence in GenBank
accession no. U73304), but the available cDNA se-
quences indicate that there must be at least one addi-
tional exon containing only 5�-untranslated sequence.
However, an alternatively spliced form of the human

FIG 11. Amino acid sequence alignment of human, rat, and mouse CB1 and CB2 receptors. Consensus matches are boxed and shaded with darker
shading for identities and lighter shading for conservative substitutions. Numbering corresponds to the rat/mouse CB1 sequence. Underlines indicate
the positions of the seven transmembrane helices. Helix 3 spans two lines as indicated by the arrowheads on the underline. The rat CB2 sequence is
a consensus of GenBank accession nos. AF286721 and AF176350 together with edited trace data from the rat genome sequencing project (http://
www.ncbi.nlm.nih.gov/genome/seq/RnBlast.html). The rat CB2 residue at alignment position 310 appears to be polymorphic [i.e., either Ala (as shown)
or Thr].
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receptor has been reported (Shire et al., 1995), in which
a 167 base portion of the coding exon is spliced out of the
human mRNA leading to the predicted substitution of a
different 28-residue sequence for the first 90 amino ac-
ids. This shorter mRNA appears to be relatively rare by
reverse transcription-polymerase chain reaction analy-
sis: 1 to 20% of the message in most brain areas, accord-
ing to the original report, although it now appears that
these are substantial overestimates due to overexposure
of the autoradiograms. Moreover, the invariant GT of
the splice donor site becomes a GA in both the rat and
mouse genes, which implies that this alternative splic-
ing should not occur in these species. Although a simi-
larly spliced form of the rat receptor was also reported
(Shire et al., 1995), it now appears that it does not exist
in either rat (Shire et al., 1996b) or mouse (Ho and Zhao,
1996). Most importantly, the short isoform is likely to be
inefficiently translated because it initiates at the second
AUG of the mRNA and has a T rather than the highly
preferred A or G at the critical �3-position (i.e., three
bases before the AUG) (Kozak, 1994). The question of
whether the shorter protein is expressed in significant
quantities is presently unanswered; however, if it were
to be expressed in significant quantities, the guidelines
of the International Union of Pharmacology Committee
on Receptor Nomenclature and Drug Classification
would dictate that the short isoform be referred to as
CB1(b) and the major (i.e., larger) isoform should be
CB1(a). To date, the short isoform has been referred to as
CB1A (Shire et al., 1995). The CB1 mRNA is typically 5.5
to 6 kb, but an alternatively polyadenylated cDNA se-
quence was reported (Matsuda et al., 1990), which is

2.6-kb shorter in the rat. This species is not usually
detected on Northern blots, but the predominant mRNA
in human testis is only 4 kb and might represent a
similar alternatively polyadenylated mRNA (T. I. Bon-
ner, unpublished observations).

There was no substantial evidence for a second can-
nabinoid receptor until the hCB2 cDNA was cloned from
HL-60 cells (Munro et al., 1993). Its 360-amino acid
sequence is quite different from that of CB1, especially in
its much shorter amino terminal domain where there is
no significant conservation (Fig. 11). Between trans-
membrane domains 1 and 7, the CB2 protein is only 48%
identical to that of CB1, substantially less than the 70 to
80% usually seen between different types of G protein-
coupled receptors, but enough to have led to its identi-
fication as a cannabinoid receptor. It is reported to be
expressed primarily in spleen (Fig. 12). The mouse CB2

gene has been cloned (Shire et al., 1996a) and is only
82% identical in amino acid sequence to the human
receptor and is 13 amino acids shorter at the carboxyl
terminal. The rat gene (Griffin et al., 2000) is similar to
the mouse gene, except that it is 13 amino acids longer
at the carboxyl terminal. It should be noted that this rat
receptor is in fact a hybrid mouse-rat receptor with the
first and last six amino acids derived from mouse se-
quence used as polymerase chain reaction primers. As
with the CB1 gene, the coding sequence is contained in a
single exon of the mouse gene (see GenBank accession
no. U21681), but available cDNA sequence indicates
that there is at least one additional exon containing only
5�-untranslated sequence.

TABLE 4
Amino acid sequence variations in CB1 among 60 placental mammals

Positiona Variantsb

Number/Total Consensus Variantsb Domain

53 9/59 F Y Amino terminal
66 2/59 D E Amino terminal
67 25/29 N S,T,H Amino terminal
68 22/59 P A,S,T Amino terminal
69 4/59 Q P Amino terminal
71 4/59 V G,I,A Amino terminal
73 12/59 A G,V,S Amino terminal
74 4/59 D G,V,A Amino terminal
75 20/59 — P,D Amino terminal
76 20/59 Q G,T,A,— Amino terminal
77 15/58 V L,A,T,G,I Amino terminal
79 21/59 I L,M,V Amino terminal
83 2/59 Y F,L Amino terminal
90 12/60 F Y Amino terminal
94 21/60 E D,G,— Amino terminal

106 4/60 M I Amino terminal
111 4/60 I V Amino terminal
176 4/60 V I Extracellular end of TM1
187 5/60 P R,H Extracellular, adjacent to TM3
259 4/60 K E Extracellular, adjacent to TM4
262 6/60 Q K,R Extracellular, between TM4 and TM5
271 4/60 L H Extracellular, between TM4 and TM5
286 2/54 T S TM5
312 2/53 R P Intracellular, between TM5 and TM6

TM, transmembrane.
a Numbering based on rat (or mouse) sequence.
b Variant sequences listed only for positions at which more than one sequence deviates from the consensus.
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Although the amino terminal domain of the CB1 re-
ceptor is uncommonly long and well conserved, it ap-
pears to play no major role in ligand recognition, as
deletion of the first 89 amino acids of the hCB1 receptor
has no effect on CP55940 binding affinity (Rinaldi-Car-
mona et al., 1996a). Similarly, the altered amino termi-
nal sequence presented by the CB1(b) isoform has little

effect (0- to 3-fold) on the pharmacological properties of
several agonists and only a 5- to 10-fold effect on the
properties of the SR141716A antagonist.

Site-directed mutagenesis has only recently begun to
define which residues constitute the agonist binding
sites. Mutation of lysine 192 of the hCB1 receptor to an
alanine demonstrated that this lysine is critical for the

FIG 12. Autoradiographs show cannabinoid receptor binding (a, f, g) and CB1 (b, d) and CB2 (c, e) mRNA expression in sections from the mouse
(sagittal) and human brain (coronal) and mouse spleen (M. Herkenham and A. Hohmann, unpublished observations). Receptor binding of
[3H]CP55940, a high-affinity agonist, shows high levels of receptors in the basal ganglia, cerebellum, hippocampus (hipp), and cerebral cortex (a). Cells
expressing CB1 mRNA are shown in a similar plane of section (b). Lack of detectable CB2 expression in brain (c) indicates that the binding is to the
CB1 type. In contrast, spleen has the opposite relative abundance of CB1 (d) versus CB2 mRNA (e) expression. The human brain has a distribution
of cannabinoid receptors that closely matches that of the mouse, with high levels expressed in the basal ganglia, intermediate levels in the amygdala
and hypothalamus, and low levels in the thalamus (f, g). The high levels of binding in many areas [cerebellar molecular layer, globus pallidus (GP,
GPe), entopeduncular nucleus (Ep, GPi), substantia nigra pars reticulata (SNR), and dentate gyrus molecular layer] are on axons of cells expressing
mRNA in afferent areas, such as the caudate putamen (CPu). Some cells in cortex and hippocampus express extremely high levels of CB1 message
(arrows in b). Bars measure 1 mm for mouse and 1 cm for human.
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binding of several agonists (CP55940, HU-210, and
anandamide), whereas the mutation has no appreciable
effect on either binding or receptor activation by R-(�)-
WIN55212 (Song and Bonner, 1996). Clearly, the ago-
nist binding site is not precisely the same for all ago-
nists. This lysine is located at the extracellular end of
helix three in both the CB1 and CB2 receptors, a region
commonly implicated in agonist binding in other G pro-
tein-coupled receptors. This result was extended (Chin
et al., 1998) to show that the conservative substitution of
an arginine for the lysine had little effect, whereas po-
tentially much more disruptive substitutions of glu-
tamine or glutamic acid eliminated binding of CP55940
but had little effect on binding of R-(�)-WIN55212. How-
ever, when the corresponding mutations of the hCB2
receptor at lysine 109 were tested, both the arginine and
the alanine substitutions had little effect (Tao et al.,
1999). Molecular modeling of the two alanine-substi-
tuted receptors (CB1K192A and CB2K109A) indicated
that the CB2 receptor still could bind CP55940 via hy-
drogen bonds to serine 112 that were absent in CB1 at
the corresponding residue, glycine 195. When the
CB2K109A receptor was altered to also change Ser112 to
Gly112, its properties recapitulated those of the
CB1K192A receptor, thus confirming the modeling pre-
diction. More recently, mutation of the CB1 receptor to
change Gly195 to Ser195, analogous to the CB2 receptor,
has been shown to increase affinity for R-(�)-WIN55212
4-fold (Chin et al., 1999). Thus, there are two residues
that are adjacent on the same face of helix 3, which play
a critical role in binding of agonists other than R-(�)-
WIN55212 but a minor role in binding of R-(�)-
WIN55212. A complementary situation occurs in helix 5,
where the corresponding residues Val282 in CB1 and
Phe197 in CB2 confer the selectivity of R-(�)-WIN55212
for CB2 (Song et al., 1999). Substitution of phenylala-
nine for Val282 in CB1 results in an increase in affinity
for R-(�)-WIN55212 to the CB2 value, whereas the con-
verse mutation, replacing Phe197 of CB2 with a valine,
results in a decrease of R-(�)-WIN55212 affinity to the
CB1 value. Neither substitution affects affinities for
CP55940, HU-210, or anandamide.

A number of other mutations have been reported that
alter residues that are highly conserved throughout the
rhodopsin family of G protein-coupled receptors, such as
the aspartic acid in helix 2 (Tao and Abood, 1998; Roche
et al., 1999), the DRY motif at the intracellular end of
helix 3 (Rhee et al., 2000b), the tryptophan in the middle
of helix 4 (Rhee et al., 2000a), and the tyrosine near the
intracellular end of helix 7 (Feng and Song, 2001). These
mutations generally give the same results as observed
with the analogous mutations in other receptors. Given
the highly conserved nature of these residues and their
positions generally near the intracellular ends of the
helices, it is likely that they are not so much a part of the
agonist binding site as they are important for conforma-
tions that play a role in transmitting the binding signal

to the G proteins. Of more interest for the agonist bind-
ing sites is the tryptophan at the extracellular end of
helix 4. Conservative mutations of Trp172 in hCB2 to
phenylalanine or tyrosine had little effect, but removal
of the aromatic side chain by substitution of alanine or
leucine eliminated binding of HU-210, CP55940, and
R-(�)-WIN55212. The implications of these results are
not clear, but it is worth noting that Trp172 is part of a
GWNC motif shared (with some deviations from the G
and N) by the sphingosine-1 phosphate and lysophos-
phatidic acid receptors and a small group of orphan
receptors, GPR3, GPR6, and GPR12. All of these recep-
tors have a cysteine at the extracellular end of helix 4
instead of the cysteine that is commonly found at the
extracellular end of helix 3 and thought to participate in
disulfide bonding that constrains the ends of helix 3 and
5. Similar loss of binding has been reported for the CB2

receptor when nearby Cys174 is replaced with serine
(Shire et al., 1996a).

Studies with chimeric CB1/CB2 receptors (Shire et al.,
1996a) demonstrate that the selectivity of the antago-
nist SR141716A for CB1 is provided about equally by the
portions of the receptor on either side of the beginning of
helix 5. Substitution of helices 4 through 5 of the CB2

receptor into CB1 resulted in loss of SR141716A binding
without altering CP55940 binding, which, together with
chimeras substituting only the loop between the two
helices, suggests that the specificity lies within helices 4
and 5. However, the critical chimera in which helices 4
and 5 from CB1 might have been expected to confer
high-affinity antagonist binding on a CB2 receptor failed
to bind either ligand. More recent mutations of the hCB2

receptor aimed at defining the selectivity of SR144528
for CB2 identified three mutations in or adjacent to helix
4, S161A, S165A, and C175S, which eliminated
SR144528 binding but had little effect on CP55940 or
R-(�)-WIN55212 binding or activity (Gouldson et al.,
2000). A molecular model was presented that accounted
for the role of the two serine residues but did not account
for the Cys175 residue. The complementary mutations
of the CB1 receptor that might have been expected to
gain SR144528 binding were not attempted. Neverthe-
less, this is yet another case where mutations have been
identified that have dramatic effects on the binding of
one ligand but not others.

No significant genetic polymorphism has been re-
ported for the cannabinoid receptor genes. A silent mu-
tation in the coding sequence of the CB1 gene, 1259G3
A in codon 453 (Thr), has been reported (Gadzicki et al.,
1999) to be common in the German population, but since
this does not alter the amino acid sequence of the recep-
tor, it is of little pharmacological significance. Another
study that determined the coding sequence from 21 in-
dividuals, seven of whom exhibited extreme responses to
cannabis, found no amino acid-changing mutations
(Hoehe et al., 2000).
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VI. Cannabinoid Receptor Knockout Mice

The relatively recent creation both of transgenic mice
bearing a genetic deletion of the CB1 or CB2 receptor and
of CB1/CB2 double knockouts has provided additional
avenues for probing cannabinoid receptor function in
both the CNS and periphery. Through gene targeting
and homologous recombination in embryonic stem cells,
two independent laboratories have generated CB1 recep-
tor knockout mice (Ledent et al., 1999; Zimmer et al.,
1999). After implantation in pseudopregnant females,
homozygous offspring (CB1

�/�) lacked expression of the
wild-type CB1 receptor both in the CNS and periphery.
Using identical techniques, mice were bred lacking the
CB2 receptor (CB2

�/�) (Buckley et al., 2000). CB1/CB2
double-knockout mice have been obtained with the ex-
pected mendelian frequency by mating mice heterozy-
gous for both receptors (CB1

�/�/CB2
�/�) (N. E. Buckley

and A. Zimmer, personal communication).
CB1 knockout mice bred on a C57BL/6J background

showed a variety of spontaneous phenotypes, including
hypoactivity, reduced locomotion and rearing, supraspi-
nal hypoalgesia, and increased mortality (Zimmer et al.,
1999). Subsequent studies revealed a spontaneous re-
duction in feeding behavior (Di Marzo et al., 2001b) and
change in male hormone balance (Paria et al., 2001). In
contrast, mice bred on a CD1 background showed in-
creased locomotor and exploratory activity when newly
exposed to an arena but no change in supraspinal hy-
poalgesia or mortality (Ledent et al., 1999). CB1 null
mice showed an increase in long-term potentiation (Bö-
hme et al., 2000) and improvements in memory scores
(Reibaud et al., 1999), supporting a role for this receptor
in cognitive function. Both CB1 receptor knockout mouse
lines demonstrated complete loss of cannabinoid ago-
nist-induced behaviors, such as hypolocomotion, hypo-
thermia, spinal and supraspinal analgesia, and brady-
cardia, consistent with a central role for CB1 receptors in
these phenotypes. Moreover, these mice demonstrated
less responsiveness to the reinforcing properties of opi-
ates but not other drugs of dependence, suggesting a role
for CB1 receptors in specific addictive behaviors (Ledent
et al., 1999; Mascia et al., 1999; Cossu et al., 2001). For
the most part, results observed in mice treated with
selective CB1 receptor antagonists mimic the findings
observed in the transgenic animals. However, develop-
mental changes may have occurred in brain architecture
to compensate for the lack of CB1 receptors, as has been
suggested from studies of neuropeptide expression
(Steiner et al., 1999). These findings suggest that stud-
ies with CB1 receptor knockout mice, as with other
knockout mice, should be interpreted with caution and
should be supported with pharmacological experiments.

One of the most promising uses of receptor knockout
mice is to uncover new receptor types (see also Section XI.).
Studies with CB1 receptor knockout mice have revealed
non-CB1 receptor-mediated responses to cannabinoid ago-

nists in the CNS (see also Section XI.). R-(�)-WIN55212-
mediated reduction in excitatory postsynaptic currents oc-
curred in both wild-type and CB1 receptor null mice,
suggesting that the �-aminobutyric acid (GABA)ergic cur-
rents are modulated by an unknown cannabinoid receptor
(Hájos et al., 2001). Anandamide showed analgesic and
hypolocomotor effects of similar magnitude in both wild-
type and CB1 receptor knockout mice, again indicating the
expression of an anandamide-sensitive non-CB1, non-CB2
receptor in brain tissue (Di Marzo et al., 2000b). Radioli-
gand binding studies and functional GTP�S binding as-
says using anandamide and R-(�)-WIN55212 indicate the
presence of a non-CB1 or -CB2 receptor in brain tissue
(Breivogel et al., 2001). Similar non-CB1 receptor-medi-
ated regulation of mesenteric vasodilation was observed in
CB1, CB2, and CB1/CB2 double-knockout mice (Járai et al.,
1999).

Few studies have revealed a role for the CB2 receptors
using the CB2 knockout mice. To date, one study has
shown a role for CB2 receptors in cannabinoid agonist-
mediated inhibition of helper T cell activation, in which
the response was lost in CB2 null mice but not in their
wild-type controls (Buckley et al., 2000). A study detail-
ing the phenotype of the CB1/CB2 double receptor knock-
out mice has not been published to date.

VII. Tissue Distribution of Cannabinoid
Receptors

A. Neuronal Distribution of Cannabinoid Receptors

The distribution of CB1 cannabinoid receptors has
been investigated in considerable detail. Studies have
used quantitative autoradiography, in situ hybridiza-
tion, and immunocytochemistry, yielding complemen-
tary information. Investigations of CB2 cannabinoid re-
ceptor distribution are fewer. These indicate that this
receptor is primarily localized on cells in structures as-
sociated with the immune system.

Autoradiographic studies of CB1 receptors are note-
worthy for several reasons. They preceded the cloning of
the receptor, indicated that the receptor was expressed
in regions predicted from the behavioral effects of can-
nabinoids, and also established that cannabinoid recep-
tors are expressed at high levels compared with other G
protein-coupled receptors. Historically, autoradiography
studies with [3H]CP55940 helped to establish the exis-
tence of a high-affinity cannabinoid receptor. As shown
in Fig. 12, cannabinoid receptors were found to be par-
ticularly enriched in cerebral cortex, hippocampus,
basal ganglia, and cerebellum, regions that were pre-
dicted from the behavioral effects of cannabinoids.
Lower levels were found in hypothalamus and spinal
cord. CB1 receptor binding was almost absent from the
respiratory centers of the brainstem, consistent with the
clinical observation of the low lethality of cannabis over-
dose (Robson, 2001).

184 HOWLETT ET AL.

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


Detailed autoradiographic studies have been con-
ducted in several species, including human, monkey,
and rat (Herkenham et al., 1990, 1991; Glass et al.,
1997). Qualitatively, all species have similar distribu-
tions; however, subtle differences are seen. For example,
in humans, CB1 receptors are more highly expressed in
amygdala and cingulate cortex compared with rat or
monkey (Herkenham et al., 1990). Differences like these
may explain interspecies differences in the behavioral
effects of cannabinoids. In contrast to other anatomical
techniques, the autoradiographic studies can give a
quantitative measure of the density of cannabinoid re-
ceptors. These studies often found levels of expression
greater than 1 pmol/mg tissue. These densities are
greater than those of most other G protein-coupled re-
ceptors and are comparable with levels found for com-
mon ionotropic receptors (Greenamyre et al., 1984; Bow-
ery et al., 1987). Comprehensive anatomical surveys
have also been conducted with tritiated R-(�)-
WIN55212 and with SR141716A. These compounds
gave a similar distribution as [3H]CP55940 (Jansen et
al., 1992; Rinaldi-Carmona et al., 1996b). However, with
the recent demonstration of physiological effects of
R-(�)-WIN55212 in CB1 knockout mice (Section XI.),
reexamination of these latter studies is in order.

Soon after the cloning of the CB1 receptor, several in
situ hybridization studies were conducted (Mailleux et
al., 1992; Matsuda et al., 1993). The results of these
studies generally agreed with the results of the preced-
ing autoradiographic studies, taking into account that in
situ hybridization will identify CB1 receptor mRNA in
cell bodies, whereas autoradiography will label recep-
tors throughout the neuron. An important finding from
the in situ studies was the corroboration of the impres-
sion from the autoradiographic studies that CB1 recep-
tors are often found on axons and probably their termi-
nals (Fig. 12). Another interesting finding from the in
situ studies was that cannabinoid receptor expressing
neurons have two general patterns of distribution (Mail-
leux et al., 1992; Matsuda et al., 1993). In some regions,
they are expressed broadly and uniformly. For example,
in cerebellum, almost all granule cells express CB1. In
contrast, in the hippocampus, despite intense labeling of
the pyramidal cell layer in the autoradiographic studies,
most neurons do not express appreciable levels of CB1
mRNA. Instead, a few neurons express very high levels.
A similar pattern is found in the cerebral cortex.

Once antibodies were developed against the CB1 re-
ceptor, immunocytochemical studies were possible. Sev-
eral of these have been conducted using distinct antibod-
ies (Fig. 13). Two comprehensive surveys of CB1 receptor
expression in rat brain have been undertaken (Tsou et
al., 1998a; Egertová and Elphick, 2000). In both of these
studies, cannabinoid receptors were found in the regions
predicted from the earlier autoradiographic and in situ
hybridization studies. These surveys emphasized the
high levels of CB1 receptor expressed on axonal fibers,

especially at their terminals. Detailed electron micro-
scope (EM) studies in rat and human hippocampus
found that cell-surface CB1 receptors were found almost
exclusively on presynaptic terminals (Hájos et al., 2000;
Katona et al., 2000). EM gold studies suggest that hip-
pocampal CB1 receptors are expressed on the membrane
of the entire presynaptic bouton, with the exception of
the active zone. In contrast, EM studies in striatum
suggest that CB1 receptors may be expressed more
widely. This report found CB1 labeling of postsynaptic
elements and even perivascular astroglia (Rodrı́guez et
al., 2001).

The anatomical localization of cannabinoid receptors
has also given additional insight into their function. For
example, CB1 receptors are often expressed on synaptic
terminals that release both GABA and cholecystokinin
(CCK) (Katona et al., 1999; Marsicano and Lutz, 1999;
Tsou et al., 1999; see also Fig. 13). Thus, inhibition of
neurotransmission by CB1 receptor activation will cause
not only a decrease in GABA release but also a decrease
in CCK release (Section VIII.). Another interesting fea-
ture is the reciprocal nature of the localization of CB1
receptors and the endocannabinoid hydrolyzing enzyme
(FAAH). In at least some brain regions, CB1 receptors
and FAAH appear to be localized on opposing neurons
(Egertová et al., 1998; Tsou et al., 1998b). For example,
hippocampal pyramidal neurons and cerebellar Pur-
kinje neurons both express high levels of FAAH and few
CB1 receptors. Conversely, FAAH expression is low in
hippocampal interneurons and cerebellar granule cells,
which synapse onto pyramidal neurons and Purkinje
neurons, respectively.

FIG 13. Electron micrograph of consecutive rat brain hippocampal
sections stained with the C terminus-CB1 antibody showing that inhibi-
tory terminals presynaptically express CB1 cannabinoid receptors in the
hippocampus. Serial sections have been cut through a CB1-immunoreac-
tive axon terminal forming a symmetrical (GABAergic) synapse (thick
arrow) on a dendrite in the stratum radiatum of the CA1 region. Gold
particle labeling (small arrows) is restricted to the inner surface of the
bouton, where the intracellular carboxy terminus epitope of CB1 is lo-
cated. A small arrowhead indicates a dense core vesicle. In contrast, the
complete lack of staining in axon terminals (�), forming an asymmetrical
synapse (large arrowhead), suggests that glutamatergic axons do not
contain CB1 receptors. Scale bar is 0.2 �m. Courtesy of I. Katona and T. F.
Freund.
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In addition to the CNS, CB1 receptors are widely
expressed in the peripheral nervous system, both on
sensory nerve fibers and in the autonomic nervous sys-
tem (e.g., Pertwee et al., 1992). Although detailed com-
parative anatomical studies have not been conducted on
CB1 receptor expression in the autonomic nervous sys-
tem, the physiological experiments suggest significant
interspecies differences (e.g., Benowitz et al., 1979; Lake
et al., 1997). CB1 receptors are also found in moderate
levels in the testis (Gérard et al., 1991; Wenger et al.,
2001); their function there is unknown. CB1 receptors
are also expressed in some immune cells, but their level
of expression is considerably lower than that of CB2
receptors (Section VII.B.).

As discussed in greater detail elsewhere (Pertwee,
1997, 2001b), CB1 receptor expression levels are highest
in the CNS, particularly in brain regions associated with
higher cognitive functions. Functionally significant lev-
els of CB1 receptors are also expressed in pain pathways
and the autonomic nervous system. Often, CB1 receptors
are expressed on nerve terminals. One consequence of
their activation is to decrease calcium entry through
voltage-dependent calcium channels decreasing neuro-
transmitter release (Sections IV. and VIII.). As detailed
in the next section, CB2 receptors are primarily found on
immune cells, particularly mature B cells, and, to a
lesser degree, on macrophages.

B. Immune Distribution of Cannabinoid Receptors

Current knowledge about the immune distribution of
CB1 and CB2 cannabinoid receptors is summarized in
Table 5. Cannabinoid CB1 receptor mRNA is found pri-
marily in neural tissue but can be found to a lower
extent in peripheral tissues, including the adrenal

gland, bone marrow, heart, lung, prostate, testis, thy-
mus, tonsils, and spleen (Kaminski et al., 1992;
Bouaboula et al., 1993; Galiègue et al., 1995; Noe et al.,
2000). Messenger RNA for CB1 can be found at low
levels in neonatal rat brain cortical microglia (Waksman
et al., 1999; Carlisle et al., 2002) and in select immune
cell lines, including human THP-1 monocytic cells, hu-
man Raji B-cells, murine NKB61A2 natural killer-like
cells, and murine CTLL2 IL-2-dependent T cells (Daaka
et al., 1995).

Both in situ hybridization studies and autoradio-
graphic studies suggest expression of CB2 receptors in
multiple lymphoid organs (Lynn and Herkenham, 1994;
Buckley et al., 1998). Cannabinoid CB2 receptor mRNA
is found in spleen (Fig. 12), thymus, tonsils, bone mar-
row, pancreas, splenic macrophage/monocyte prepara-
tions, mast cells, peripheral blood leukocytes, and in a
variety of cultured immune cell models, including the
myeloid cell line U937 and undifferentiated and differ-
entiated granulocyte-like or macrophage-like HL-60
cells (Bouaboula et al., 1993; Munro et al., 1993; Facci et
al., 1995; Galiègue et al., 1995; Condie et al., 1996; Pettit
et al., 1996; Schatz et al., 1997). Valk et al. (1997) re-
ported the presence of CB2 receptor mRNA in 45 of 51
cell lines of distinct hematopoietic lineages, including
myeloid, macrophage, mast, B-lymphoid, T-lymphoid,
and erythroid cells. In spleen and tonsils, CB2 mRNA
content is equivalent to that of CB1 mRNA in the central
nervous system. However, the distribution pattern of
CB2 mRNA displays major variation in human blood cell
populations, with a rank order of B lymphocytes � nat-
ural killer cells �� monocytes � polymorphonuclear
neutrophils � T8 lymphocytes � T4 lymphocytes (Ga-
liègue et al., 1995). A rank order for CB2 mRNA content

TABLE 5
Detection of cannabinoid receptors in immune cells and tissues

Cell Type/Tissue Species Receptor
Type Method of Detection

B lymphocytes Human CB2 RT-PCRa or confocal microscopyb

Macrophages Human, mouse, rat CB2 RT-PCRa,c,d

Mast cells Rat CB2 RT-PCRe

Microglia Rat CB1, CB2 Mutational RT-PCR,d,f Western immunoblot,d,f or immunocytochemistryf,g

Natural killer cells Human CB2 RT-PCRa

Peripheral mononuclear cells Human, rat CB2 RT-PCRa,e

CD4 lymphocytes Human CB2 RT-PCRa

CD8 lymphocytes Human CB2 RT-PCRa

Lymph nodes Human CB2 RT-PCRa

Peyer’s patches Rat CB* Radioligand bindingh or radioligand autoradiographyh

Spleen Human, mouse, rat CB1, CB2 Radioligand binding,h,i radioligand autoradiography,h Northern blot,j in situ
hybridization,j or RT-PCRa,e

Tonsils Human CB2 RT-PCRa or immunocytochemistrya

Thymus Human CB2 RT-PCRa

* CB1 and/or CB2.
a Galiègue et al., 1995.
b Carayon et al., 1998.
c Lee et al., 2001.
d Carlisle et al., 2002.
e Facci et al., 1995.
f Waksman et al., 1999.
g Sinha et al., 1998.
h Lynn and Herkenham, 1994.
i Kaminski et al., 1992.
j Munro et al., 1993.
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similar to that noted for primary human cell types has
been recorded for human cell lines belonging to the
myeloid, monocytic, and lymphoid lineages (Galiègue et
al., 1995). Lee et al. (2001) have reported a similar
pattern of CB2 mRNA distribution in murine immune
cell subpopulations. CB2 mRNA was most abundant in
splenic B cells, followed by macrophages and T cells.
Messenger RNA for CB2 has been identified also in
neonatal rat brain cortical microglia maintained in vitro
at levels that exceed those for CB1 (Carlisle et al., 2002).

Cannabinoid receptor protein has been localized in a
variety of immune cell types and tissues. Ligand binding
assays have allowed for the assessment of cannabinoid
receptor protein in rat lymph nodes, Peyer’s patches,
and spleen (Lynn and Herkenham, 1994). Cannabinoid
receptor binding was confined to B lymphocyte: enriched
areas such as the marginal zone of the spleen, cortex of
the lymph nodes, and nodular corona of Peyer’s patches.
Specific binding was absent in T lymphocyte-enriched
areas, such as the thymus and periarteriolar lymphatic
sheaths of the spleen, and certain macrophage-enriched
areas, such as the liver and lung. Binding assay also has
permitted quantitation of cannabinoid receptors on
membranes of a variety of immune cell types and lines.
Bouaboula et al. (1993) used [3H]CP55940 as a ligand for
characterizing cannabinoid receptors in human my-
elomonocytic U937 cells. A Kd of 0.1 nM and a Bmax of
525 fmol/mg protein was determined from Scatchard
analysis for membranes of these cells.

In addition, CB1- and CB2-specific antibodies have
been used to identify cannabinoid receptors in immune
cells. Cannabinoid CB1 receptor protein has been iden-
tified in the human Jurkat T cell line (Daaka et al.,
1996), in Daudi human B-lymphoblastoid cells and mac-
rophage-like cells from rat brain tissue (Sinha et al.,
1998), and in cortical microglia cultured from neonatal
rat brain (Waksman et al., 1999). Galiègue et al. (1995)
used an anti-hCB2 IgG to localize CB2 receptors within
B lymphocyte-enriched areas of the mantle of secondary
lymphoid follicles in sections of human tonsil. Carayon
et al. (1998) employed immunopurified polyclonal anti-
body to investigate the expression of CB2 receptors in
leukocytes and showed that peripheral blood and tonsil-
lar B cells were the leukocyte subsets expressing the
highest amount of CB2 receptor proteins. Dual-color con-
focal microscopy performed on human tonsillar tissues
demonstrated a marked expression of CB2 receptors in
mantle zones of secondary follicles, whereas germinal
centers were weakly stained, suggesting a modulation of
this receptor during the differentiation stages from vir-
gin B lymphocytes to memory B cells.

Changes in levels of cannabinoid receptors or their
mRNAs after treatment with a variety of immune mod-
ulators or activators have been reported. Levels of CB2
mRNA have been detected in peritoneal macrophages at
differential levels in relation to cell activation state. Lee
et al. (2001) and Carlisle et al. (2002) determined that

CB2 mRNA was present in thioglycollate-elicited murine
peritoneal macrophages but not in resident peritoneal
macrophages. In addition to these studies on receptor
expression at basal activity, CB2 mRNA expression was
studied following immune cell activation. Bacterial lipo-
polysaccharide stimulation down-regulated CB2 mRNA
expression in splenocyte cultures in a dose-response
manner, whereas stimulation through cluster of differ-
entiation 40 (CD40) using anti-CD40 antibody up-regu-
lated the response and costimulation with IL-4 attenu-
ated the anti-CD40 response. Daaka et al. (1995) have
indicated that lipopolysaccharide-stimulated Raji and
PMA-stimulated THP-1 human acute monocytic leuke-
mia cell lines show increased levels of CB1 cannabinoid
receptor mRNA. It was demonstrated also that increases
in CB1 mRNA were linked to comparable increases in
cognate protein expression. Mitogen activation of Jurkat
cells showed an increase in specific binding of
[3H]CP55940, and Western analysis indicated the pres-
ence of immunoreactive proteins on membranes from
mitogen-activated Jurkat cells but not on membranes of
unstimulated cells. Noe et al. (2000) reported that anti-
CD40, anti-CD3, and IL-2 stimulation induced contrast-
ing changes in CB1 mRNA expression in mouse spleno-
cytes. Splenocytes stimulated with the T cell mitogens
PMA/Io and anti-CD3 showed a decrease in CB1 mes-
sage, whereas cultures stimulated with the B-cell mito-
gen, anti-CD40 antibody, showed an increase in mes-
sage. In addition, cotreatment with mitogens and IL-2
uniformly caused an increase in CB1 mRNA. These ob-
servations suggest that signaling pathways activated by
T cell mitogens lead to decreased CB1 gene activation,
whereas pathways activated by B-cell mitogens and IL-2
lead to increased CB1. Collectively, these reports sug-
gest that cannabinoid receptors have biological rele-
vance in lymphoid and myeloid cells during defined
stages of cell activation.

Changes in levels of rat spleen cannabinoid receptors
have been reported also after chronic cannabinoid ad-
ministration. Massi et al. (1997) assessed the effect of
chronic in vivo administration of CP55940 on the expres-
sion of cannabinoid receptors. Spleen coronal sections
processed for receptor binding autoradiography with
[3H]CP55940 in the absence or presence of unlabeled
CP55940 and subjected to densitometric analysis of the
autoradiograms showed significant loss of [3H]CP55940
binding for chronic cannabinoid-treated, tolerant rats.

VIII. Effects on Neurotransmission

As detailed in Table 6, there is good evidence that the
activation of presynaptic CB1 receptors can lead to inhi-
bition of the evoked release of a number of different
excitatory or inhibitory neurotransmitters both in the
brain and in the peripheral nervous system. This evi-
dence has been obtained from experiments in which
release has been monitored either through the direct
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TABLE 6
Cannabinoid-induced inhibition of central and peripheral neurotransmitter release

Transmitter Tissue Preparation or Brain Area Transmitter-Releasing
Stimulus References

In vivo
ACha Rat medial-prefrontal cortex None Gessa et al., 1998a

Rat hippocampus None —b

GABAc Rat striatum None Tersigni and Rosenberg, 1996
In vitro

ACh Rat hippocampal slices ES —d

Rat hippocampal & frontal cortical
synaptosomes

K� or Ca2� Gifford et al., 2000

Mouse hippocampal or cerebrocortical slices ES or Ca2� —e

Guinea pig intestinal tissue (MPLM) ES —f

NA Guinea pig cerebrocortical slices ES Schlicker et al., 1997
Human and guinea pig hippocampal slices ES or Ca2� Schlicker et al., 1997
Guinea pig hippocampal slices NMDA or kainate Kathmann et al., 1999a
Guinea pig hypothalamic slices ES Schlicker et al., 1997
Guinea pig cerebellar slices ES Schlicker et al., 1997
Guinea pig retinal discs ES or Ca2� Schlicker et al., 1996
Guinea pig bronchial slices ES Vizi et al., 2001
Human atrial appendage segments ES Molderings et al., 1999
Rat atria ES Ishac et al., 1996
Rat heart ES Kurihara et al., 2001
Rat vas deferens ES Ishac et al., 1996
Mouse vas deferens ES Trendelenburg et al., 2000
Mouse cultured sympathetic neurons ES Göbel et al., 2000

DA Rat striatal slices NMDA Kathmann et al., 1999a
Rat striatal slices ES Cadogan et al., 1997
Guinea pig retinal discs ES Schlicker et al., 1996

5-HT Mouse cerebrocortical slices ES or Ca2� Nakazi et al., 2000
Mouse hypothalamic slices ES Kathmann et al., 1999b

GABA Human hippocampal slices ES Katona et al., 2000
Rat hippocampal slices ES Katona et al., 1999

GABAc Rat or mouse hippocampal slices ES —g

Slices of rat or mouse amygdala (BLC) ES Katona et al., 2001
1y cultures of neonatal rat hippocampal cells None Irving et al., 2000
1y cultures of neonatal rat hippocampal cells ES Ohno-Shosaku et al., 2001
Rat striatal slices ES Szabo et al., 1998
Rat midbrain slices (SNR) ES —h

Rat brain slices (RVM) ES Vaughan et al., 1999
Rat cerebellar slices None Takahashi and Linden, 2000
Rat cerebellar slices ES Kreitzer and Regehr, 2001b
Rat brain slices (PAG) ES Vaughan et al., 2000
Rat brain slices (shell region of NAc) ES Hoffman and Lupica, 2001
Mouse brain slices (NAc) ES Manzoni and Bockaert, 2001
Rat spinal trigeminal nucleus pars caudalis (SG) ES Jennings et al., 2001
Guinea pig intestinal tissue (MPLM) Ethylenediamine Begg et al., 2002

Gluc Rat prefrontal cortical slices ES Auclair et al., 2000
Rat brain slices (PAG) ES Vaughan et al., 2000
Mouse brain slices (NAc) ES Robbe et al., 2001
1y cultures of rat hippocampal cells Low [Mg2�]o —i

1y cultures of rat hippocampal cells ES Sullivan, 1999
Mouse hippocampal slicesj ES —k

Rat or mouse cerebellar slices ES —l

Rat striatal slices ES —m

Rat midbrain slices (SNR) ES Szabo et al., 2000
Rat spinal cord slices (SG) ES Morisset and Urban, 2001
1y cultures of rat cerebellar granule cells Low [Mg2�]o Irving et al., 2001

Glyc Rat spinal trigeminal nucleus pars caudalis (SG) ES Jennings et al., 2001
D-Asp 1y cultures of rat cerebellar granule cells K� Breivogel et al., 1999
CCK Rat hippocampal slices K� Beinfeld and Connolly, 2001

ES, electrical stimulation; [Mg2�]o, extracellular magnesium concentration; MPLM, myenteric plexus-longitudinal muscle preparation; BLC, basolateral complex; NAc,
nucleus accumbens; PAG, periaqueductal gray; RVM, rostral ventromedial medulla; SG, substantia gelatinosa; SNR, substantia nigra pars reticulata; ACh, acetylcholine;
DA, dopamine; D-Asp, D-aspartate; NA, noradrenaline; 1y, primary.

a ACh collected by microdialysis.
b Gessa et al., 1997, 1998a; Carta et al., 1998; Nava et al., 2000, 2001.
c Indirect electrophysiological evidence for decreased transmitter release: in some of these investigations, there was also evidence that cannabinoids inhibited spontaneous

as well as evoked release of GABA or Glu.
d Gifford and Ashby, 1996; Gifford et al., 1997a,b; 1999; Kathmann et al., 2001a.
e Nakazi et al., 2000; Kathmann et al., 2001a,b.
f Pertwee et al., 1996; Coutts and Pertwee, 1997; Mang et al., 2001.
g Hájos et al., 2000, 2001; Hoffman and Lupica, 2000; Wilson and Nicoll, 2001.
h Chan and Yung, 1998; Chan et al., 1998.
i Shen et al., 1996; Shen and Thayer, 1998a,b; 1999.
j Signs of R-(�)-WIN55212-induced inhibition of glutamate release have been observed in tissue from both wild-type and CB1

�/� mice.
k Misner and Sullivan, 1999; Hájos et al., 2001.
l Lévénès et al., 1998; Kreitzer and Regehr, 2001a; Maejima et al., 2001.
m Gerdeman and Lovinger, 2001; Huang et al., 2001.
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measurement of transmitter levels in vivo or in vitro
(acetylcholine, noradrenaline, dopamine, 5-hydroxytryp-
tamine, D-aspartate, cholecystokinin, and GABA) or in-
directly using electrophysiological techniques (gluta-
mate, glycine, and GABA). R-(�)-WIN55212 and �9-
THC have been reported to inhibit GABA uptake into
tissue obtained from rat globus pallidus (Maneuf et al.,
1996a,b) or substantia nigra (Romero et al., 1998), albeit
at a rather high concentration (50 �M). Even so, the
main effect of cannabinoids on GABAergic transmission
in rat hippocampus seems to be inhibitory in nature
(Paton et al., 1998; Hoffman and Lupica, 2000). Al-
though there are some electrophysiological data that
support CB1 receptor-mediated inhibition of GABA re-
lease in rat substantia nigra (Table 6), it has not proved
possible to detect any cannabinoid-induced inhibition of
spontaneous or evoked release of [3H]GABA from frag-
ments of rat substantia nigra preloaded with this radio-
isotope (Romero et al., 1998) or, indeed, from slices of
globus pallidus (Maneuf et al., 1996a). Although there is
little doubt that CB1 receptors play a major role in
modulating neurotransmitter release, evidence has re-
cently emerged from experiments with CB1 knockout
mice that inhibition of hippocampal glutamate release is
mediated by presynaptic, R-(�)-WIN55212-sensitive,
non-CB1 receptors (Section XI.).

Although the primary effect of CB1 receptor agonists
on neurotransmitter release seems to be one of inhibi-
tion, this may sometimes result in enhanced neurotrans-
mitter release at some point downstream of the initial
inhibitory effect. For example, there is evidence that
cannabinoids enhance dynorphin release within the spi-
nal cord and that this effect depends on CB1 receptor-
mediated inhibition of tonically active neurons that ex-
ert an inhibitory influence on dynorphinergic neurons
(see Pertwee, 2001b). There is also evidence from exper-
iments both with whole animals (Chen et al., 1990a,b;
1991; French, 1997; French et al., 1997; Tanda et al.,
1997; Gessa et al., 1998b; Melis et al., 2000) and with
brain slices (Cheer et al., 2000) that CB1 receptor ago-
nists can stimulate dopamine release in the nucleus
accumbens, and it is likely that this effect stems from a
cannabinoid receptor-mediated inhibition of glutamate
release from extrinsic glutamatergic fibers. These are
large fibers that form synapses in the nucleus accum-
bens with GABAergic neurons that project to the ventral
tegmental area to exert an inhibitory effect on dopami-
nergic mesoaccumbens neurons (Robbe et al., 2001). It is
possible that cannabinoid receptor-mediated disinhibi-
tion of dopamine release in the nucleus accumbens gives
rise to increases in acetylcholine release in the prefron-
tal cortex that have recently been observed in microdi-
alysis experiments with rats in response to intravenous
injections of low doses of �9-THC, HU-210, or R-(�)-
WIN55212 (Acquas et al., 2000, 2001). Thus, GABAergic
neurons project from the nucleus accumbens to the pre-
frontal cortex, and it is thought that dopamine released

in the nucleus accumbens may act on these neurons to
disinhibit acetylcholine release in the cortex (Moore et
al., 1999). Results from microdialysis experiments with
rats have indicated that at low doses, intravenously
administered cannabinoids can also act through CB1
receptors to increase acetylcholine release in the hip-
pocampus (Acquas et al., 2000, 2001), whereas data from
in vivo electrophysiological experiments suggest that
systemically administered cannabinoids can enhance
dopamine release from mesoprefrontal cortical neurons
that project from the ventral tegmental area to the pre-
frontal cortex (Diana et al., 1998). This stimulatory ef-
fect on cortical dopamine release may result from inhi-
bition of GABA release mediated by CB1 receptors that are
presumed to be located on the terminals of prefrontal cor-
tical GABAergic interneurons that modulate the activity of
pyramidal neurons (Pistis et al., 2001). These prefrontal
cortical pyramidal neurons project to the ventral tegmen-
tal area, where they form excitatory synapses on mesopre-
frontal dopaminergic neurons that release GABA from the
prefrontal cortical GABAergic interneurons that have been
postulated to express CB1 receptors.

One apparently anomalous finding, obtained from mi-
crodialysis experiments with unanaesthetized rats, is
that R-(�)-WIN55212 can act through cannabinoid re-
ceptors in the cerebral cortex to enhance calcium-depen-
dent glutamate release (Ferraro et al., 2001). The same
investigation also provided evidence that R-(�)-
WIN55212 can produce cannabinoid receptor-mediated
increases in spontaneous, calcium-dependent glutamate
release in primary cultures of rat cerebral cortex. The
reason for the apparent discrepancy between these glu-
tamate release data and previous electrophysiological
data that indicate an inhibitory effect of cannabinoids on
glutamate release (Table 6) remains to be elucidated. It
is possible that when administered in vivo, CB1 receptor
agonists have dose-dependent biphasic effects on corti-
cal and hippocampal acetylcholine release: a stimulant
effect at low doses and an inhibitory effect at higher
doses. This hypothesis has been put forward by Acquas
et al. (2001) to explain why, in some microdialysis ex-
periments with rats, cannabinoids increase acetylcho-
line release in prefrontal cortex and hippocampus (Ac-
quas et al., 2000, 2001), whereas in other microdialysis
experiments, they decrease acetylcholine release in
these same brain areas (Table 6).

Results from a number of recent investigations suggest
that endocannabinoids may act through presynaptic can-
nabinoid receptors to function as fast retrograde synaptic
messengers. More specifically, there is evidence to suggest
that the biosynthesis and nonvesicular release of endocan-
nabinoid molecules can be rapidly triggered by intense
activity at glutamatergic synapses in the hippocampus and
cerebellum. In the hippocampus, such release seems to
take place from pyramidal cells (Ohno-Shosaku et al.,
2001; Wilson and Nicoll, 2001). These cells receive synaptic
inputs from both (excitatory) glutamatergic neurons and
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(inhibitory) GABAergic neurons. It has been proposed that
pyramidal cells produce and release endocannabinoid mol-
ecules in response to elevations in intracellular calcium
levels induced by the synaptic release of glutamate, and
that the endocannabinoid molecules so produced then act
through CB1 receptors on GABAergic neurons to inhibit
calcium influx, thus decreasing GABA release onto the
pyramidal cells (depolarization-induced suppression of in-
hibition). In the cerebellum, glutamate released onto Pur-
kinje cells appears to be capable of triggering endocannabi-
noid production and release both by transiently increasing
calcium levels within these cells and by acting on postsyn-
aptic metabotropic glutamate receptors (mGluR subtype 1)
to activate G proteins without producing any elevation of
intracellular calcium (Kreitzer and Regehr, 2001a; Mae-
jima et al., 2001). Once released from the Purkinje cells,
the endocannabinoid molecules are thought to act through
cannabinoid receptors that are present on the terminals of
climbing fibers and of parallel fibers of cerebellar granule
cells to inhibit the ongoing glutamate release (depolariza-
tion-induced suppression of excitation) (Kreitzer and Re-
gehr, 2001a; Maejima et al., 2001). There is also evidence
that cerebellar depolarization-induced suppression of inhi-
bition results from the release of endocannabinoid mole-
cules from Purkinje cells onto presynaptic CB1 receptors
that are present on GABAergic basket and stellate cell
terminals (Diana et al., 2002; Kreitzer and Regehr, 2001b).
Although depolarization-induced suppression of excitation
should provide a negative feedback mechanism for damp-
ing down high synaptic activity, depolarization-induced
suppression of inhibition will have more complex effects.
The identity of endocannabinoid(s) that serve as fast ret-
rograde synaptic messengers remains to be established. In
the meantime, it is noteworthy that results from experi-
ments with primary cultures of rat cortical neurons have
indicated that glutamate and NMDA stimulate the forma-
tion of 2-arachidonoylglycerol and that anandamide forma-
tion can be stimulated by the simultaneous activation of
nicotinic and NMDA receptors with glutamate and carba-
chol although not by either of these agents alone (Stella
and Piomelli, 2001). There are also reports firstly, that
high-frequency in vivo electrical stimulation of rat Schaffer
collaterals (excitatory hippocampal CA1 afferents) pro-
vokes increased calcium-dependent release of 2-arachido-
noylglycerol but not of anandamide (Stella et al., 1997) and
secondly, that striatal concentrations of anandamide but
not of 2-arachidonoylglycerol can be increased in rats in
vivo by local perfusion with a depolarizing concentration of
potassium chloride or with the D2-like receptor agonist
quinpirole (Giuffrida et al., 1999). In addition, it has been
found that anandamide release in the periaqueductal gray
area of rat brain can be induced both by direct electrical
stimulation of this brain area and by subcutaneous injec-
tion of a chemical irritant into the hindpaw (Walker et al.,
1999).

IX. Immunological Effects

The identification of peripheral cannabinoid receptor
mRNA and protein in a variety of immune cell types,
and the recognition that cannabinoids inhibit adenylyl
cyclase in immune cells through a pertussis toxin-sensi-
tive mode (Kaminski et al., 1992, 1994; Kaminski, 1998),
suggest a role for cannabinoid receptors in the modula-
tion of immune cell functions. Kaminski et al. (1992)
demonstrated that suppression of the humoral immune
response by cannabinoids was mediated partially
through inhibition of adenylyl cyclase by a pertussis
toxin-sensitive G protein-coupled mechanism. �9-THC
and the synthetic nonclassical bicyclic cannabinoid
CP55940 inhibited the lymphocyte proliferative and the
sheep erythrocyte IgM antibody-forming cell responses
of murine splenocytes to PMA plus the calcium iono-
phore ionomycin. More direct evidence for a functional
linkage of cannabinoid receptors to modulation of im-
mune functional activities has been obtained through
the use of CB1- and CB2-selective antagonists.

Select functional activities of macrophages and mac-
rophage-like cells have been reported to be affected by
cannabinoids through cannabinoid receptors. McCoy et
al. (1995, 1999) demonstrated that �9-THC modulated
the capacity of macrophages to process antigens that are
necessary for the activation of CD4� T lymphocytes.
�9-THC was reported to inhibit the processing of intact
lysozyme in a dose-dependent fashion, and this inhibi-
tion was blocked by the CB2-selective antagonist
SR144528, indicating that the inhibitory effect was me-
diated, at least in part, through the CB2 receptor. The
CB1-selective antagonist SR141716A did not reverse the
suppression caused by �9-THC, consistent with no func-
tional linkage of this receptor to this event. These obser-
vations were confirmed using CB2 receptor knockout
mice (Buckley et al., 2000). �9-THC inhibited helper T
cell activation through macrophages derived from wild
type, but not from knockout mice, consistent with alter-
ations in antigen processing being mediated by the CB2
receptor.

Sacerdote et al. (2000) reported that in vivo and in
vitro treatment with the synthetic cannabinoid CP55940
decreased the in vitro migration of macrophages in the
rat and that this effect involved both CB1 and CB2
receptors. Spontaneous migration and formyl-methio-
nyl-leucine-phenylalanine-induced chemotaxis assessed
by the use of Boyden-modified microchemotaxis cham-
bers were affected. Both SR141716A and SR144528
were able to block the CP55940-induced inhibition of
spontaneous migration, although the CB2 antagonist
was more potent, and only the CB2 antagonist was able
to reverse the effect of CP55940 on formyl-methionyl-
leucine-phenylalanine-induced chemotaxis. The CB1 re-
ceptor has also been reported to mediate inhibition of
iNOS production by neonatal rat microglial cells (Waks-
man et al., 1999). The potent cannabinoid agonist
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CP55940 effected a dose-dependent inhibition of iNOS
that was reversed by SR141716A. However, no data
were provided regarding a role for the CB2 receptor in
this process. On the other hand, Stefano et al. (2000)
have reported that the endocannabinoid 2-arachidonoyl-
glycerol stimulated constitutive nitric oxide release from
human monocytes and vascular tissues and immuno-
cytes of the invertebrate Mytilus edulis and that this
effect is mediated through the CB1 receptor in human
cells and through an apparent cannabinoid receptor in
the invertebrate immunocytes. Furthermore, in both the
monocytes and the immunocytes, NO release elicited in
response to 2-arachidonoylglycerol exposure was
blocked by a CB1 antagonist but not by a CB2 antago-
nist. Inhibition of lipopolysaccharide-induced iNOS ex-
pression by murine RAW 264.7 macrophage-like cells by
cannabinoids and the putative cannabinoid CB2-like re-
ceptor agonist palmitoylethanolamide (Section XI.) also
has been reported (Gross et al., 2000). The inhibition of
nitric oxide production by R-(�)-WIN55212 but not
palmitoylethanolamide was attenuated significantly by
the CB2 receptor antagonist SR144528. These results
suggested that inhibition of RAW 264.7 cell lipopolysac-
charide-induced iNOS expression by R-(�)-WIN55212,
but not palmitoylethanolamide, is mediated by the CB2
receptor.

Gross et al. (2000) suggested an involvement of the
CB1 cannabinoid receptor in infection of macrophages by
the intracellular pathogen Brucella suis, a Gram-nega-
tive bacterium. The influence of the CB1 and CB2 recep-
tor antagonists, SR141716A and SR144528, and the
nonselective CB1/CB2 cannabinoid receptor agonists,
CP55940 and R-(�)-WIN55212, on macrophage infec-
tion by B. suis was examined. The intracellular multi-
plication of Brucella was dose-dependently inhibited in
cells treated with SR141716A but not with SR144528,
CP55940, or R-(�)-WIN55212. The agonists CP55940
and R-(�)-WIN55212 reversed the SR141716A-induced
effect, implicating an involvement of the CB1 receptor in
this process.

The involvement of both CB1 and CB2 receptors in
�9-THC-induced inhibition of natural killer activity has
been reported (Massi et al., 2000). In vivo administra-
tion of �9-THC to mice significantly inhibited natural
killer cytolytic activity without affecting concanavalin
A-induced splenocyte proliferation. Pretreatment with
the CB1 and CB2 cannabinoid receptor antagonists
SR141716 and SR144528 partially reversed the inhibi-
tion of natural killer cytolytic activity by �9-THC. How-
ever, the CB1 receptor antagonist was more effective
than the CB2 receptor antagonist. The parallel measure-
ment of interferon � (IFN-�) revealed that �9-THC sig-
nificantly reduced production of this cytokine. The CB1
and CB2 receptor antagonists completely reversed the
IFN-� reduction induced by �9-THC. Thus, both canna-
binoid receptor types were involved in the complex net-
work mediating natural killer cytolytic activity.

Sugiura et al. (2000) examined the effect of 2-arachi-
donoylglycerol on the intracellular free Ca2� concentra-
tions in human HL-60 promyelocytic leukemia cells that
express the CB2 receptor. It was found that 2-arachido-
noylglycerol induced a rapid transient increase in intra-
cellular free Ca2� concentrations. The Ca2� transient
induced by 2-arachidonoylglycerol was blocked by pre-
treatment of the cells with the CB2 receptor-specific
antagonist SR144528 but not with the CB1 receptor-
specific antagonist SR141716A, indicating the involve-
ment of the CB2 receptor but not the CB1 receptor in this
cellular response. Two other putative endogenous can-
nabinoid receptor ligands, anandamide and palmi-
toylethanolamide, were found to be a weak partial ago-
nist and an inactive ligand, respectively.

Carayon et al. (1998) reported that CB2 receptor ex-
pression is down-regulated at the mRNA and protein
levels during B-cell differentiation. The lowest expres-
sion was observed in germinal center proliferating cen-
troblasts of tonsillar tissues. The cannabinoid agonist
CP55940 enhanced CD40-mediated proliferation of both
virgin and germinal center B-cell subsets. This enhance-
ment was blocked by the CB2 receptor antagonist
SR144528 but not by the CB1 receptor antagonist
SR141716. It was also observed that CB2 receptors were
up-regulated in both B-cell subsets during the first 24 h
of CD40-mediated activation. In addition, SR144528
was shown to antagonize the stimulating effects of
CP55940 on human tonsillar B-cell activation evoked by
cross-linking of surface immunoglobulins (IC50 � 20 nM)
(Rinaldi-Carmona et al., 1998). These results suggest a
functional involvement of CB2 cannabinoid receptors
during B-cell differentiation.

A possible explanation for the capacity of cannabi-
noids to act through cannabinoid receptors so as to exert
a broad spectrum of immune function effects is that
these compounds exert differential expression of cyto-
kine profiles. �9-THC and other cannabinoid agonists
have been reported to augment the expression of im-
mune inhibitory Th2-type cytokines while inhibiting
that of Th1-type immune stimulatory cytokines. �9-THC
has been reported to inhibit antitumor immunity by a
CB2 receptor-mediated, cytokine-dependent pathway
(Zhu et al., 2000). It suppressed host immune reactivity
against lung cancer using two different weakly immu-
nogenic murine lung cancer models. �9-THC decreased
tumor immunogenicity, as indicated by the limited ca-
pacity for tumor-immunized, �9-THC-treated mice to
withstand tumor rechallenge. The immune inhibitory
Th2 cytokines, IL-10 and transforming growth factor,
were augmented, whereas the immune stimulatory Th1
cytokine, IFN-�, was down-regulated at both the tumor
site and in the spleens of �9-THC-treated mice. In vivo
administration of the CB2-selective antagonist
SR144528 blocked the effects of �9-THC. These findings
suggest the �9-THC promotes tumor growth by inhibit-
ing antitumor immunity by a CB2 receptor-mediated,
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cytokine-dependent pathway. �9-THC treatment of
BALB/c mice also suppressed immunity and early
IFN-�, IL-12, and IL-12 receptor �2 responses to Legio-
nella pneumophila (Klein et al., 2000). Levels of IL-12
and IFN-�, cytokines that promote the development of
Th1 cells as well as resistance to a challenge infection,
were suppressed by �9-THC. Results obtained with se-
lective cannabinoid receptor antagonists indicated that
both the CB1 and CB2 receptors were involved in this
process.

X. Anandamide Is a Vanilloid Receptor Agonist

There are several reports that the endocannabinoid
anandamide can act on rat or human vanilloid receptors
transfected into cultured cells to produce membrane cur-
rents or increase intracellular calcium (Zygmunt et al.,
1999; Smart et al., 2000, 2001; Ross et al., 2001). Anan-
damide also acts on naturally expressed vanilloid recep-
tors in neonatal rat dorsal root ganglia to produce mem-
brane currents (Tognetto et al., 2001) and in rat or
guinea pig isolated arterial strips to trigger both release
of calcitonin-gene-related peptide from perivascular sen-
sory nerves and relaxation of precontracted tissues (Zyg-
munt et al., 1999). Results from experiments with trans-
fected rat vanilloid receptors suggest that anandamide
has markedly less relative intrinsic activity at these
receptors than capsaicin (Ross et al., 2001). Methanan-
damide activates vanilloid receptors even less potently
or effectively than anandamide (Zygmunt et al., 1999;
Ralevic et al., 2000; Ross et al., 2001), whereas the
CB1/CB2 receptor agonists 2-arachidonoylglycerol and
HU-210 lack significant activity at these receptors alto-
gether (Zygmunt et al., 1999).

CB1 receptors are negatively coupled to calcium chan-
nels, whereas vanilloid receptors open cation channels.
Consequently, some experiments have been directed at
exploring the consequences of simultaneously activating
both receptor types. These have been performed with rat
cultured dorsal root ganglion neurons that are known to
coexpress CB1 and vanilloid receptors to a very high
degree (Ahluwalia et al., 2000). The results obtained
indicate that capsaicin-induced increases in intracellu-
lar calcium can be opposed by CB1 receptor activation
(Millns et al., 2001) and that CB1 receptor-mediated
inhibition of electrically evoked calcium mobilization
and calcitonin-gene-related peptide release can be op-
posed by the activation of vanilloid receptors (Tognetto
et al., 2001). Anandamide was found to be considerably
more potent in inhibiting calcium mobilization than in
activating vanilloid receptors. There is evidence that in
the mouse isolated vas deferens, inhibition of electrically
evoked contractions can be mediated both by presynap-
tic CB1 receptors through reduction of contractile trans-
mitter release and by vanilloid receptors that trigger the
release of neuropeptide molecules, which then presum-
ably inhibit contractile transmitter release (Pertwee,

1997; Ross et al., 2001). Anandamide appears to act
through both CB1 and vanilloid receptors to inhibit elec-
trically evoked contractions of this tissue preparation,
whereas the inhibitory effect of R-(�)-WIN55212 seems
to be mediated solely by CB1 receptors (Ross et al.,
2001).

The finding that anandamide is an agonist for both
cannabinoid and vanilloid receptors prompted the devel-
opment of the anandamide/capsaicin hybrid molecule,
arvanil, which has anandamide-like CB1 affinity, less
relative intrinsic activity than anandamide at CB1 re-
ceptors, and greater potency than anandamide as a va-
nilloid receptor agonist (De Petrocellis et al., 2000; Di
Marzo et al., 2000a). AM404 is another anandamide
analog that activates vanilloid receptors (Jerman et al.,
2000; Zygmunt et al., 2000; Ross et al., 2001), albeit at
concentrations no higher than those at which it inhibits
anandamide membrane transport (Beltramo et al., 1997;
Piomelli et al., 1999).

XI. Preliminary Pharmacological Evidence for
Non-CB1, Non-CB2 Cannabinoid Receptors

A. A Putative CB2-Like Cannabinoid Receptor

It has been found by Calignano et al. (1998, 2001) that
the endogenous fatty acid amide, palmitoylethanol-
amide, induces antinociceptive effects that are attenu-
ated by the CB2-selective antagonist SR144528 but not
by the CB1-selective antagonist SR141716A. These re-
sults were obtained in the mouse formalin paw test after
intraplantar injection of palmitoylethanolamide and in
the mouse abdominal stretch test after intraperitoneal
injection of this compound (Calignano et al., 1998, 2001).
The same investigators also found that in these bioas-
says, anandamide can be antagonized by SR141716A
but not SR144528, and that palmitoylethanolamide and
anandamide act synergistically. Palmitoylethanolamide
lacks significant affinity for CB1 or CB2 receptors (Dev-
ane et al., 1992b; Felder et al., 1993; Showalter et al.,
1996; Sheskin et al., 1997; Lambert et al., 1999). Conse-
quently, Calignano et al. (1998, 2001) have proposed the
existence of an SR144528-sensitive, non-CB2 cannabi-
noid receptor (“CB2-like” receptor). This putative recep-
tor is thought not to be a vanilloid receptor, because
palmitoylethanolamide does not share the ability of
anandamide or capsazepine to suppress paw-licking be-
havior when coadministered with capsaicin into mouse
hindpaw (Calignano et al., 2001). Evidence for the exis-
tence of CB2-like receptors has also been obtained in
experiments with the mouse vas deferens (Griffin et al.,
1997). Unlike anandamide or other established CB1 re-
ceptor agonists, palmitoylethanolamide does not show
antinociceptive activity in the mouse hot plate test, sug-
gesting that it does not interfere directly with neuro-
nally mediated transmission of pain signals to the cen-
tral nervous system (Calignano et al., 2001).
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B. A Putative SR141716A-Sensitive, Non-CB1, Non-
CB2 Cannabinoid Receptor

There is some evidence that mesenteric arteries of
mice and rats express receptors that can be activated by
anandamide and methanandamide but not by other es-
tablished CB1/CB2 receptor agonists and that are both
non-CB1, non-CB2, and nonvanilloid. More specifically,
anandamide and methanandamide can both induce a
concentration-related relaxation of rat or mouse precon-
tracted mesenteric arteries, whereas �9-THC, HU-210,
R-(�)-WIN55212, and 2-arachidonoylglycerol cannot
(Járai et al., 1999; Wagner et al., 1999). Other agonists
for this putative novel receptor are the cannabidiol an-
alogs, abnormal cannabidiol and O-1602 (Fig. 14), nei-
ther of which exhibits significant affinity for rat brain
CB1 receptors (Járai et al., 1999). Anandamide, meth-
anandamide, and abnormal cannabidiol also relax pre-
contracted mesenteric arteries obtained from CB1 recep-
tor knockout (CB1

�/�) mice or from CB1
�/�/CB2

�/�

double-knockout mice, confirming a lack of involvement
of either CB1 or CB2 receptors in this effect (Járai et al.,
1999).

The proposed mesenteric non-CB1, non-CB2 receptors
can be blocked by SR141716A, albeit less potently than
CB1 receptors. Thus, the relaxant effects of anandamide,
abnormal cannabidiol, and O-1602 in precontracted
mesenteric arteries obtained from rats or from CB1

�/�

or CB1
�/� mice have been found to be attenuated by

SR141716A at 0.5, 1, or 5 �M (Járai et al., 1999; Wagner
et al., 1999). At 10 �M, the nonpsychotropic plant can-
nabinoid, cannabidiol (Fig. 1), also attenuates the relax-
ation of rat or CB1

�/� mouse precontracted mesenteric
arteries induced by anandamide or abnormal cannabi-
diol (Járai et al., 1999; Wagner et al., 1999). This can-
nabinoid exhibits at least some degree of selectivity in
that it does not attenuate relaxation induced in such
vessels by acetylcholine, bradykinin, or sodium nitro-
prusside (Járai et al., 1999). The relaxant effect of ab-
normal cannabidiol in rat precontracted mesenteric ar-
teries has been found to be unaffected by a concentration
of capsazepine (5 �M) that can attenuate the relaxant
effect of capsaicin, ruling out any major involvement of
vanilloid receptors (Járai et al., 1999). SR141716A (1
�M) does not attenuate capsaicin-induced relaxation of
rat precontracted mesenteric arteries (Járai et al.,
1999).

Anandamide-induced vasorelaxation is detectable
both in endothelium-intact and in endothelium-denuded
precontracted mesenteric arteries of rats (Wagner et al.,
1999; Kunos et al., 2000). However, SR141716A only
attenuates this vasorelaxant effect of anandamide in the
presence of endothelium, and the relaxant effects of
abnormal cannabidiol and O-1602 in rat precontracted
mesenteric arteries are also largely endothelium-depen-
dent (Járai et al., 1999). It seems likely, therefore, that
there are at least two mechanisms by which anandam-
ide relaxes precontracted mesenteric arteries, and that
the SR141716A-sensitive, non-CB1, non-CB2 receptors
for anandamide proposed by Kunos and colleagues
(2000) are present on the endothelium but not on mes-
enteric smooth muscle.

C. A Putative Receptor for Anandamide and R-(�)-
WIN55212

Evidence has emerged for the existence in mouse
brain of a G protein-coupled receptor that can be acti-
vated by anandamide and R-(�)-WIN55212 but not by
other CB1/CB2 agonists (Di Marzo et al., 2000b; Breivo-
gel et al., 2001). More specifically, it has been found that
[35S]GTP�S binding can be activated in brain mem-
branes from CB1

�/� mice by anandamide (EC50 � 3.6
�M) and R-(�)-WIN55212 (EC50 � 1.8 �M) but not by
�9-THC, HU-210, or CP55940. These properties of this
possible new cannabinoid receptor distinguish it from
the CB2 receptor for which �9-THC, HU-210, and
CP55940 are all established agonists. They also distin-
guish it both from the SR141716A-sensitive, anandam-
ide-sensitive, R-(�)-WIN55212-insensitive receptor that
George Kunos’ group has postulated to be present in
mesenteric arteries (Kunos et al., 2000; Section XI.B.)
and from the vanilloid receptor, which is not coupled to
G proteins and is unresponsive to R-(�)-WIN55212
(Zygmunt et al., 1999). Activation of [35S]GTP�S binding
by anandamide and R-(�)-WIN55212 was detected inFIG 14. The structures of abnormal cannabidiol and O-1602.
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membranes from CB1
�/� whole brain and from CB1

�/�

cerebral cortex, midbrain, hippocampus, diencephalon,
and brain stem but not in membranes from CB1

�/�

caudate-putamen/globus pallidus or cerebellum, brain
areas that are well populated with CB1 receptors in
wild-type animals (Breivogel et al., 2001). Near maximal
concentrations of anandamide and R-(�)-WIN55212
were not fully additive in their effects on [35S]GTP�S
binding, supporting the hypothesis that these two
agents act through a common mechanism (Breivogel et
al., 2001). Membranes from CB1

�/� cerebral cortex, hip-
pocampus, and brain stem were found to contain specific
binding sites for [3H]R-(�)-WIN55212 but not
[3H]CP55940 (Breivogel et al., 2001). However, neither
of these tritiated ligands exhibited detectable specific
binding in membranes from CB1

�/� diencephalon, mid-
brain, caudate-putamen/globus pallidus, cerebellum, or
spinal cord. Membranes from some CB1

�/� brain areas
(brain stem, cortex, midbrain, and spinal cord) but not
others (basal ganglia, cerebellum, diencephalon, and
hippocampus) also contained specific binding sites for
[3H]SR141716A. Even so, it is unlikely that this com-
pound is a ligand for the proposed R-(�)-WIN55212/
anandamide receptor, as the distribution patterns of
[3H]R-(�)-WIN55212 and [3H]SR141716A binding sites
in CB1

�/� brain are different. Moreover, although con-
centrations of SR141716A above 1 �M were found to
attenuate the stimulatory effects of anandamide and
R-(�)-WIN55212 on [35S]GTP�S binding to CB1

�/�

membranes, this attenuation could be attributed en-
tirely to the inhibition of [35S]GTP�S binding that was
produced by SR141716A in the same concentration
range (Breivogel et al., 2001).

Other evidence for the presence of an R-(�)-
WIN55212-sensitive non-CB1 receptor in mouse brain
was obtained recently by Hájos et al. (2001) in electro-
physiological experiments with hippocampal slices ob-
tained from CB1

�/� or wild-type mice. Their results sug-
gest that although R-(�)-WIN55212 probably acts
through presynaptic CB1 receptors in the CA1 region of
the hippocampus to inhibit GABA release, it acts
through presynaptic non-CB1 receptors to inhibit gluta-
mate release in this brain region. This conclusion is
consistent with previous reports that CB1 immunostain-
ing cannot be reliably detected in hippocampal axon
terminals forming glutamatergic synapses (Katona et
al., 1999, 2000; Hájos et al., 2000). It is noteworthy that
the inhibitory effect of R-(�)-WIN55212 on glutamater-
gic transmission observed by Hájos et al. (2001) in hip-
pocampal tissue from CB1

�/� mice could be reversed by
1 �M SR141716A.

D. Other Putative Types of Mammalian Cannabinoid
Receptor

Results obtained by Sandra Welch’s group in experi-
ments with rats and mice have prompted the hypothesis
that there may be more than one subtype of CB1 recep-

tor in the spinal cord. Thus, Welch et al. (1998) have
found that the potency of intraperitoneal SR141716A
against antinociception in the mouse tail-flick test in-
duced by intrathecal administration of certain estab-
lished cannabinoid receptor agonists is agonist-depen-
dent. SR141716A was most potent against CP55940,
less potent against �9-THC and �8-THC, and least po-
tent against anandamide. As detailed elsewhere (Pert-
wee, 2001b), Welch’s group also found that, in mice,
intrathecal morphine interacts synergistically with in-
trathecal �9-THC but not with intrathecal anandamide
or CP55940. In addition, there is some evidence for
signaling differences between the mechanisms mediat-
ing the antinociceptive effects of intrathecal �9-THC and
anandamide in mice (Welch et al., 1995; Pertwee,
2001b). There is also evidence from rat experiments that
although intrathecal �9-THC triggers spinal release of
dynorphins A and B, intrathecal CP55940 increases the
release of dynorphin B but not dynorphin A and intra-
thecal anandamide fails to affect the release of either
peptide (see Houser et al., 2000; Pertwee, 2001b). Signs
of differences between cannabinoid receptor populations
in mouse spinal cord and brain have also been reported
by Welch’s group (Pertwee, 2001b).

XII. Conclusions

Genes for two types of cannabinoid receptor, CB1 and
CB2, have been characterized, and the existence of en-
dogenous agonists for these receptors has also been con-
clusively demonstrated. The use of cloned receptors ex-
pressed in cell lines has greatly facilitated elucidation of
the coupling characteristics of CB1 and CB2 receptors
and the development and validation of selective ligands
for these receptors. The availability of highly selective
and potent CB1 and CB2 agonists and antagonists/in-
verse agonists has assisted in the characterization of the
pharmacological properties of naturally expressed can-
nabinoid receptors, and the development of selective
antibodies has allowed detailed localization of cannabi-
noid receptors, particularly of the CB1 receptor. Some
CB1 receptors are present on nerve terminals, and these
mediate inhibition of transmitter release when activated
by agonists for these receptors that are either released
endogenously or administered exogenously. Less is
known about the physiological roles of CB2 receptors,
which most likely include modulation of cytokine release
from immune cells. There is some pharmacological evi-
dence that supports the existence of additional types or
subtypes of cannabinoid receptor, the characterization of
which is being aided by the availability of CB1, CB2, and
CB1/CB2 knockout mice. However, critical evidence in
the form of genes encoding receptors with the appropri-
ate pharmacology is currently lacking. Given the rather
low sequence similarity between CB1 and CB2, it may be
difficult to identify candidate receptors with more diver-
gent pharmacology. If such genes are identified, it will
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be important to define their endogenous agonists fully to
determine how broadly the cannabinoid receptor family
should be defined.
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(1994) SR141716A, a potent and selective antagonist of the brain cannabinoid
receptor. FEBS Lett 350:240–244.

Rinaldi-Carmona M, Barth F, Millan J, Derocq J-M, Casellas P, Congy C, Oustric D,
Sarran M, Bouaboula M, Calandra B, et al. (1998) SR 144528, the first potent and
selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther
284:644–650.

Rinaldi-Carmona M, Calandra B, Shire D, Bouaboula M, Oustric D, Barth F, Case-
llas P, Ferrara P, and Le Fur G (1996a) Characterization of two cloned human CB1
cannabinoid receptor isoforms. J Pharmacol Exp Ther 278:871–878.

Rinaldi-Carmona M, Pialot F, Congy C, Redon E, Barth F, Bachy A, Brelière J-C,
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