International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology

RICHARD R. NEUBIG, MICHAEL SPEDDING, TERRY KENAKIN, AND ARTHUR CHRISTOPOULOS

Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (R.R.N.); Institute de Recherches Internationales Servier, Neuilly sur Seine, France (M.S.); Systems Research, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina (T.K.); and Department of Pharmacology, University of Melbourne, Parkville, Australia (A.C.)

I. Introduction

This update was undertaken to incorporate new information about multiple receptor conformational states and the recognition that multiple distinct agonist responses may result that have different pharmacological properties (Kenakin, 1995). Nomenclature concerning the actions of allosteric (allotopic) ligands is presented based on recent literature (Christopoulos and Kenakin, 2002). The implications of high receptor numbers in heterologous expression systems for interpretation of agonist function are discussed. Additional changes address the fact that many receptors are not single mac-
romolecules but are made up of multiple subunits. Finally, there are new recommendations regarding nomenclature for equilibrium constants.

II. Working Definition of a Receptor

A cellular macromolecule, or an assembly of macromolecules, that is concerned directly and specifically in chemical signaling between and within cells. Combination of a hormone, neurotransmitter, drug, or intracellular messenger with its receptor(s) initiates a change in cell function. Thus NC-IUPHAR does not classify simple binding sites, without function (although truncated proteins without signaling function may be designated as such, to avoid confusion). Furthermore, a receptor may consist of several proteins, called subunits. In some cases the large number of combinatorial possibilities for assembly of multiple subunits may require NC-IUPHAR to use an interim nomenclature based on the individual subunits (Spedding et al., 2002). Nevertheless, the ultimate goal is to define the multi-subunit assemblies that occur in vivo.

The regions of the receptor macromolecule to which ligands bind are referred to collectively as the recognition site(s) of the receptor. Those at which the endogenous agonist binds are termed primary or orthosteric sites whereas other ligands may act through allosteric sites (see Table 1).

III. Use of Drugs in Definition of Receptors or of Signaling Pathways

When using drugs to define receptors or signaling pathways, it would be desirable to use a drug that acts only on the receptor or biological site of interest at all concentrations and doesn’t interact with others at any achievable concentration. Unfortunately, there are very few or no drugs with this ideal property. Fortunately, there are numerous drugs with a detectable potency difference (in exceptional cases >10-fold but usually much less) between their primary target and other related receptors. Because these differences are not absolute, claims for the involvement of a particular receptor, or signaling protein, based on the use of such agents should be backed up by testing with multiple agents, and wherever possible, full concentration-response curves should be obtained for the definition of responses in in vitro experiments. Full dose-response curves should also be obtained in in vivo experiments, if ethical considerations allow.

A. The Expression of Amount of Drug: Concentration and Dose

1. Concentration. It is recommended that the molar concentration of substance X be denoted by either [X] or c_X, with the former preferred. Decimal multipliers should be indicated by the use of either Le Système International d’Unités (International System of Units) prefixes (e.g., μM, nM) or by powers of ten (e.g., 3×10^{-8} M), with the former preferred.

2. Dose. In some circumstances (e.g., in therapeutics and clinical pharmacology, in in vivo experiments, and when tissues are perfused in vitro and exposed to a bolus application of drug), absolute drug concentrations are uncertain, and it becomes more appropriate to specify the quantity of drug administered. This may be done in terms of either mass or molar quantity. Units and routes of administration should be specified. In the case of in vivo experiments with animals, the quantity of drug is to be expressed per unit of animal mass (e.g., mol/kg, mg/kg). In therapeutics, milligrams per kilogram will normally be appropriate. Negative indices should be used where confusion otherwise arises (e.g., mg min$^{-1}$ kg$^{-1}$).

B. General Terms Used to Describe Drug Action

Table 1.

C. Experimental Measures of Drug Action

1. General Measures. Table 2.

2. Agonists. Table 3.

3. Antagonists. Table 4.

D. Terms and Procedures Used in the Analysis of Drug Action

1. The Quantification of Ligand-Receptor Interactions. Table 5.

3. Action of Antagonists. Table 7.

IV. Appendix

A. Microscopic and Macroscopic Equilibrium Constants

Microscopic and macroscopic equilibrium constants should be distinguished when describing complex equilibria, which occur with all agonists. The latter refers to a single constant describing the overall equilibrium (i.e., the value that would be obtained in a ligand binding experiment), whereas the former refers to each individual constant that describes each reaction step within the equilibrium. For the scheme

$$L + R \rightarrow LR \rightarrow LR^*$$

the macroscopic equilibrium dissociation constant (denoted here as K_{app} for “$K_{apparent}$") is given by

$$K_{app} = \frac{K_1 K_2}{1 + K_2}$$

Here K_1 and K_2 are the microscopic equilibrium constants for the first and second reactions, respectively. Note that in this scheme, saturation radioligand binding assays and Furchgott’s (1966) irreversible antagonist method for determining the equilibrium dissociation
constant for an agonist would each provide an estimate of K_{app} rather than K_1.

This distinction is also important when considering those receptors (e.g., ligand-gated ion channels) that have more than one binding site for the agonist.

TABLE 1

<table>
<thead>
<tr>
<th>Term</th>
<th>Suggested Usage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonist</td>
<td>A ligand that binds to a receptor and alters the receptor state resulting in a biological response. Conventional agonists increase receptor activity, whereas inverse agonists (see Table 6) reduce it.</td>
<td>“Receptor activity” may be determined by: the proportion of receptor in an active conformation (e.g., R^* vs. R), post-translational modifications (e.g., phosphorylation), or some other mechanism such as subcellular targeting. Agonists may act by combining either with the same site(s) as the endogenous agonist (primary or orthosteric site) or, less commonly, with a different region of the receptor macromolecule (allosteric or allotopic site). Agonists in the second category are sometimes referred to as allosteric (allosteric) activators or allosteric (allosteric) agonists. Some agonists (e.g., glutamate) may only be effective in the presence of another ligand (e.g., glycine in the case of glutamate) that binds to a different site on the receptor macromolecule. Under these circumstances, glutamate is referred to as the primary agonist and glycine as a co-agonist.</td>
</tr>
<tr>
<td>Antagonist</td>
<td>A drug that reduces the action of another drug, generally an agonist. Many antagonists act at the same receptor macromolecule as the agonist. (see Table 7 for more details). Antagonism may also result from combination with the substance being antagonized (chemical antagonism). Functional antagonism occurs at cellular sites distinct from the receptor mediating the agonist response.</td>
<td>Functional antagonism may include mechanisms such as: indirect antagonism, which is competition by the inhibitor for the binding site of an intermediate macromolecule that links the binding of the administered agonist to the effect observed (e.g., adrenoceptor antagonist blockade of the actions of tyramine or protein kinase A inhibitors blocking β adrenoceptor agonist effects) or physiological antagonism in which the action of one agonist exerts an opposite effect to that of the original agonist—usually through a different receptor (e.g., muscarinic agonist inhibition of β adrenoceptor-stimulated adenyl cyclase activity in the heart).</td>
</tr>
<tr>
<td>Allosteric (allosteric) modulator</td>
<td>A ligand that increases or decreases the action of an (primary or orthosteric) agonist or antagonist by combining with a distinct (allosteric or allotopic) site on the receptor macromolecule.</td>
<td>Allosteric (allosteric) enhancers are modulators that enhance orthosteric ligand affinity and/or agonist efficacy while having no effect on their own. Allosteric (allosteric) antagonists are modulators that reduce orthosteric ligand affinity and/or agonist efficacy. Allosteric (allosteric) agonists or activators are ligands that are able to mediate receptor activation in their own right by binding to a recognition domain on the receptor macromolecule that is distinct from the primary (orthosteric) site. Neutral allosteric (allosteric) ligands bind to an allosteric site without affecting the binding or function of orthosteric ligands but can still block the action of other allosteric modulators that act via the same allosteric site.</td>
</tr>
<tr>
<td>Syntopic (orthosteric) interaction</td>
<td>An interaction between ligands that bind to the same recognition site, or to recognition sites that overlap, on the receptor macromolecule.</td>
<td>This term is most commonly associated with the description of competitive interactions between ligands that bind to the primary (orthosteric) site on a receptor, but need not be restricted to this specific situation. A syntopic interaction can also occur between different ligands that share a similar recognition domain (e.g., a common allosteric site) anywhere on the receptor macromolecule.</td>
</tr>
<tr>
<td>Allosteric (allosteric) interaction</td>
<td>An interaction between ligands that bind to distinct, non-overlapping, recognition sites on the receptor macromolecule.</td>
<td>The terms syntopic and allosteric are recommended to distinguish between interactions that occur at a common (same) site versus interactions that occur between different sites, respectively. Accordingly, the term allosteric can be used interchangeably with the term allosteric when describing cross-interactions between different sites on a receptor macromolecule. The term syntopic should be confined to defining interactions at a common site and should not be used interchangeably with the term orthosteric; the latter term specifically refers to the primary (endogenous agonist-binding) recognition site on the receptor.</td>
</tr>
<tr>
<td>Allosteric transition</td>
<td>The isomerization of a receptor macromolecule between multiple conformational states.</td>
<td>Different authors have used the term, allosteric, in different ways (see Colquhoun, 1998; Christopoulos and Kenakin, 2002). One common use of the term is to describe any mechanism that involves the isomerization of a receptor between two or more conformational states that can each display a different affinity for a given ligand. A second common use of the term is to explicitly describe an interaction between two topographically distinct recognition sites on a receptor macromolecule in a given conformational state. In order to accommodate both uses, it is recommended that the term allosteric transition be used when describing receptor isomerization mechanisms, and the term allosteric (or allosteric) interaction, be used when explicitly describing a cross-interaction between multiple ligands concomitantly bound to a receptor macromolecule.</td>
</tr>
</tbody>
</table>

B. Schild Equation and Plot—Further Detail

The Schild equation is based on the assumptions that (a) agonist and antagonist combine with the receptor macromolecule in a freely reversible but mutually exclusive manner, (b) equilibrium has been reached and that
The relationship between concentration and effect: Hill equation

In the following, drug action is expressed in terms of the effect, \(E \), produced when an agonist, \(A \), is applied at a concentration \([A] \). The relationship between \(E \) and \([A]\) can often be described empirically by the Hill equation, which has the form:

\[
E = \frac{[A]^n}{K^n + [A]^n}
\]

where \(K \) is the dissociation constant of the agonist and \(n \) is the Hill coefficient. \([A]_{50}\) is the concentration that produces an effect that is 50% of \(E_{\text{max}} \).

Potency

An expression of the activity of a drug, in terms of the concentration or amount needed to produce a defined effect, an imprecise term that should always be further defined (see EC\(_{50}\), IC\(_{50}\), etc.).

Drug potency depends on both receptor (affinity, efficacy) and tissue (receptor numbers, drug accessibility) parameters. The term is sometimes, incorrectly, used to refer to the maximum effect attainable.

TABLE 2
Experimental measures of drug action: general

<table>
<thead>
<tr>
<th>Term</th>
<th>Suggested Usage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC({50}) or ([A]{50})</td>
<td>The molar concentration of an agonist that produces 50% of the maximal possible effect of that agonist. Other percentage values (EC({20}), EC({40}), etc.) can be specified. The action of the agonist may be stimulatory or inhibitory.</td>
<td>The mass concentration (g/l) should be used if the molecular weight of the test substance is unknown. It may sometimes be preferable to express the activity of a drug in terms of the concentration that causes a specified change in a baseline measurement (e.g., a 20 mm Hg change in perfusion pressure; a 30% increase in a muscle twitch). If the EC({50}) or ([A]{50}) terminology is to be used in this context, the appropriate units must be included (e.g., (EC_{30mm}) or ([A]{30})) to avoid confusion with EC({20}) or ([A]{30}) as here defined. Because the relation between receptor occupancy and response is usually nonlinear, the EC({50}) generally does not directly measure the equilibrium dissociation constant of the agonist and therefore is only a descriptive term. The term ED({50}) is sometimes used interchangeably with EC({50}), but the former term is best reserved for in vivo use where actual doses, as opposed to concentrations, are used.</td>
</tr>
<tr>
<td>ED(_{50})</td>
<td>Either the dose of a drug that produces, on average, a specified all-or-none response in 50% of a test population or, if the response is graded, the dose that produces 50% of the maximal response to that drug.</td>
<td>Units (e.g., mg/kg, mmol/kg or mg/l, mmol/l when a tissue is perfused) to be given. Applicable to in vivo measurements and to those in vitro experiments (e.g., with a perfused tissue) in which absolute concentration is uncertain. Otherwise use EC(_{50}).</td>
</tr>
<tr>
<td>pEC({50}) or p([A]{50})</td>
<td>The negative logarithm to base 10 of the EC(_{50}) of an agonist.</td>
<td>The term pD(_2) has also been used, particularly in the earlier literature.</td>
</tr>
<tr>
<td>Maximal agonist effect</td>
<td>The maximal effect that an agonist, whether conventional or inverse, can elicit in a given tissue under particular experimental conditions. It is best expressed as a fraction of the effect produced by a full agonist of the same type acting through the same receptors under the same conditions.</td>
<td>Also referred to historically as intrinsic activity and designated as (a). The generic term maximal agonist effect is preferred because maximal effects are highly dependent on the experimental conditions such as tissue used, level of receptor expression, the type of measurement used (e.g., (IP_1), vs. Ca(^{2+}), vs. contraction or secretion), and changes in signal transduction efficiency. Thus intrinsic activity should not be used as a primary pharmacologic characteristic of an agonist as it is not a constant. A simple description of "maximal effect in (specified) assay" is preferred.</td>
</tr>
<tr>
<td>EMR</td>
<td>Equi-effective molar concentration ratio; the ratio of the molar concentrations of test and reference substances that produce the same biological effect (whether activation or inhibition).</td>
<td>Should be specified only if the log concentration-effect curves for the substances being compared are parallel.</td>
</tr>
<tr>
<td>EDR</td>
<td>Equi-effective dose ratio, as above, but used when doses rather than concentrations are compared, as in vivo work.</td>
<td>EMR, equi-effective molar concentration ratio; EDR, equi-effective dose ratio.</td>
</tr>
</tbody>
</table>

TABLE 3
Experimental measures of drug action: agonists

<table>
<thead>
<tr>
<th>Term</th>
<th>Suggested Usage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>([A]{50}) in the Hill equation is sometimes denoted by (K), and (E{\text{max}}) by (a). The choice between ([A]_{50}) and (K) will depend on the directness of the measurement. The former is appropriate if an indirect action, such as the contraction of an intact smooth muscle preparation, is observed. However, in a ligand binding experiment, (K) would be preferable, although the value of (K) corresponds to a single, microscopic, equilibrium dissociation constant (even if (n_H) is unity) will depend on the circumstances (see Section IV. A.). The Hill equation and the logistic equation are closely related but not identical (see Section IV. C.).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug potency depends on both receptor (affinity, efficacy) and tissue (receptor numbers, drug accessibility) parameters. The term is sometimes, incorrectly, used to refer to the maximum effect attainable.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The ratio of the concentration of an agonist that produces a specified response (often but not necessarily 50% of the maximal response to that agonist in an assay) in the presence of an antagonist, to the agonist concentration that produces the same response in the absence of antagonist.

This term is used in a number of ways: (i) the molar concentration of an antagonist that reduces the response to an agonist by 50%; the concentration of agonist should be given; (ii) the molar concentration of an unlabeled agonist or antagonist that inhibits the binding of a radioligand by 50%; the concentration of radioligand should be given; (iii) the molar concentration of an inhibitory agonist that reduces a response by 50% of the maximal inhibition that can be attained; this latter usage is not recommended—instead the term, EC50, should be used since this is an agonist effect.

The negative logarithm to base 10 of the molar concentration of an antagonist that makes it necessary to double the concentration of the agonist needed to elicit the original submaximal response obtained in the absence of antagonist (Schild, 1947, 1949).

The ratio of the concentration of an agonist that produces a specified response (often but not necessarily 50% of the maximal response to that agonist in an assay) in the presence of an antagonist, to the agonist concentration that produces the same response in the absence of antagonist.

In functional studies, the antagonist IC50 is most useful if the concentration of the stimulatory agonist is submaximal. Higher concentrations of the agonist will increase the IC50 of the competitive antagonist well above its equilibrium dissociation constant. Even with low agonist concentrations, the IC50 from functional studies, like an agonist EC50 or maximal response, is dependent on the conditions of the experiment (tissue, receptor expression, type of measurement, etc.). Thus, IC50 should only be used for comparison of drugs under the specific conditions of the experiment and may have limited relevance to absolute affinity. However, when determined in radioligand binding studies (point (i)) under equilibrium conditions for competitive ligands, the IC50 may be converted to a true dissociation constant using the Cheng and Prusoff equation (Cheng and Prusoff, 1973), which takes into consideration the concentration of the radioligand.

An empirical measure of the activity (in concentration terms) of an antagonist that is not dependent on how the antagonist acts. The pA2 is determined by measuring the value of the concentration ratio r at several antagonist concentrations, allowing an estimate of the antagonist concentration at which r would be 2. This is commonly done by graphical extrapolation or interpolation (Arunlakshana and Schild, 1959). If certain experimental conditions are fulfilled, the value of pA2 can provide an estimate of the equilibrium dissociation constant for the combination of a competitive antagonist with its binding site (see Section IV. B. for further details).

For an antagonist to be classified as reversible and competitive on the basis of experiments in which a biological response is measured, the following criteria must hold:

1. In the presence of the antagonist, the log agonist concentration-effect curve should be shifted to the right in a parallel fashion.
2. The relationship between the extent of the shift (as measured by the concentration ratio) and the concentration of the antagonist should follow the Schild equation over as wide a range of antagonist concentrations as practicable. Usually, the data are presented in the form of the Schild plot, and adherence to the Schild equation is judged by the finding of a linear plot with unit slope (see Note 2 below). Nonlinearity and slopes other than unity can result from many causes. For example, a slope greater than 1 may reflect incomplete equilibration with the antagonist or depletion of a potent antagonist from the medium, as a consequence either of binding to receptors or to other structures. A slope that is significantly less than 1 may indicate removal of agonist by a saturable uptake process, or it may arise because the agonist is acting at more than one receptor (the Schild plot may then be nonlinear). See Kenakin (1997) for a detailed account.

Note 1: The finding that the Schild equation is obeyed over a wide range of concentrations does not prove that the agonist and antagonist act at the same site. All that may be concluded is that the results are in keeping with the hypothesis of mutually exclusive binding, which may of course result from competition for the same site but can also arise in other ways (see Allosteric Modulators in Table 1 and Competitive Antagonism in Table 7).

Note 2: Traditional Schild analysis is based on the use of linear regression. Nowadays, with the almost ubiquitous availability of computers in most research environments, a more accurate approach to performing Schild analysis is to use computerized nonlinear regression to directly fit agonist/antagonist concentration-response data to the Gaddum/Schild equations. The advantages of this approach over traditional Schild analysis are described elsewhere (Waud, 1975; Black et al., 1985; Lew and Angus, 1995). One simple
Terms and procedures used in the analysis of drug action: the quantification of ligand-receptor interactions

<table>
<thead>
<tr>
<th>Term</th>
<th>Suggested Usage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Concentration” of receptors</td>
<td>$[R]$ for notional concentration of ligand-free receptors; $[R]2$ or $[R]{tot}$ for total receptors.</td>
<td>Proportional to the quantity B_{max} (the maximal specific binding of a ligand, often expressed in units of mol ligand/mg protein, or ligands bound/cell) measured in radioligand binding studies, in the absence of complications. The relationship between B_{max} and N is influenced by the number of ligand binding sites possessed by each receptor. For ligand-gated ion channels, this is generally greater than one. Also referred to as receptor density.</td>
</tr>
<tr>
<td>Number of receptors, N</td>
<td>The total number of receptors, expressed in terms of unit area of membrane, or per cell, or per unit mass of protein.</td>
<td></td>
</tr>
<tr>
<td>Proportion of receptors in specified states</td>
<td>p_{LR} for proportion (fraction) of receptors or binding sites free of ligand, p_{LR} for the proportion of receptors or binding sites occupied by the ligand L. If a distinction is made between inactive and active states of the receptor, then p_{LR} refers to the inactive state, p_{LR} for the proportion of receptors in which L occupies its binding site(s) and which are in an active state, p_{LR} for the proportion of receptors in which L occupies its binding site(s) and which are in a distinct (R') state that differs from both the inactive and the fully active states. This may exhibit some classical signaling activity or it may differ from R or R' in another property such as activation of different effectors, rates of internalization, or cellular trafficking (Berg et al., 1998; Kenakin and Onaran, 2002).</td>
<td></td>
</tr>
<tr>
<td>Rate constants for the binding of a ligand</td>
<td>k_{-1} for the association (forward) rate constant, and k_{-1} for the dissociation (backward) rate constant, in the reaction $L + R \rightleftharpoons LR$.</td>
<td>Units to be specified (M$^{-1}$ s$^{-1}$ or M$^{-1}$ min$^{-1}$ for k_{-1}, s$^{-1}$ or min$^{-1}$ for k_{-1} in the scheme illustrated). Lowercase symbols to be used to denote rate constants (cf., uppercase for equilibrium constants). Here, L represents a ligand and R the unoccupied binding site.</td>
</tr>
<tr>
<td>Equilibrium dissociation constant for ligand-receptor interactions, K</td>
<td>In the simple scheme below, K is numerically equal to the ratio of dissociation to association rate constants (k_{-1}/k_{-1}), and has the dimension M (mol/l).</td>
<td>K can be used in combination with subscripts for clarity. Lowercase letter subscripts are used to designate the type of experimental approach used to determine the constant (e.g., K_a, K_b, K_{-a}—see below) and uppercase letter subscripts designate the compound to which the constant refers (e.g., K_A, K_B, or $K_{A,B}$, $K_{A,B}$ for compounds A and B, respectively). The choice of lowercase subscript that is used in combination with K is based on the following conventions:</td>
</tr>
<tr>
<td>K_0 refers to the equilibrium dissociation constant of a ligand determined directly in a binding assay using a labeled form of the ligand.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_1 refers to the equilibrium dissociation constant of a ligand determined in inhibition studies. The K_i for a given ligand is typically (but not necessarily) determined in a competitive radioligand binding study by measuring the inhibition of the binding of a reference radioligand by the competing ligand of interest under equilibrium conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_0 refers to the equilibrium dissociation constant of a ligand (traditionally, a competitive antagonist) determined by means of a functional assay.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When a subscript indicates the type of method used, K_a, K_b, and K_{-a} should be used in preference to $K_{a,b}$, $K_{a,b}$, and $K_{a,b}$ respectively. Uppercase subscripts (either alphabetical, e.g., K_A, numerical, e.g., K_3, or a combination of the two, e.g., $K_{A,B}$) are recommended only to identify the particular ligands and equilibria under consideration, especially when dealing with more complicated schemes involving several steps such as binding followed by isomerization. Two alternative examples of such a scheme are shown below:

$$L + R \rightleftharpoons LR$$

$$L + R \rightleftharpoons LR$$

Note: The reciprocal of the equilibrium dissociation constant (the *equilibrium association constant* or *affinity constant*, in units of M$^{-1}$) can also be used, although this is not preferred.

Continued.
There are two major benefits to using the \(\log K \) measures of pharmacological potency rather than the equilibrium constant \(K \) itself. Since pharmacological potency often ranges over many orders of magnitude \((K \text{ values from } 10^{-10} \text{ M to } >10^{-3} \text{ M}) \), it is easier to present and discuss these differences in a \(\log K \) form \((\text{i.e., values generally range from about } 10 \text{ to } 3). More importantly from a statistical point of view, concentration parameters are generally distributed in a log normal manner \((\text{Christopoulos, 1998}) \) so standard deviations are symmetrical for \(\log K \) values but not for \(K \) values.

Hill-Langmuir equation
\[
\frac{[L]}{[L] + K} = \frac{[L]_{LR}}{[L]_{LR} + K}
\]
in which \(K \) is the equilibrium dissociation constant.

* The original usage of \(K_B \) by Gaddum represented the binding constant of ligand \(B \) to distinguish it from that of ligand \(A \). More recent usage of \(K_B \) or \(pK_B \) usually refers to values derived from pharmacological blocking experiments. Thus, to maintain consistency with the use of lower case subscripts for inhibition and direct binding experiments \((\text{i.e., } K_I \text{ and } K_R) \) we recommend using \(K_s \) or \(pK_s \) for estimates of the dissociation constant that are derived from pharmacological blocking experiments \((\text{e.g., Schild plots}). \)

TABLE 6
Terms and procedures used in the analysis of drug action: agonists

<table>
<thead>
<tr>
<th>Term</th>
<th>Suggested Usage</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Desensitization, fade, tachyphylaxis | Overlapping terms that refer to a spontaneous decline in the response to a continuous application of agonist, or to repeated applications or doses. The following usages are suggested: fade, the waning of a response in the continued presence of agonist; tachyphylaxis, a decline in the response to repeated applications or doses of agonist. No mechanism is implied by either term. It is recommended that desensitization be used when the fade or tachyphylaxis is considered to be a direct consequence of receptor activation. | In Stephenson’s formulation \((1956) \), combination of an agonist with its receptors is considered to result in a signal or “stimulus” \(S \), which is equated to the product of the efficacy of the agonist \(A \) and the proportion of receptors occupied: \(S_A = \varepsilon_A [R]_T \).
When the response of a tissue is half-maximal, \(S \) is assigned the value unity. Hence, a partial agonist that when occupying all the receptors produces a maximal response that is half that of a full agonist (under the same experimental conditions), has an efficacy of unity. Efficacy is both agonist- and tissue-dependent.

The expression \(\text{intrinsic efficacy} \), \(\varepsilon \), was introduced by Furchgott \((1966) \) to denote the notional efficacy associated with a single receptor: \(\varepsilon = [R]_T \) in which \([R]_T \) indicates the total concentration of receptors. This term is now also used in a wider sense \((\text{see below}). Black and Leff \((1983) \) provided another description of differences in the ability of agonists to produce a maximal effect. They defined the term \(\tau \) (tau) as \([R]_T/K_R \) in which \(K_R \) is the midpoint parameter of an explicit function relating receptor occupancy to the response of a tissue. Recent advances in the understanding of receptor function have identified the importance of distinguishing between the \(\text{occupation of a receptor by an agonist} \) and the \(\text{activation of that receptor}. This distinction was not considered in the earlier work. More detailed models of receptor action are therefore required, and these provide a better framework for expressing, and explaining, differences in the ability of agonists to activate receptors. The term \(\text{intrinsic efficacy} \) is now often used when discussing the agonist, rather than the tissue-dependent component of efficacy in such schemes \((\text{e.g., the isomerization model of del Castillo and Katz \((1957) \), also Colquhoun \(1987 \);} the ternary model of DeLean et al. \(1980 \), also Samama et al. \(1990 \)). However, Stephenson’s \(\text{efficacy} \), and Black and Leff’s \(\tau \), can still serve as useful comparative measures of the activity of agonists on intact tissues. |

Continued
method is to fit agonist EC_{50} data, determined in the absence and presence of antagonist, to the following equation:

\[
pEC_{50} = -\log ([B]S + 10^{-pA_2}S) - \log c
\]

where pEC_{50} and pA_2 are as defined previously in Tables 3 and 4, respectively, [B] denotes the antagonist concentration, S is a logistic slope factor analogous to the Schild slope and log c is a fitting constant (Motulsky and Christopoulos, 2003). This equation is based on a modification of the original Gaddum/Schild equations that results in more statistically reliable parameter estimates than those obtained using the original equations for nonlinear regression (Waud
In competitive antagonism, the binding of agonist and antagonist is mutually exclusive. This may be because the agonist and antagonist compete for the same binding site or combine with adjacent sites that overlap (syntopic interaction). A third possibility is that different sites are involved but that they influence the receptor macromolecule in such a way that agonist and antagonist molecules cannot be bound at the same time.

If the agonist and antagonist form only short-lasting combinations with the receptor, so that equilibrium between agonist, antagonist, and receptors is reached during the presence of the agonist, the antagonism will be surmountable over a wide range of concentrations (reversible competitive antagonism). In contrast, some antagonists, when in close enough proximity to their binding site, may form a stable covalent bond with it (irreversible competitive antagonism), and the antagonism becomes insurmountable when no spare receptors remain.

More generally, the extent to which the action of a competitive antagonist can be overcome by increasing the concentration of agonist is determined by the relative concentrations of the two agents, by the association and dissociation rate constants for their binding, and by the duration of the exposure to each.

Noncompetitive antagonism

Agonist and antagonist can be bound to the receptor simultaneously; antagonist binding reduces or prevents the action of the agonist with or without any effect on the binding of the agonist.

Insurmountable antagonism

A descriptive term indicating that the maximum effect of the agonist is reduced by either pretreatment or simultaneous treatment with the antagonist. This can encompass several distinct molecular mechanisms such as: (a) irreversible competitive antagonism; (b) noncompetitive antagonism; and (c) functional antagonism (see Table 1). The converse phenomenon surmountable antagonism is generally observed with reversible competitive antagonism though it may also occur with chemical antagonism, with irreversible antagonists in the case of spare receptors, or with certain forms of allosteric antagonism.

Gaddum equation

\[\frac{[A]}{[A] + K_A (1 + \frac{[B]}{K_B})} \]

The relationship (Gaddum, 1937, 1943) that replaces the Hill-Langmuir equation (see Table 5) when two ligands, A and B, are in equilibrium with a common binding site. \(p_{AB} \) is the proportion of the binding sites occupied by A. \(K_A \) and \(K_B \) are the equilibrium dissociation constants of A and B, respectively.

The Schild equation

\[r - 1 = \frac{[B]}{K_B} \]

The relationship (Schild, 1949) that would be expected to hold between the concentration ratio, \(r \), and the concentration of a reversible competitive antagonist, B. \(K_B \) is the equilibrium dissociation constant for the combination of B with the receptor.

The Schild plot

A graph of log \((r - 1) \) against log antagonist concentration, where \(r \) is the concentration ratio (see Table 4). This should yield a straight line of unit slope if the Schild equation is obeyed (Arunlakshana and Schild, 1959).
et al., 1978; Lazareno and Birdsall, 1993). If S is not significantly different from 1, then it should be constrained as such and the equation re-fitted to the data.

C. The Relationship between the Hill and Logistic Equation

The logistic function is defined by the equation

$$y = \frac{1}{1 + e^{-a + b x}}$$

where a and b are constants. If a is redefined as $-\log_e(K_b)$, and x as $\log_e z$, then

$$y = \frac{z^b}{K^b + z^b}$$

which has the same form as the Hill equation.

Acknowledgments. We acknowledge helpful comments from Tom Bonner, Steven Foord, Steve Watson, and Sir James Black.

References

Cheng Y and Prusoff W (1973) Relationship between the inhibition constant (K_I) and the concentration of inhibitor which causes 50 per cent inhibition (I_{50}) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108.

