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Introduction

Complex multicellular organisms require rapid and
accurate transmission of information among cells and
tissues and tight coordination of distant functions. In
vertebrates, electrical signals and the resulting intracel-
lular calcium transients control contraction of muscle,
secretion of hormones, sensation of the environment,
processing of information in the brain, and output from
the brain to peripheral tissues. In nonexcitable cells,
calcium transients signal many key cellular events, in-
cluding secretion, gene expression, and cell division. In
epithelial cells, huge ion fluxes are conducted across
tissue boundaries. All of these physiological processes
are mediated in part by members of the voltage-gated
ion channel protein superfamily (Fig. 1) (Yu and Catter-
all, 2004). This protein superfamily of more than 140
members is one of the largest groups of signal transduc-
tion proteins, and many family members are the molec-
ular targets for toxins and therapeutic agents. Here we
review the molecular and evolutionary relationships
among the families within the voltage-gated-like (VGL1)
ion channel superfamily.

Structural and Functional Motifs

The architectures of the ion channel families consist of
four variations built upon a common pore-forming struc-
tural theme. The founding members of this superfamily
are the voltage-gated sodium channels (NaV; Fig. 1)
(Agnew et al., 1980; Beneski and Catterall, 1980; Cat-
terall, 1984, 2000a). Their principal � subunits are com-
posed of four homologous domains (I–IV) that form the
common structural motif for this family (Noda et al.,
1984, 1986) (Fig. 2). Each domain contains six probable
transmembrane �-helices (termed segments S1–S6)
with a membrane-reentrant loop between the S5 and S6

segments (Guy and Seetharamulu, 1986). Structural
analysis by high-resolution electron microscopy and im-
age reconstruction show that the four homologous do-
mains surround a central pore and suggest laterally
oriented entry ports in each domain for transit of extra-
cellular ions toward the central pore (Sato et al., 2001)
(Fig. 2). Voltage-gated calcium (CaV) channels have a
similar structure (Fig. 1). Voltage-gated potassium (KV)
channels, first identified as the gene encoding the
Shaker mutation in the fruit fly Drosophila, exemplify
the second structural architecture in the ion channel
superfamily. They are composed of tetramers of � sub-
units that each resemble one homologous domain of
sodium and calcium channels (Fig. 1) (Papazian et al.,
1987; Tempel et al., 1987; Pongs et al., 1988). Several
other families of ion channels also have this architec-
ture, including calcium-activated potassium (KCa) chan-
nels, cyclic nucleotide-gated (CNG) and hyperpolariza-
tion-activated cyclic nucleotide-modulated (HCN)
channels, and transient receptor potential (TRP) chan-
nels (Fig. 1 and see below). The inwardly rectifying
potassium channels comprise the simplest structural
motif in the ion channel protein superfamily. They are
complexes of four subunits that each have only two
transmembrane segments, termed M1 and M2, which
are analogous in structure and function to the S5 and S6
segments of voltage-gated sodium, calcium, and potas-
sium channels (Kir; Fig. 1) (Ho et al., 1993; Kubo et al.,
1993). Two of these pore motifs are linked together to
generate the two-pore motif potassium channels (K2P),
the fourth structural architecture (K2P; Fig. 1) (Gold-
stein et al., 1996; Lesage et al., 1996).

The functional elements of the ion channel superfam-
ily of proteins can be divided into three complementary
aspects: ion conductance, pore gating, and regulation.
The ion-conducting pore and selectivity filter (Hille,
1972) of the six-transmembrane (TM) segment channels
are formed by their S5 and S6 segments and the mem-
brane-reentrant pore loop (P) between them (Noda et al.,
1989; Striessnig et al., 1990; MacKinnon and Yellen,
1990; Hartmann et al., 1991; Yellen et al., 1991; Yool
and Schwarz, 1991; Lopez et al., 1994; Ragsdale et al.,
1994; Hockerman et al., 1995) (Fig. 2A). The analogous
M1 and M2 segments and pore loop form the complete
transmembrane structure of the 2TM potassium chan-
nels (Ho et al., 1993; Kubo et al., 1993). X-ray crystallo-
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FIG. 2. Structure of voltage-gated sodium channels. Left, schematic representation of the sodium channel � subunit. Roman numerals indicate the
homologous domains. The �-helical transmembrane segments S5 and S6 and the pore loop region between them are highlighted in green. The
positively charged S4 segments are highlighted in red. The inactivation gate with the isoleucine-phenylalanine-methionine-threonine (IFMT) motif
that is crucial for inactivation is highlighted in yellow. The probable N-linked glycosylation sites are indicated by �. The circles in the reentrant loops
in each domain represent the amino acids that form the ion selectivity filter (the outer rings have the sequence EEDD and inner rings DEKA) (Noda
et al., 1989; Heinemann et al., 1992, 2003). Right, three-dimensional structure of the NaV channel � subunit at 20 Å resolution, compiled from electron
micrograph reconstructions. Adapted from Sato et al. (2001) and Yu and Catterall (2004).

FIG. 1. Representation of the amino acid relationships of the minimal pore regions of the voltage-gated ion channel superfamily. This global view
of the 143 members of the structurally related ion channel genes highlights seven groups of ion channel families and their membrane topologies.
Four-domain channels (CaV and NaV) are shown as blue branches, potassium-selective channels are shown as red branches, cyclic nucleotide-gated
channels are shown as magenta branches, and TRP and related channels are shown as green branches. Background colors separate the ion channel
proteins into related groups: light blue, CaV and NaV; light green, TRP channels; light red, potassium channels, except KV10–12, which have a cyclic
nucleotide binding domain and are more closely related to CNG and HCN channels; light orange, KV10–12 channels and cyclic nucleotide-modulated
CNG and HCN channels. Minimal pore regions bounded by the transmembrane segments M1/S5 and M2/S6 were aligned by ClustalX (Thompson et
al., 1997) and refined manually. The pore regions of the fourth homologous domain of NaV and CaV channels, the second domain of the two-pore
channels (TPC), and the first pore regions of the K2P channels were used to assemble the alignment, and an unrooted consensus tree was built by
minimum evolution analysis using PAUP version 4.0b10 software (Swofford, 2003). To confirm the significance of the relationship among the families
that comprise the VGL ion channel superfamily, we tested the significance of the amino acid sequence relationships using the HMM searching
procedure. HMM searches of the complete RefSeq database revealed that each ion channel family profile identified another family of voltage-gated-like
ion channels as the nearest relative in amino acid sequence of its pore. For example, for the KV channel profile, the nearest neighbor was CNGA1
(HMM e-value of 2.6 � 10�3); for the cyclic nucleotide-modulated channel profile, KV11.2 (HMM e-value of 1.5 � 10�6); for the TRP channel profile,
CaV3.1 (HMM e-value of 1.8 � 10�3); and for the NaV/CaV profile, CatSper (HMM e-value of 9.4 � 10�6). The e-value is a measure of the number of
hits from HMM searches that would be expected by chance; values less than 1.0 indicate a highly significant amino acid sequence relationship to the
probe profile (Yu and Catterall, 2004).
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graphic analysis of the three-dimensional structure of a
2TM bacterial potassium channel (KcsA), analogous in
overall topology to the inwardly rectifying potassium
channels, reveals an “inverted teepee” arrangement of
the M1 and M2 segments in a square array around a
central pore (Fig. 3A) (Doyle et al., 1998). The narrow
outer mouth of the pore is formed by the intervening
membrane-reentrant pore loop. This structure is cradled
in a cone formed by the tilted M1 and M2 transmem-
brane segments, with the M2 segments lining most of
the inner pore surrounded by the M1 segments. A cavity
in the center of the structure is water-filled and contains
permeating potassium ions. The pore appears to be con-
stricted at the intracellular end by crossing of the M2
�-helices.

Insight into gating of the pore has come from struc-
tural and functional experiments. Biophysical studies
revealed gated access of substituted amine blockers to
the pore from the intracellular side of voltage-gated
sodium and potassium channels (Armstrong, 1975;
Hille, 1977; Liu et al., 1997). The M2 �-helices are bent
at a highly conserved glycine residue in the three-dimen-
sional structure of a bacterial 2TM calcium-activated
potassium channel (MthK; Fig. 3A) analyzed in its cal-

cium-bound, presumably activated form (Jiang et al.,
2002a,b). This bend appears to open the intracellular
mouth of the pore sufficiently to allow permeation of
ions. Substitution of proline for this glycine, which
would greatly favor the bent conformation, dramatically
enhances activation and slows pore closure of a bacterial
sodium channel, providing functional evidence for bend-
ing at this position as a key step in opening the pore
(Zhao et al., 2004).

The addition of the S1 to S4 segments to the pore
structure in the NaV, CaV, and KV channels confers
voltage-dependent pore opening. Although the mecha-
nism of voltage-dependent gating is unknown in detail,
an overall view of the process has emerged from a com-
bination of biophysical, mutagenesis, and structural
studies. The movement of charged amino acid residues
associated with NaV and KV channel gating (gating cur-
rents) (Armstrong, 1981) are consistent with outward
translocation of approximately 12 positive charges dur-
ing channel activation (Schoppa et al., 1992; Hirschberg
et al., 1995; Bezanilla, 2000). The S4 segments, which
have repeated motifs of one positively charged amino
acid residue followed by two hydrophobic residues, are
thought to serve as the primary voltage sensors (Catter-

FIG. 3. Structures of potassium channels. A, open and closed conformations of the potassium channel pore structures. Two subunits of the bacterial
K� channels of KcsA (Doyle et al., 1998), representing a “closed” conformation, and MthK (Jiang et al., 2002b), representing an “open” conformation,
are shown in the figure. The selectivity filter is orange, and the outer helix (M1) is depicted adjacent to the lipid bilayer. The inner helix (M2) is marked
with a space-filling model of the conserved glycine residue (red), which is thought to be critical for the bending of the M2 helix in the open conformation.
B, cross-section through the three-dimensional structure of a tetrameric KV1.2 channel (Long et al., 2005a,b). Center, the pore regions S5-P-S6 of two
subunits, designated 1 and 3, in blue-green. Left, S1 through S4 of subunit 4, whose S5-P-S6 segments project in front of the plane of the figure and
form the near side of the pore. Right, S1 through S4 segments of subunit 2, whose S5-P-S6 segments project behind the plane of the figure and form
the far side of the pore. As illustrated, the voltage-sensing domain composed of the S1 to S4 segments is positioned to interact with the S5-P-S6
segments of the adjacent subunit located clockwise (as seen from the extracellular side) in the symmetrical tetrameric array.
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all, 1986; Guy and Seetharamulu, 1986). Mutations of
these charged amino acid residues have large effects on
gating (Stuhmer et al., 1989; Papazian et al., 1991;
Bezanilla, 2000). The outward movement and rotation of
these S4 segments has been observed directly by studies
of state-dependent chemical modification and by fluores-
cent labeling of substituted cysteine residues (Yang and
Horn, 1995; Larsson et al., 1996; Cha et al., 1999;
Glauner et al., 1999; Bezanilla, 2000). Most structure-
function studies support a spiral or rotational motion of
the S4 or S3 plus S4 �-helices through the channel
protein, perhaps together with movements of the sur-
rounding protein structure, to move gating charges
across the membrane electric field (Catterall, 1986; Guy
and Seetharamulu, 1986; Bezanilla, 2000). In contrast, a
strikingly different sweeping transmembrane paddle
movement of these S1 through S4 �-helices from the
intracellular surface of the membrane through the sur-
rounding membrane lipid is suggested from the X-ray
crystal structure of a bacterial KV channel in complex
with antibody and detergent (Jiang et al., 2003). Further
structural and functional experiments will be required
to resolve these two distinct views of voltage sensor
movements during gating.

A recent X-ray crystal structure of a vertebrate potas-
sium channel (KV1.2) (Long et al., 2005a,b) cocrystal-
lized in its open conformation with its CaV� subunits but
without antibodies or other interacting proteins is a
major advance in understanding the structure of the
voltage-gated ion channels because it reveals the confor-
mation of the S1 through S4 segments and their mode of
interaction with the pore in the activated state, as illus-
trated in a cross-section through the channel tetramer in
Fig. 3B. All of the S1 to S4 �-helices are in transmem-
brane positions, as expected from previous structural
modeling studies. The S3 and S4 segments interact
closely with each other and may function as a gating
unit in moving gating charge across the membrane. As
illustrated in Fig. 3B, the voltage-sensing S1 to S4 seg-
ments (left and right, in multicolor) form a bundle that
interacts with the pore-forming S5-P-S6 segments from
the adjacent subunit (center, in blue green), situated in
the clockwise direction as viewed from the extracellular
side. These two separate structural elements within
each subunit are connected by the long S4-S5 linker,
which runs along the intracellular surface of the chan-
nel. This structure requires that pore gating is an inter-
active process in which adjacent subunits interact inti-
mately and further suggests an important role for the
S4-S5 linker that connects the two structural elements
of each subunit.

The addition of regulatory domains to the carboxyl
terminus of 2TM Kir channels and 6TM calcium-acti-
vated potassium (KCa), CNG, and HCN channels (Fig. 1)
yields gating by binding of small intracellular ligands
such as calcium, ATP, and cyclic nucleotides or by inter-
actions with protein ligands (Zagotta and Siegelbaum,

1996; Ashcroft and Gribble, 1998; Vergara et al., 1998;
Biel et al., 1999). Ligand binding to these domains is
thought to exert a torque on the S6 segments that opens
the pore by bending them (Jiang et al., 2001, 2002b;
Schumacher et al., 2001). For KCa and HCN family
members, ligand binding and membrane depolarization
act in concert to open the pore (Vergara et al., 1998; Biel
et al., 2002). The four-domain CaV channels have regu-
latory sites in their C-terminal intracellular segments
that may exert a similar torque on the S6 segment in
domain IV and modulate the opening of the pore in
response to membrane depolarization (Catterall, 2000b).

Molecular and Evolutionary Relationships in the
Voltage-Gated-Like Ion Channel Superfamily

We built profiles based on hidden Markov models
(HMMs) of each ion channel family (Fig. 1) (Yu and
Catterall, 2004) using the sequences corresponding to
the minimal pore structure (i.e., the pore loop and the
flanking M1/S5 and M2/S6 transmembrane segments).
We interrogated the nonredundant protein database,
RefSeq of the National Center for Biotechnology Infor-
mation, using each HMM profile (Yu et al., 2004). This
search revealed 143 genes that encode related ion chan-
nel proteins. The amino acid sequence relationships of
their minimal pore structures are illustrated in Fig. 1.
We found 21 proteins related to four-domain NaV and
CaV channels; two novel two-domain relatives of ion
channel proteins (TPC); 90 proteins related to one-do-
main voltage-gated potassium channels, including 40 KV
channels, eight calcium-activated potassium (KCa) chan-
nels, 10 CNG and HCN channels, and 32 TRP channels
and relatives; and 30 proteins related to the Kir and K2P
channels. We verified that these families are members of
a common superfamily by determining their nearest
neighbors in amino acid sequence space (see legend to
Fig. 1). In each case, the closest molecular relative is a
family within the VGL ion channel superfamily, and the
relation is highly significant.

How did the structural motifs of this large ion channel
superfamily arise in evolution? Although the answer to
this question is necessarily speculative, some insight
can be gleaned by comparing ion channels in different
species. Many bacteria have 2TM potassium channels
resembling Kir channels, and some bacteria have 6TM
voltage-gated potassium channels (Booth et al., 2003).
Thus, it is possible that the primordial members of this
superfamily were 2TM bacterial potassium channels.
Addition of the S1 to S4 segments to this founding pore
structure yielded voltage-gated potassium channels in
bacteria. Bacteria also contain a novel 6TM sodium
channel with only a single homologous domain that
functions as a tetramer like a potassium channel (Ren et
al., 2001). This channel has striking similarities to ver-
tebrate sodium and calcium channels and a homolog
may be their ancestor. The simplest organism express-
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ing a four-domain calcium channel is yeast, which has a
single calcium channel gene (De Hertogh et al., 2002). To
date, only multicellular organisms have been found to
express four-domain sodium channels, including jelly-
fish, cnidarians, squid, and fruit fly (but not the round-
worm Caenorhabditis elegans) (Loughney et al., 1989;
Sato and Matsumoto, 1992; Anderson et al., 1993; Na-
gahora et al., 2000). These four-domain channels may
have arisen by two cycles of gene duplication and fusion
from an ancestral bacterial one-domain sodium channel.

Because of their ancient origins, the ion channel genes
are spread throughout the genome. Only the late-evolv-
ing four-domain sodium channels have a large fraction
(5 of the 10 family members) in a single cluster on
chromosome 2. The pattern of spread of the sodium
channel genes among chromosomes has been correlated
with the spread of homeobox genes during the verte-
brate radiation, suggesting that similar chromosomal
dynamics affected both gene families (Plummer and
Meisler, 1999). In contrast, most of the other ion channel
genes were probably sorted to distinct chromosomes
much earlier in evolution.

A closer look at the phylogenetic tree for potassium
channels (Fig. 1) shows that the KV1 to KV9 channels
form one closely related cluster. Within the KV1–9 clus-
ter, the KV14 channels form one related group, the KV5,
6, 8, and 9 channels a second related group, and the KV7
channels (formerly KCNQ or KVLQT) form a third more
distant group of KV channels. Surprisingly, the CNG,
HCN, and KV10–12 channels form a distinct cluster
when the molecular relationships are determined by
comparison of pore-forming sequences (Fig. 1). These
channels also share an actual or potential cyclic nucleo-
tide-binding motif in their C-terminal domains. Evi-
dently, these channels arose from a common evolution-
ary pathway despite their diversity of ion selectivity
(K�, Ca2�, or nonselective cation channels) and primary
gating mechanism (voltage, cyclic nucleotides, or both).
An additional surprise is the clear distinction between
sequences of the KCa channels and the KV channels in
the S5, P, and S6 segments (Fig. 1). Evidently, these two
groups of channels with similar transmembrane topolo-
gies and voltage-dependent gating separated from each
other early in evolution, and their pore domains have
become quite distinct in amino acid sequence. Positioned
adjacent to these clusters of 6TM channels are the Kir
channels, which appear to have evolved earlier (Fig. 1).
In contrast, the K2P channel cluster leaves the main
branch of the tree later than some of the 6TM potassium
channel clusters, suggesting the possibility of a later
appearance in evolution.

Auxiliary Subunits of the Ion Channel Protein
Superfamily

The principal pore-forming subunits of the voltage-
gated ion channels and their structural relatives are

primarily responsible for their characteristic gating, se-
lective ion conductance, and regulation by second mes-
senger signaling and pharmacological agents. However,
many of these principal subunits are associated with
auxiliary subunits that modify their expression, func-
tional properties, and subcellular localization (Isom et
al., 1994). This section briefly reviews the structure,
function, and genetic relationships of the known auxil-
iary subunits.

Sodium Channels

Purification and characterization of sodium channels
provided the first evidence for ion channel auxiliary
subunits (Catterall, 1984). Sodium channels have a sin-
gle family of auxiliary subunits, NaV�1 to NaV�4, which
interact with the different � subunits and alter their
physiological properties and subcellular localization.
These proteins have a single transmembrane segment, a
large N-terminal extracellular domain that is homolo-
gous in structure to a variable chain (V-type) immuno-
globulin-like fold, and a short C-terminal intracellular
segment (Fig. 4) (Isom et al., 1992, 1995; Morgan et al.,
2000; Yu et al., 2003). The NaV� subunits interact with
� subunits through their extracellular Ig-fold domains,
modulate � subunit function, and enhance their cell
surface expression (McCormick et al., 1999). Like other
proteins with an extracellular Ig-fold, they also serve as
cell adhesion molecules by interacting with extracellular
matrix proteins, cell adhesion molecules, and cytoskel-
etal linker proteins (Srinivasan et al., 1998; Ratcliffe et
al., 2000, 2001; Kazarinova-Noyes et al., 2001; Malhotra
et al., 2002). A mutation in a conserved cysteine in the
Ig-fold of the NaV�1 subunit causes familial epilepsy
(Wallace et al., 1998). The NaV� subunits are a recent
evolutionary addition to the family of ion channel asso-
ciated proteins, as they have only been identified in
vertebrates.

Calcium Channels

CaV channels have up to four distinct auxiliary sub-
units, CaV�2, CaV�, CaV�, and CaV� (Fig. 4) (Takahashi
et al., 1987), each of which comprise a small protein
family. The CaV�2 and CaV� subunits are encoded by
the same gene (Ellis et al., 1988), whose translation
product is proteolytically cleaved and disulfide linked to
yield the mature extracellular �2 subunit glycoprotein of
140 kDa and transmembrane disulfide-linked � subunit
glycoprotein of 27 kDa (De Jongh et al., 1990). Four
CaV�2� genes are known (Arikkath and Campbell,
2003). The four CaV� subunits are all intracellular pro-
teins with a common pattern of �-helical and unstruc-
tured segments (Ruth et al., 1989; Arikkath and Camp-
bell, 2003). They have important regulatory effects on
cell surface expression, and they also modulate the gat-
ing of calcium channels, causing enhanced activation
upon depolarization and altered rate and voltage depen-
dence of inactivation (Arikkath and Campbell, 2003).
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Recent structural modeling and X-ray crystallography
studies have revealed that these subunits contain con-
served Src homology 3 and guanylate kinase domains
like the membrane-associated guanylate kinase family
of scaffolding proteins (Chen et al., 2004; Opatowsky et
al., 2004; McGee et al., 2004; Takahashi et al., 2004; Van
Petegem et al., 2004) and therefore may interact with
other intracellular proteins. Eight CaV� subunit genes
encode glycoproteins with four transmembrane seg-
ments (Jay et al., 1990; Arikkath and Campbell, 2003).
Although the CaV�1 subunit is associated specifically
with skeletal muscle CaV1.1 channels, other CaV� sub-
units interact with other calcium channels and gluta-
mate receptors and possibly with other membrane sig-
naling proteins (Arikkath and Campbell, 2003). Thus,
the � subunits discovered as components of calcium
channels apparently have a more widespread role in
assembly and cell surface expression of other membrane
signaling proteins.

Voltage-Gated Potassium Channels

KV1 channels are often associated with an intracellular
KV� subunit (KV�1–3; Fig. 4) (Scott et al., 1993; Rettig et
al., 1994; Pongs et al., 1999), which interacts with the
N-terminal T1 domain and forms a symmetric tetramer on
the intracellular surface of the channels (Gulbis et al.,
2000). The three KV� subunits are superficially similar to
the CaV� subunits in their cytoplasmic location but are not
related in amino acid sequence or structure. The N termi-

nus of KV� subunits of vertebrates serves as an inactiva-
tion gate for KV1 � subunits (Pongs et al., 1999) and is
thought to enter the pore and block it during sustained
channel opening (Zhou et al., 2001). This is a unique ex-
ample of a direct physical role for an auxiliary subunit in
channel gating, rather than modulation of the gating pro-
cess of its associated pore-forming � subunit.

KV4 channels interact with the K channel interacting
proteins KChIP1–4, which are members of the neuronal
calcium sensor family of calmodulin-like calcium regu-
latory proteins and have four EF-hand motifs (Fig. 4)
(An et al., 2000). The KChIPs enhance expression of KV4
channels and modify their functional properties by bind-
ing to a site in the intracellular T1 domain, similar to
the interaction of KV� subunits with KV1 channels.

The KV7, KV10, and KV11 channels associate with a
different type of auxiliary subunit—the minK-like sub-
units (Fig. 4). These five closely related proteins have a
single transmembrane segment and small extracellular
and intracellular domains (Takumi et al., 1988; Abbott et
al., 2001b). Although these subunits are topologically sim-
ilar to NaV� and CaV� subunits, they do not have signifi-
cant amino acid sequence similarity. The minK-like sub-
units are important regulators of KV7 channel function
(Barhanin et al., 1996; Sanguinetti et al., 1996), and mu-
tations in one of these auxiliary subunits causes a form of
familial long QT syndrome, which predisposes individuals
to dangerous cardiac arrhythmias (Abbott et al., 2001a). In
addition, recent work indicates that these subunits also

FIG. 4. Auxiliary subunits of the VGL ion channel superfamily. The transmembrane folding patterns of the auxiliary subunits of the VGL ion
channel superfamily are illustrated, with cylinders representing predicted �-helices. Note that the intracellular and extracellular sides of the proteins
are oriented in opposite directions for the top and bottom membranes, as in a cell. N-linked carbohydrate chains are indicated by �. The intracellular
auxiliary subunits are illustrated by their predicted or directly determined three-dimensional structures (Yu and Catterall, 2004).
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associate with KV3 and KV4 channels and are responsible
for a form of inherited periodic paralysis (Abbott et al.,
2001a; Zhang et al., 2001). In light of this work, it is
possible that all KV channels associate with minK-related
subunits. If this hypothesis is true, the KV channels would
then resemble the NaV and CaV channels in having an
associated subunit with a single transmembrane segment
and short intracellular and extracellular domains. It will
be intriguing to learn if there is a common function for
these similar auxiliary ion channel subunits.

Calcium-Activated Potassium Channels

The KCa1, 4, and 5 families of channels are associated
with one of four auxiliary KCa� subunits, which have
two transmembrane segments and both N and C termini
in the cytosol (Fig. 4) (Knaus et al., 1994; Orio et al.,
2002). The KCa� subunits contribute to the binding site
for the peptide scorpion toxin charybdotoxin and related
channel-blocking agents (Hanner et al., 1997), but their
effects on channel function and roles in cell physiology
are still emerging in current research (Orio et al., 2002).

Inwardly Rectifying Potassium Channels

Unique among the inwardly rectifying potassium
channel subunits, the Kir6 subunits that form KATP
channels are associated with sulfonylurea receptors
(SURs) (Aguilar-Bryan et al., 1995) that are crucial reg-
ulators of channel activity (Fig. 4). They are also the
molecular targets for the sulfonylurea class of KATP
channel blockers, which are used to enhance insulin
secretion in therapy of diabetes. The three SUR proteins
are members of the ABC transporter family of mem-
brane proteins. They have an amino-terminal domain
with five probable transmembrane segments, which is
followed by two domains with six transmembrane seg-
ments and two ATP binding motifs similar to other
members of the ABC transporter family (Bryan and
Aguilar-Bryan, 1999). Sequential binding and hydroly-
sis of ATP at the two nucleotide-binding cassettes regu-
late Kir6 channel function in response to changes in the
concentration and ratio of ATP and ADP and thereby
regulate channel activity in response to the metabolic
state of the cell. This form of channel regulation is cru-
cial in control of insulin release from the beta cells of the
pancreas. Mutations in SUR are responsible for some
forms of familial hyperinsulinemia (Thomas et al.,
1995).

Polycystins

Polycystins (PKDs) 1 and 2 were both discovered as
the targets of mutations that cause autosomal dominant
polycystic kidney disease (Mochizuki et al., 1996; Chen
et al., 1999). PKD2 is an ion channel protein similar in
topology and amino acid sequence to TRP channels,
whereas PKD1 is an auxiliary subunit that modifies
expression and function of PKD2 (Hanaoka et al., 2000).
Like SUR, it has a complex transmembrane structure

(Fig. 4). Elucidating the functional relationships be-
tween PKD1 and PKD2 and defining their roles in nor-
mal kidney function is an active area of investigation.

Conclusions

The voltage-gated ion channel superfamily is one of
the largest families of signaling proteins, following the G
protein-coupled receptors and the protein kinases in the
number of family members. The family is likely to have
evolved from a 2TM ancestor like the bacterial KcsA
channel. Additions of intracellular regulatory domains
for ligand binding and a 4TM transmembrane domain
for voltage-dependent gating have produced extraordi-
narily versatile signaling molecules with capacity to re-
spond to voltage signals and intracellular effectors and
to integrate information coming from these two distinct
types of inputs. The resulting signaling mechanisms
control most aspects of cell physiology and underlie com-
plex integrative processes like learning and memory in
the brain and coordinated movements in muscles. The
evolutionary appearance and refinement of these signal-
ing mechanisms are some of the landmark events allow-
ing the development of complex multicellular organisms.
The importance of these ion channels in the physiology
of complex processes also makes them frequent targets
of drugs used in current therapy, and one can predict
that the increasing understanding of their structure and
function will allow development of novel therapeutic
agents for chronic pain, epilepsy, and arrhythmia.
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