








and a similar imbalance between the fast and slow
transients. In contrast, an a7 nAChR agonist could
induce a weighting favoring fast versus slow transients
as long as the agonist was not present at desensitizing
concentrations. These data point to the necessity of
establishing a better understanding of the respective
contribution of different nAChRs subtypes at the cellu-
lar and circuit levels, especially when considering
compounds like acetylcholinesterase inhibitors that
have effects on multiple nAChR subtypes and nAChR
subtype-selective compounds that can similarly alter
the balance of nAChR subtype activity.
Expression of a7 nAChRs is not restricted to neurons

but was also shown both histologically and functionally
to be on glial cell types (Vélez-Fort et al., 2009),
including astrocytes (Sharma and Vijayaraghavan,
2001), oligodendrocytes, and microglia (Shytle et al.,
2004). Stimulation of the a7 nAChRs on glia caused
many physiologically relevant activities that need to be
taken into account when evaluating effects of mole-
cules targeting a7 nAChRs.
Widely expressed in the brain, a7 nAChRs were

shown to be localized pre- and postsynaptically. Pre-
synaptic receptors were shown to modulate the release
of neurotransmitter at both excitatory (glutamate) or
inhibitory (GABA) neurons. Postsynaptic and extra-
synaptic a7 nAChRs can also modulate neuronal
activity and participate in neurotransmission. In addi-
tion, a7 nAChRs were also shown to be expressed by
glial cells, but their role on these cell types remains to
be clarified.

III. Ligands Active at a7 Nicotinic
Acetylcholine Receptors

A. Structure-Activity Relationship of a7 Nicotinic
Acetylcholine Receptor Agonists

Over the past two decades, medicinal chemistry has
remarkably expanded the development of compounds
acting via a7 nAChR agonism by agonists and PAMs.
Extensive basic and clinical research studies were
conducted and yielded numerous active and selective
molecules that are reviewed in this section. The major
attention will be kept on developing the various chemo-
types that were brought up to clinical trials and are
summarized in Table 2. The majority of a7 nAChR
agonists described to date are comprised of the quinu-
clidine moiety, which encompasses structures such as
the spirooxazolidinones, and quinuclidine carbamates,
amides, and ethers. GTS-21 (DMXBA), one of the first
reported ligands differing from nicotine to show binding
specificity for the a7 nAChR, was described as a func-
tionally selective partial agonist in comparison with
ACh (Hunter et al., 1994; Briggs et al., 1995; Meyer
et al., 1998a). This compound is not solely selective for
a7 nAChRs and also binds to a4b2 nAChRs, but with
a lower affinity. Over the years, GTS-21 has been
characterized extensively both in vitro and in vivo and
is one of the firstmolecules that was advanced into early
phase clinical trials. However, newer ligands, stemming
from scaffolds, such as the azaadamantane (ABT-126)
and quinuclidine (encenicline, TC-5619, MEM3454/
RG3487, and AQW051 [(R)-3-(6-p-tolyl-pyridin-3-yloxy)-
1-aza-bicyclo(2.2.2)octane]), have expanded the chemical
space also to include additional azabicyclic tertiary
amine templates.

The most explored class of ligands for a7 nAChR is
the quinuclidine amine-based moiety. AR-R17779
(–)-spiro[1-azabicyclo[2.2.2]octane-3,59-oxazolidin-29-
one], a spirooxazolidinone, from the group at Astra-
Zeneca (London, United Kingdom) was another early
molecule in this chemical space (Mullen et al., 2000).
Several research groups followedwith expansion on this
particular series to result in structurally diverse and
selective compounds that were active preclinically.
However, the challenges of these initial compounds in
this series remained, which involved cross reactivity
with the 5-HT3 receptors and limited penetration into
the CNS. Astra-Zeneca further developed the structure-
activity relationship (SAR) in the spirooxazolidinone
series with identification of AZD0328 [(29R)-spiro-[1-
azabicyclo[2.2.2]octane-3,29(39H)-furo[2,3-b]pyridine]
D-tartrate], a spirofuropyridine, that has been charac-
terized in preclinical models (Sydserff et al., 2009).
AZD0328 was the first spirooxazolidine analog with
good selectivity and potency for a7 nAChRs (Ki = 3 nM)
and showed favorable pharmacokinetic (PK) properties
sufficient for advancement into clinical studies. This
compound acted as a partial agonist at rat and human

Fig. 3. Distribution of a7 nAChRs in the cerebral cortex. Schematic
representation of the cell types and their laminar localization in the
cerebral cortex. a7 nAChR channels are inserted to indicate their laminar
distribution. Cells expressing a7 nAChRs are indicated in dark gray with
light gray areas not expressing a7 nAChRs. (Drawn from Arroyo et al.,
2014; Bloem et al., 2014).
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TABLE 2
a7 nAChR agonists entered clinical trials and in discovery phase

Compounds Therapeutic Indications Development
Status Company Reference

GTS-21

Alzheimer’s disease Phase 2 Comentis Briggs et al., 1995; Azuma
et al., 1996, 1999; Mahnir
et al., 1998; Li et al., 1999;
Adams et al., 2000; Crutcher,
2000; Bruchfeld et al., 2010;
Loram et al., 2010; Vukelic
et al., 2013

Cognitive deficiency in schizophrenia
Parkinson’s disease
Smoking cessation

Tropisetron

Alzheimer’s disease Phase 2 Papke et al., 2005; Ishikawa
and Hashimoto, 2011;
Stegemann et al., 2013

Cognitive deficiency in schizophrenia
Pain

PNU-282987

Alzheimer’s disease Phase 1 Pfizer Bodnar et al., 2005; Hajós
et al., 2005Cognitive deficiency in schizophrenia

SSR-180711

Alzheimer’s disease Discovery Sanofi Biton et al., 2007; Pichat et al.,
2007; O’Donnell et al., 2009Cognitive deficiency in schizophrenia

ABT-126

Alzheimer’s disease Phase 2 AbbVie Gault et al., 2015
Cognitive deficiency in schizophrenia
Pain

Encenicline (EVP-6124)

Alzheimer’s disease Phase 2 and 3 Forum Prickaerts et al., 2012; Barbier
et al., 2015; Huang et al.,
2014a; Preskorn et al., 2014;
Keefe et al., 2015

Cognitive deficiency in schizophrenia
Smoking cessation

MEM3454/RG3487

Alzheimer’s disease Phase 2 Memory/Roche Rezvani et al., 2009; Wallace
et al., 2011; Huang et al.,
2014b; Umbricht et al., 2014

Cognitive deficiency in schizophrenia

TC-5619

Alzheimer’s disease Phase 2 Targacept Hauser et al., 2009; Mazurov
et al., 2012; Lieberman et al.,
2013; Walling et al., 2015

Cognitive deficiency in schizophrenia

(continued )
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a7 nAChRs and displayed an EC50 of 338 nM and an
efficacy of 64.7%; however, this compound also activated
5-HT3A receptors with an EC50 of 474 nM but an efficacy
of only 12% (Sydserff et al., 2009). In vivo, this
compound exhibited activity in a variety of preclinical
models including novel object recognition (NOR) in
mouse, reversal of short-term memory deficits in
fimbria-fornix-lesioned rats, and improvement in work-
ing memory in the spatial delayed response task in
rhesus monkey (Sydserff et al., 2009; Castner et al.,
2011; Werkheiser et al., 2011).
Quinuiclidine and ring expansion analogs have been

extended by modification of functional linkers such as
heteroaryls, amides, and carbamates. Pharmacia/Pfizer
(Groton, CT) developed and reported on one of the earlier
compounds in this series with PNU-282987, a quinucli-
dine benzamide (Bodnar et al., 2005). PNU-282987
showed both selectivity and potency as an a7 nAChR
agonist (Ki = 29 nM), retaining full agonist efficacy
relative to nicotine in functional assays (Hajós et al.,
2005). PNU-282987 has been thoroughly characterized
both in vitro and in vivo, demonstrating the restoration
of P50 gating deficits in rodents, and has served as a tool
molecule to advance basic research efforts (Hajós et al.,
2005; Vicens et al., 2010; McLean et al., 2011). However,
a major drawback of this compound was the interaction
with the human ether à go-go-related gene (hERG)
channel, which could represent a major cardiovascular
risk (Walker et al., 2006). Thus, to improve the selectivity
and to diminish functional activity at the hERG channel,
an analog of PNU-282987 was designed that demon-
strated improved absorption, distribution, metabolism,
and excretion properties, reduced hERG activity, as well
as an adequate therapeutic index. This analog, PHA-
543613 (N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]
pyridine-5-carboxamide) (Ki = 9 nM) (Acker et al.,
2008), advanced into Phase 1 clinical studies. Recently,
encenicline, a potent quinuclidine amide analog re-
ported by FORUM (formerly EnVivo, Waltham, MA),

demonstrated partial agonist activity at a7 nAChRs (Ki=
10 nM) and antagonist activity at 5-HT3 receptors (IC50

, 10 nM) (Prickaerts et al., 2012). Encenicline demon-
strated preclinical procognitive effects in rat NOR, as
well as efficacy in Phase 1 and Phase 2 trials in normal
volunteers and patients with schizophrenia (Barbier
et al., 2015; Keefe et al., 2015), and is now in Phase 3
trials for treatment of cognitive impairment in schizo-
phrenia and Alzheimer’s disease. Like the amide series
from FORUM, MEM3454 (RG3487) also exhibited an-
tagonism at the 5-HT3 receptor and produced procogni-
tive effects in rat NOR and in aged mouse and aged rat
in a water maze (Wallace et al., 2011). As expected for an
a7 nAChR agonist, RG3487 increased dopamine and
ACh release in the rat hippocampus and prefrontal cortex
(Huang et al., 2014b). Similarly, encenicline increased
dopamine and ACh, as well as glutamate release in the
prefrontal cortex (Huang et al., 2014a). Tested in clinical
trials in schizophrenia patients, RG3487 showed no
significant improvement of the cognitive deficit associ-
ated with schizophrenia, but patients with moderate
negative symptoms exhibited a significant improvement
in their symptoms (Umbricht et al., 2014). Novartis
(Basel, Switzerland) also recently disclosed a quinucli-
dine ether a7 nAChR agonist, AQW051 (Di Paolo et al.,
2014; Feuerbach et al., 2015). In vitro assessment of
AQW051 at a7 nAChRs expressed in Xenopus oocytes
revealed that this compounddisplayed anEC50 of 7.5mM
but acted as a partial agonist, evoking only 75% of the
ACh-evoked current. This compound inhibited the 5-HT3

receptors with an IC50 of 19 mM, demonstrating a better
a7 nAChR/5-HT3 selectivity profile than RG3487 and
encenicline (Feuerbach et al., 2015). This compound also
demonstrated a sufficient PK profile, with rapid CNS
permeability, and activity in exploration in the rat social
recognition model and an improved mouse sensory
gating profile (DBA/2). Another amide quinuclidine
compound (Targacept’s [Winston-Salem, NC] TC-5619)
demonstrated potency and selectivity fora7nAChRs (net

TABLE 2—Continued

Compounds Therapeutic Indications Development
Status Company Reference

JN403

Alzheimer’s disease Discovery Novartis Feuerbach et al., 2007, 2009;
Enz et al., 2009; Jiang et al.,
2009; Arias et al., 2013

Cognitive deficiency in schizophrenia
Pain

SEN34625/WYE-103914

Alzheimer’s disease Discovery Weyth Ghiron et al., 2010; Marquis
et al., 2011Cognitive deficiency in schizophrenia

AQW051

Alzheimer’s disease Phase 2 Novartis Di Paolo et al., 2014;
Feuerbach et al., 2015Cognitive deficiency in schizophrenia

L-DOPA induced dyskinesias
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current EC50 = 33 nM), with full efficacy relative to ACh
in Xenopus oocytes (Hauser et al., 2009). TC-5619 (a7
nAChR Ki = 1 nM) exhibited superior in vitro selectivity
against human 5-HT3 receptors (IC50 . 10 mM). This
compound also exhibited adequate in vivo properties,
including PK profile and rapid CNS permeability as well
being active in rat NOR and in mouse social exploration
(Table 2).
Additionally, structural diversity began to emerge in

the literature from this series within the amine portion
of a7 nAChR agonists. However, some of this diversity
also led to azabicyclic amines that exhibited activity as
ligands for other nAChR subtypes such as the a4b2
nAChR. Several alternate amines were recently pub-
lished with a7 nAChR activity and include the diazabi-
cyclononanes such as SSR180711 (Biton et al., 2007;
Pichat et al., 2007), the octahydropyrrolo[3,4-c]pyrrole A-
582941 (Tietje et al., 2008), and the (3R,5R)-1-azabicyclo-
[3.2.1]oct-3-yl-carboxamide PHA-709829 (Acker et al.,
2008) and ABT-107 (Bitner et al., 2010; Malysz et al.,
2010). The selective partial agonist SSR180711A is a 1,4-
diazabicyclo[3.2.2]nonane carbamate derivative (Ki =
50 nM, EC50 = 800 nM) active inNOR,Morris watermaze,
and an MK-801-induced memory deficit model (Pichat
et al., 2007). Researchers at AbbVie (formerly Abbott,
North Chicago, IL) described A-582941, a novel biaryl
diamine a7 nAChR agonist (Buccafusco et al., 2007;
Tietje et al., 2008). A-582941 exhibited good affinity for
the human a7 nAChRs (Ki = 16.7 nM), with partial
agonist efficacy but with a favorable PK profile andCNS
penetration. In addition, A-582941 improved cognitive
performance in assays, such as the monkey delayed
matching-to-sample task and rat social recognition
(Buccafusco et al., 2007) andmouse inhibitory avoidance,
and normalized sensory gating deficits induced by MLA
in rats (Tietje et al., 2008). Overall, the large number of
potent and selective a7 nAChR agonists that have been
synthesized provide insight into the in vivo pharmacol-
ogy and absorption, distribution, metabolism, and excre-
tion properties, which has been instrumental in
advancement of compounds into clinical trials over the
years. However, biomarkers that can monitor target
engagement have not been fully developed to accompany
these clinical trials. Early work in this area has sug-
gested that endophenotypes associated with schizophre-
nia, such as event-related electroencephalographic
deficits in mismatch negativity, P300 (Preskorn et al.,
2014) and P50 (Olincy et al., 2006), are improved by a7
nAChR agonists and that these endophenotypes might
serve as biomarkers of target engagement in future
clinical studies.
Functional expression of a7 nAChRs in recombinant

systems has highlighted the similarities and differences
between the a7 and other nAChR subtypes. These
findings stimulated the search for a7 nAChR-specific
ligands and led to the discovery of families of molecules
showing selective a7 nAChR agonist activity in the

micromolar range. Compounds with a quinuclidine
moiety were extensively researched and yielded the
discovery of several molecules that have progressed into
clinical trials.

1. The Clinical Trials. To test the utility of a7
nAChR agonists for enhancing cognitive function and
ultimately to assess the utility of a7 nAChR agonists in
treating cognitive deficits, several compounds such as
GTS-21, RG3487, encenicline, TC-5619, ABT-126, and
AQW051 have advanced into clinical trials (see Table 2).
Despite strong preclinical evidence supporting procog-
nitive effects, clinical results thus far have been limited.
The paucity of results may be attributable to confound-
ing issues that include 1) properties of compounds that
may not exhibit adequate receptor selectivity and
functional profile; 2) inadequate PK, particularly, CNS
exposure to achieve necessary receptor occupancy and
pharmacodynamic effects; and 3) clinical trial design
issues. For example, the GTS-21 Phase 2 trial failed to
show significant effects on cognition. Specifically, per-
formance on the six domains of the MATRICS Consen-
sus Cognitive Battery (MCCB) did not differ between
GTS-21 and placebo, although a significant effect of
GTS-21 treatment was observed on the Scale for the
Assessment of Negative Symptoms (SANS) total score
(Freedman et al., 2008). However, it should be noted
that GTS-21 is not a prototypical a7 nAChR agonist.
GTS-21 has higher affinity at a4b2 nAChRs, where it is
a functional antagonist compared with its interaction
with a7 nAChRs (Ki = 650 nM at rat and 2000 nM at
human) with only weak agonist efficacy (6% efficacy
relative to ACh) (Briggs et al., 1997). Thus, in the dose
range used in the clinic, GTS-21 is more likely to
interact with a4b2 than a7 nAChRs, and it is mis-
leading to conclude that the lack of clinical benefit can
be attributed to the a7 nAChR pharmacology. Sub-
sequently, a number of a7 nAChR agonists/5-HT3 re-
ceptor antagonists have been advanced to the clinic. For
example, RG3487 has relatively equal affinities at a7
nAChRs (Ki = 6 nM) and 5-HT3 receptors (Ki = 2 nM) and
showed improvement in episodic secondary memory in
a healthy volunteer study, although the cognitive
enhancing effects were not confirmed using the MCCB
composite score in a double-blind, placebo-controlled
Phase 2 study in schizophrenia (Wallace and Porter,
2011; Umbricht et al., 2014). Although the lack of
efficacy in this clinical trial might have different origins,
one additional complexity relies on the methodology
and assessment scale used. In this respect it should be
recalled that few studies share the same measurement
scales and that so far there is no agreement on the best
method to be used for a given symptom domain in
schizophrenia. Interestingly, a common trait emerges,
with some of these studies demonstrating an improve-
ment on the SANS (Umbricht et al., 2014; Keefe et al.,
2015); although Walling et al. (2015) showed no benefit
of TC-5619 on the SANS. Indicative of the fact that a7
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nAChR agonists have not only reached the brain and
have also modified the SANS scale, improvement in
negative symptoms could be used as a kind of bio-
marker. Moreover, as negative symptoms are very
important in the day-to-day functioning of schizo-
phrenic patients, a drug that could reduce them would
still be beneficial, even if there is no improvement in the
cognitive symptoms.
More recently, positive signals of efficacy have been

reported inschizophreniawithothera7nAChR/5-HT3re-
ceptor ligands. Tropisetron, an a7 nAChR agonist/5-HT3

receptor antagonist (Ki = 6.9 nM for a7 nAChRs and
Ki = 5.3 nM for 5-HT3 receptors), which is primarily used
as an antiemetic, was reported to improve sustained
attention and to significantly improve sensory gating in
a randomized, double-blind, placebo-controlled study in
schizophrenia (Shiina et al., 2010).More recently, FORUM
reported an improvement in cognitive deficits with
encenicline, another a7 nAChR agonist/5-HT3 receptor
antagonist using the CogState test battery, with trends
for improvement on the MCCB composite score, as well
as improvement in the SANS in a Phase 2, double-blind,
placebo-controlled clinical trial in schizophrenia that
included smokers and nonsmokers (Keefe et al., 2015).
The importance of trial design was underscored in this
study by the secondary analysis in which the consistency
in time of day of cognitive testing was critical to
demonstrating efficacy with the MCCB (Hufford et al.,
2014). TC-5619, an a7 nAChR agonist without 5-HT3

receptor antagonist activity, was found to improve
cognitive dysfunction as assessed by the Groton Maze
Learning Task of the CogState Schizophrenia Battery
and to reduce negative symptoms in a 12-week study in
schizophrenia (smokers and nonsmokers) (Lieberman
et al., 2013). However, a second Phase 2 trial of negative
symptoms and cognition failed to find any benefit of
TC-5619 in schizophrenia (Walling et al., 2015). Collec-
tively, these recent clinical results with compounds that
exhibited improved receptor selectivity and enhanced
PK profiles further validated the approach of activating
a7 nAChRs as a therapeutic target.
Clinical trials conducted with a7 nAChR agonists

showed promising results inmost of the Phase 1 studies,
with compounds demonstrating safety and efficacy in
normal healthy volunteers. Cardiovascular events, such
as reported for PNU-282987, marked, however, a halt of
studies for compounds from this class. Paucity of effects
or lack of sufficient selectivity between a7 nAChRs and
5-HT3 receptors might be the cause of other discontin-
ued compounds in clinical development. In the absence
of clear reports, it is difficult to discuss the limited
success of a7 nAChR agonists in clinical studies report-
ed so far. However, it should be noted that Phase 3
clinical studies of encenicline, an a7 nAChR agonist/5-
HT3 antagonist, are currently in progress, with two
trials for Alzheimer’s disease as well as two trials for
cognitive impairment in schizophrenia. The high degree

of expression of a7 nAChRs in the brain and the
relevance of cholinergic function to cognition suggest
that a7 nAChR selective compounds may still become
therapeutics for cognitive impairment. The success or
failure of the encenicline Phase 3 studies will likely
influence the likelihood that other a7 nAChR agonists
are developed in the near future, regardless of how
compelling the preclinical evidence is for the a7 nAChR
as a target for treating cognitive impairment.

B. From the Crystal Structure to Developments in
Structure-Activity Relationship

The discovery of the water-soluble AChBP, which
allows the preparation of high resolution crystal struc-
tures, initially reported by Sixma and collaborators
(Brejc et al., 2001; Sixma and Smit, 2003), marked
a turning point in SAR research of compounds targeted
at the a7 nAChR. Since then, other proteins sharing
similar structure and functions have been identified in
invertebrates and provide additional and valuable in-
formation about the ACh LBD (Hansen et al., 2005;
Hibbs et al., 2009; Sander et al., 2010). The crystal
structure of AChBP bound to different molecules
brought new insights to the understanding of protein-
ligand interactions and suggested that the LBD differ-
entially changes conformation upon binding of an
agonist or an antagonist (Hibbs et al., 2009; Brams
et al., 2011a). Crystal structures have been obtained for
epibatidine bound a7 nAChR/AChBP chimeras, with
three additional Aplysia californica AChBP mutants
showing further structural features with a variety of
nicotinic ligands. These constructsmay provide realistic
templates for structure-aided drug design. Homology
models of this type, coupled with docking studies and
regional analysis, have become a tool for the rational
design of new, selective nAChR ligands. Sequence
analysis of AChBPs revealed that these proteins share
about 20226% overall sequence identity to the nAChR
extracellular domains, but homologies within the
orthosteric LBD are higher.

Studies comparing results obtained using the AChBP
with functional assays for a7 and a4b2 nAChRs
revealed some limitations, because some molecules
known to bind with high affinity to AChBP had no
activity on receptors expressed in heterologous systems
(Ulens et al., 2009). Nonetheless, AChBP provides
a useful template for the identification of novel mole-
cules that were subsequently reported to have high
affinity for the 5-HT3 receptor and a7 nAChR (Akdemir
et al., 2011; Akdemir et al., 2012; Armishaw et al., 2009;
Bourne et al., 2010; Brams et al., 2011b).

Recent publications of the GABAA and 5-HT3 receptor
structures illustrate the feasibility of crystallization of
members of the cys-loop family of ligand-gated ion
channels and suggest that the three-dimensional struc-
ture of the a7 nAChR might be resolved in the near
future (Hassaine et al., 2014; Miller and Aricescu,
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2014). Paving the way to SAR discoveries, the pro-
gressive refinement of the three-dimensional protein
structure at the molecular level is expected to expand
our understanding of the relationship between ligand
binding and functional activity of a7 nAChRs.
Although crystal structure of a full a7 nAChR has not

been achieved, progress made with related proteins
such as the 5-HT3 receptor or AChBP has brought our
understanding of the nAChRs one step further. Crys-
tallization of the a7 nAChR is expected to shine a new
light on ligand-protein interactions and is expected to
open the discovery to new and more specific molecules.

C. Target Engagement and Overview of the
Development of Biomarkers

Research in the nicotinic field provided, over the years,
extensive data to support that a7 nAChRs play a patho-
physiological role in several psychiatric and neurologic
disorders, such as schizophrenia, AD, anxiety, depression,
drug addiction, and autism. Altogether, this propelled a7
nAChRs as an attractive target for the design of selective
molecules desired for a number of therapeutic indications.
Moreover, it has been demonstrated in post mortem
human brain samples that a7 nAChRs levels are altered
in schizophrenia and AD patients. This finding generated
interest in studies to image and assess alterations in a7
nAChRs levels in living brains of patients with such
neuropsychiatric disorders. In this respect, it would also
be relevant to measure in the intact brain and possibly in
neuropsychiatric patients, the receptor occupancy of
potential therapeutic a7 nAChRdrugs thatwould provide
an assessment of target engagement. A number of radio-
ligands were synthesized by different laboratories to
undertake such a measurement and to provide quantita-
tively the distribution of a7 nAChRs in the human brain
through the utilization of PET tracer and single photon
emission computed tomography (SPECT) (see Table 3).
However, challenges ensued with such radioligand devel-
opment due to lack of lead chemical structures that
provided properties of high affinity and strategically
attached functional groups to be labeled with PET and
SPECT radioisotopes. It is important to stress that
chemistry of ligands suitable for PET or SPECT imaging
requires the possibility of rapidly inserting the desired
radioactive group in the last step of synthesis, which
seriously increases the challenge in the design of new
molecules. In 2008, the 1,4-diazabicyclo-[3.2.2]nonane
analog 4-[11C]methylphenyl 2,5-diazabicyclo[3.2.2]noane-
2- carbocylate ([11C]CHIBA-1001) was developed by
CHIBA University (Tokyo, Japan), and its selective
uptake was confirmed in the conscious monkey brain
by PET (Hashimoto et al., 2008).
To date, [11C]CHIBA-1001 has been the sole PET

ligand accessible for clinical trials to monitor in the
human brain a7 nAChR images. Although [11C]CHIBA-
1001 exhibited adequate properties as an a7 nAChR
imaging tool, its development for human studies remains

unlikely. Recently, a novel series of octahydropyrrolo
[3,4-c]pyrrole moieties were described by AbbVie (for-
merly Abbott) as ligands for nAChRs (Briggs et al., 2008;
Tietje et al., 2008). Two octahydropyrrolo[3,4-c]pyrrole
derivatives were characterized in the literature to be
selective a7 nAChRs agonists adequate for labeling with
11C, 2-methyl-5-[6-phenylpyridazine-3-yl]octahydropyrrolo
[3,4-c]pyrrole (A-582941) and 2-(5-methyl-hexahydro-
pyrrolo[3,4-c]pyrrol-2-yl)-xanthene-9-one (A-844606)
(Toyohara et al., 2010). These compounds possessed
required properties of potency and selectivity indis-
pensable for PET. A-582941 displaced specifically the
radioligand [3H]A-585539 binding to a7 nAChR
membranes from both rat brain and human frontal
cortex with Ki values of 10.8 and 17 nM, respectively
(Anderson et al., 2008). A-582941 competed with the
specific binding of [3H]MLA to rat brain membranes
with a Ki of 88 nM and exhibited much lower affinity
for the a4b2 nAChR subtype, as measured using
[3H]cytisine binding to rat brain membranes (Ki .
100,000 nM). In addition, A-582941 (10 mM) did not
exhibit any significant affinity for 78 other targets in
a Cerep panel analysis, with the sole exception of 5-HT3

receptors, in which [3H]-BRL 43694 (granisetron) bind-
ing was displaced. The Ki value of A-582941 for 5-HT3

receptors was 150 nM, which translates into a 15-fold
higher Ki than for a7 nAChRs (Tietje et al., 2008).

Over the past decade, there has been a considerable
effort to expand the development of a7 nAChR ligands,
with more than 20 compounds radiolabeled for PET and
SPECT, but previous efforts by several research groups
to develop a clinically viable a7 nAChR tracer for PET or
SPECT have proven unsuccessful. None of these radio-
ligands had sufficiently high specific binding at a7
nAChRs in vivo. Even [11C]CHIBA-1001, the recent
PET radioligand for human subjects, exhibited a low a7
nAChR binding affinity and poor in vivo selectivity.

In vivo imaging of the a7 nAChR distribution,
possibly up to the subcellular level, represents one of
the indispensable steps toward a better understanding
of these receptors in brain function. Development of
radioligands, specific for a7 nAChRs and amenable to
PET or SPECT studies is an enormous challenge that
was brought one step further with molecules that were
examined in primates. Indicative of positive outcomes,
these pioneering studies are opening additional strate-
gies to evaluate the contribution of the cholinergic
system in brain function.

D. The Chemical Strategy for a7 Nicotinic
Acetylcholine Receptor Positive Allosteric Modulators

In recent years, medicinal chemistry has evolved to
include the synthesis of allosteric modulators active at
a7 nAChRs with a focus on the identification of novel
chemical entities. In this review, we will highlight such
ligands as illustrated in Table 4, which are those most
extensively characterized in the literature and have
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served as tools tomake a significant advancement in the
a7 nAChR field. These compounds embody a new series
of ligands that modulate the activity of a7 nAChRs and
thus provide a potentially new therapeutic opportunity
to treat a7 nAChR-associated cognitive deficits in
schizophrenia. Initial work in the area of allosteric
modulation of a7 nAChRs was accomplished using
ivermectin or 5-hydroxyindole (Krause et al., 1998;
Zwart et al., 2002). The disclosure of the selective a7
nAChR Type-II PAM PNU-120596 provided the essen-
tial selective tool to exploit the mechanistic potential of
such ligands (Hurst et al., 2005). Using an engineered
variant of the human a7 nAChR and ACh-evoked
inward currents in hippocampal interneurons, PNU-
120596 increased agonist-evoked Ca2+ flux (Hurst et al.,
2005). This compound also suppressed desensitization
when tested in vitro and exhibited robust activity in the
in vivo amphetamine-induced P50 gating deficit model.
Experiments conducted in aged rodents and nonhuman
primates showed that low doses of PNU-120596 aug-
mented the effects of the acetylcholinesterase inhibitor
donepezil on learning and memory (Callahan et al.,
2013). The positive effects were observed with low doses
of PNU-120596 that were otherwise ineffective when
applied alone and indicated that this drug combination

was acting by potentiating a7 nAChRs, as confirmed by
inhibition of the effects by MLA (Callahan et al., 2013).

More recently, the SAR within this chemical series
was determined to be narrow, but the series contained
compounds with improved potency, physicochemical
properties, and PK when tested in vivo. A biaryl urea
series was identified by the group at NeuroSearch
(Copenhagen, Denmark), with NS1738 as an example
of such a compound from the series (Timmermann et al.,
2007). NS1738 was also reported to enhance agonist
potency, as well as the efficacy. Although this compound
has limited CNS penetration, it exhibited the ability to
rescue scopolamine-induced deficits in acquisition of
a water maze learning task in rats and enhance
performance in rat social recognition (Thomsen et al.,
2011). Interestingly, a team at the University of
California-Irvine synthesized another molecule that is
a kind of chimera between compounds active at the
GABAA receptor and at the a7 nAChR, by taking
advantage of sequence homologies between these recep-
tors. From a library screen of modulators of the GABAA

receptor, the group identified a class of compounds
highlighted by compound 6 (XY4083) (Ng et al., 2007).
XY4083 exhibited properties of an a7 nAChR PAM but,
unlike PNU-120596, did not significantly prolong the

TABLE 3
a7 nAChR PET ligands

Compounds Species Tested Company Reference

[11C]-CHIBA-1001

Rodent Monkey and Human Chiba Hashimoto et al., 2008;
Sakata et al., 2011;
Yin et al., 2013

[11C]-NS-14492

Rodent and Pig Neurosearch Ettrup et al., 2011

[11C]-A-833834

Rodent AbbVie Horti et al., 2013

[18F]-AZ11637326

Rodent Astra-Zeneca Gordon et al., 2010;
Maier et al., 2011

[18F]-ASEM

Rodent and Human Johns Hopkins Wong et al., 2014
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response time course. This compound reversed sensory
gating deficits in rodents and improved working mem-
ory. Eli Lilly (Indianapolis, IN) and Johnson and
Johnson (New Brunswick, NJ) identified from high
throughput screenings a series of thiazole derivatives
as a7 nAChR PAMs. LY-2087101, a (2-amino-5-keto)
thiazole compound (Broad et al., 2006), was derived
from that series and exhibited activity at the various
brain subtypes of nAChRs and thus was not selective
for a7 nAChRs (Young et al., 2008). Other compounds

in the series related to LY-2087101 exhibited an enhance-
ment in potency and maximal efficacy at both a7 and
a4b2 nAChRs. JNJ1930942 (2-[[4-fluoro-3-(trifluoro-
methyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemetha-
nol) was reported to be selective for a7 nAChRs (Dinklo
et al., 2011). This compound enhanced the peak agonist-
evoked current amplitude, and similar to PNU-120596,
was classified as a Type-II PAM with slowed desensi-
tization kinetics. JNJ1930942 improved sensory gating
of auditory evoked potentials in DBA/2 mice. More

TABLE 4
a7 nAChR positive allosteric modulators

Compounds Therapeutic Indications Modulator
Type Company Reference

XY4083

Alzheimer’s disease I XYTis Ng et al., 2007

PNU-120596

Alzheimer’s disease II Pfizer Hurst et al., 2005; Barron et al., 2009;
Young et al., 2008; Young and Geyer,
2013

Cognitive deficiency in schizophrenia

NS-1738

Alzheimer’s disease I Neurosearch Timmermann et al., 2007; Thomsen and
Mikkelsen, 2012Cognitive deficiency in schizophrenia

A-867744

Alzheimer’s disease II AbbVie Malysz et al., 2009, 2010
Cognitive deficiency in schizophrenia

LY-1078733

Alzheimer’s disease II Eli Lilly Broad et al., 2006
Cognitive deficiency in schizophrenia

RO5126946

Alzheimer’s disease Discovery Roche Sahdeo et al., 2014
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recently, Roche (Basel, Switzerland) described another
PAM selective for a7 nAChRs, RO5126946, or 5-chloro-N-
[(1S,3R)-2,2-dimethyl-3-(4-sulfamoyl-phenyl)-cyclopropyl]-
2-methoxy-benzamide),which is also classified as aType-II
PAM and displayed effects both in vitro and in vivo
(Sahdeo et al., 2014). It was concluded and reported that
subtle substitutions in this chemical series translate to
profound effects on selectivity among the homomeric and
heteromeric nAChR subtypes.
The finding that a7 nAChR activity can bemodulated

by different molecules suggested that PAMs represent
an additional therapeutic possibility. The identification
of Type-I and Type-II PAMs that were classified
according to their effects on receptor desensitization
unveiled the broad possibilities offered by allosteric
modulation of a7 nAChRs. Although efforts in the
search for additional PAMs are still in their infancy, it
is clear that this strategy will be further exploited in the
near future.

IV. The Relevance of a7 Nicotinic Acetylcholine
Receptors in Diseases

Normal brain function relies on precise connectivity
and equilibrium between neuronal activities from mul-
tiple sources. Although there are numerous examples of
single amino acid mutations causing altered brain
function, the profound modifications caused by muta-
tion in the AMPA receptor regulatory protein g2 (or
stargazin) are particularly noteworthy (Osten and
Stern-Bach, 2006). Mutant stargazin alters trafficking
of AMPA receptors and leads to a complex phenotype,
which includes changes in AMPA receptor function,
aberrant pyramidal cell orientation, and epilepsy. Dur-
ing development, as cells are progressively migrating
and differentiating, neurotransmitters are synthesized
and released to aid in the establishment of neuronal
connections. Expression of receptors is therefore one of
the primary steps taking place early in development,
and CHRNA7 mRNA is found early in several nuclei
that receive sensory information in the human fetal

brain (Agulhon et al., 1999). Improper function of these
receptors might therefore alter the organization of the
brain. Although our knowledge of the relationship
between a7 nAChRs and brain development is rather
limited, developments in imaging technologies, com-
bined with genetic associations and clinical phenotypes
are paving the way to future research, as illustrated by
the computer analysis of multiple genes contributing to
schizophrenia (Gilman et al., 2012).

The aim of this section is to review the most
prominent correlations found between CHRNA7 and
neurologic and psychiatric diseases. In the view of the
determinant properties of a7 nAChRs and their impli-
cation in brain development, it is probable that addi-
tional diseases associated with this receptor will be
discovered as progress is made in small patient cohorts
or even in the case of pedigree studies (see Table 5).

A. Alzheimer’s Disease

In the United States alone, AD has become a devas-
tating neurologic disorder affecting over 5 million
patients and is the major form of dementia in the aging
population. First identified in 1901 in a 51-year-old
patient showing presenile dementia, this case allowed
Dr. Alois Alzheimer to study the evolution of a disease
that initiated with loss of short-term memory and was
followed by progressive loss of cognitive function.
Autopsy and histologic observations of this patient’s
brain revealed a peculiar formation of amyloid plaques
and neurofibrillary tangles that were subsequently
used as the post mortem diagnostic criteria of the
disease (Simchowicz, 1911).

Initiating with mild cognitive impairment (MCI) and
progressing to loss of short-termmemory, the symptoms
of AD disable patients in their day-to-day functioning
and pose an enormous burden on patients’ relatives and
caregivers. It is therefore of no surprise that the finding
of a possible relationship between histologic evidence
and cognitive decline triggered immediate attention.
Since these initial studies, replication of the clinical and
histologic observations were made by other laboratories

TABLE 5
a7 nAChR-associated diseases

Disease Reference

Auditory dating deficits in families with schizophrenia
and smokers with schizophrenia

Freedman et al., 1996; Leonard et al., 2002; Gault et al.,
2003; Mexal et al., 2010; Flomen et al., 2013

Triplication in three generation pedigree of cognitive
impairment and neuropsychiatric phenotype

Soler-Alfonso et al., 2014

Inherited phenotypic trait of schizophrenia Adler et al., 1998
Neuropsychiatric disorders Riley et al., 2002
Epilepsy Elmslie et al., 1997; Rozycka et al., 2013
AD susceptibility; MCI risk and conversion to AD Barabash et al., 2009; Heinzen et al., 2010;

Swaminathan et al., 2011, 2012a,b
AD, Dementia with DLB or Pick’s Feher et al., 2009
Benign rolendic epilepsy Neubauer et al., 1998
Autism and Rett Syndrome Allen-Brady et al., 2010; Yasui et al., 2011
Developmental Delay, Mental Retardation and/or ASD Mikhail et al., 2011
Microdeletion Syndrome Masurel-Paulet et al., 2010; Szafranski et al., 2010
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(Cras et al., 1991; Bloom, 2014). Additional observations
reported, however, that the presence of amyloid plaque
and neurofibrillary tangles could also be observed in
brains of elderly patients without the necessary associ-
ationwith dementia (Bloom, 2014). Casting doubt on the
causality between histologic markers and the clinical
phenotype, these studies indicate that additional factors
probably need to be taken into account to fully explain
AD (Bloom, 2014). Since then, genetic studies were
conducted on large populations in an attempt to find
possible associated genes, as well as protective factors
that would prevent or delay the onset of the AD (Bloom,
2014; Rosenblum, 2014). Genome-wide association stud-
ies revealed that mutations in amyloid precursor pro-
tein, presenilin 1, and presenilin 2 are accountable for
the rare early-onset autosomal dominant forms of AD,
fueling the hypothesis that amyloid is a key causal
factor in AD (Armstrong, 2013). The apolipoprotein E
gene «4 allele is associated with the more common late-
onset and complex forms of AD (reviewed in Kim et al.,
2014a). As these studies have progressed, more genes
have been identified to be putatively associated with
AD, forcing the field to revisit the amyloid hypothesis as
the primary the etiology of AD.
Despite a clear genetic basis for the presenile or early-

onset form of AD, a genetic signature explaining the key
factors responsible for triggering senile or late-onset AD
and its progression is less obvious, with several genes
implicated in modifying the risk of late-onset AD. In
addition to the hallmark pathologies of AD, other
evidence suggests that the cognitive deficits are associ-
ated with reduced cholinergic function (Whitehouse
et al., 1983; Whitehouse and Kalaria, 1995; Whitehouse,
1998). In light of the negative correlation between
smoking and Parkinson’s disease (PD) and the relevance
of the cholinergic system in prefrontal cortical activity, it
was hypothesized that a similar correlation might exist
between AD and smoking. Careful histologic examina-
tion of brains fromADpatients andage-matched controls
revealed no clear evidence for a link between nicotine
intake and AD (Ulrich et al., 1997). Because the study
revealed a possible protective effect of nicotine on
neurofibrillary changes, the authors concluded that
nicotine might have an influence on the structural
alterations of AD.
Nonetheless, the progressive neuronal loss in the

cholinergic basal forebrain and prefrontal cortex was
correlated with reduced cholinergic activity and a re-
duction in [3H]acetylcholine and [3H]nicotine binding in
AD (Whitehouse and Au, 1986). Studies of the effects of
blockade of the cholinergic system in young healthy
subjects further supported the relationship between
cognitive function and the cholinergic system (Bartus
et al., 1982). In view of these observations, it was
proposed that use of a compound that would block
acetylcholinesterase activity might be beneficial in re-
ducing the cognitive deficit in AD, which eventually led

to the treatment of patients suffering from MCI and
age-related decline with aceytlcholinesterase inhibitors
(see for review Tan et al., 2014). In view of the parallel
reductions in ACh and nicotine binding sites in cerebral
cortex, experiments were conducted to determine if
nicotine could be a suitable treatment to restore
cognitive function. Exposure to nicotine alleviated
deficits in attention and informational processing
associated with AD (Wesnes and Warburton, 1984;
Sahakian et al., 1989; Newhouse et al., 2012). The
positive effects of nicotine treatment observed in these
studies were initially attributed to nicotine interacting
with the high-affinity a4b2 nAChRs. However, given
the lack of robustness of a4b2 nAChR agonists in
improving cognition, attention was refocused on other
nAChR subtypes and more specifically on a7 nAChRs.
Additional correlation between these receptors and AD
was provided by the observation of a reduced expression
of a7 nAChR labeling in post mortem AD cortex
(Burghaus et al., 2000).

To further examine the putative relationship between
a7 nAChRs andAD, it is important to recall key findings
obtained in different models. Following the hypothesis
that the increase of Ab1-42 might be one of the de-
terminant factors causing AD, experiments were con-
ducted to determine whether this peptide interacted
with a7 nAChRs and the consequences of this interac-
tion. As a first step, studies examined if Ab1-42 peptide
could bind to nAChRs and more specifically to a7
nAChRs. Some studies report a direct interaction
betweenAb1-42 and a7 nAChRs frommouse and human,
suggesting a binding interaction (Wang et al., 2000,
2009). An absence of a correlation between a7 nAChR
binding and the presence of Ab plaques was also
reported in other studies (Ikonomovic et al., 2009).
Moreover, it was suggested that Ab might disrupt the
membrane structure and indirectly affect a7 nAChR
expression and packing of lipids (Small et al., 2007).
Appropriate caution must however be maintained,
because false positives might be generated when eval-
uating protein expression using commercially available
antibodies (Herber et al., 2004; Jones and Wonnacott,
2005). Experiments conducted with competitive antag-
onists such as a-Btx or MLA have found opposing
results: an increase in expression of a7 nAChRs thought
to compensate for the loss of ACh in AD (Counts et al.,
2007; Liu et al., 2013) and reduced expression of a7
nAChRs in other studies (Burghaus et al., 2000). A
lower level of a7 nAChR expression on neurons, at the
same time as expression was higher on astrocytes, was
also reported in sporadic and familial AD (Yu et al.,
2005). Although determination of the level of expression
and possible affinity between the Ab1-42 and a7 nAChRs
constitutes the first step toward the understanding of
a possible correlation between Ab1-42 and cholinergic
functions, these studies rely on cross-sectional analyses
and are therefore lacking the indispensable longitudinal
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aspect that would be required to analyze the correlation
between these parameters with the evolution of the
disease in individual patients. Functional experiments
aimed at examining the effects of Ab1-42 on the activities
of the a7 nAChRs, together with pharmacological in-
tervention with a7 nAChR agonists, provide an alter-
native to evaluate the role of the cholinergic system in
AD. Initially, patch-clamp experiments conducted on
rat hippocampal neurons in culture showed that expo-
sure to rat Ab1-42 inhibited in a dose-dependent manner
the current evoked by ACh and that this inhibition was
noncompetitive (Liu et al., 2001). One difficulty in
functional studies concerns the sequence and oligomer-
ization of the Ab used. Namely, species, sequence and
peptide length (e.g., Ab1-40 versus Ab1-42, etc.) differ-
ences have been reported and, more importantly, Ab
oligomerization is difficult to control and probably
represents a crucial variable that cannot be analyzed
when comparing effects reported from different labora-
tories. This is illustrated by considering opposite results
obtained in two laboratories reporting 1) activation of
a7 nAChRs by exposure to 10 pM Ab1-42 (Dineley et al.,
2002; Tong et al., 2011) and 2) absence of effect reported
for apparently comparable experimental conditions
(Small et al., 2007). Use of chimeric approaches and in-
tracellular calcium measurements suggest that Ab1-42

interacts with the tyrosine residue Tyr-188 of a7
nAChRs (Tong et al., 2011). Evidence for the effects of
Ab on a7 nAChRs in animal models was obtained using
different approaches. For example, it was shown that
intraventricular injection of Ab1-42 inhibited the pressor
response of the heart rate caused by choline infusion (Li
and Buccafusco, 2004). Further agreement for an in-
teraction between a7 nAChRs and Ab was obtained in
studies relying on selective a7 nAChR agonists (Wang
et al., 2010b; Chen et al., 2010; Inestrosa et al., 2013). A
further complexity might reside in the structural dif-
ferences between homomeric a7 and heteromeric a7b2
nAChRs, as shown by intracellular recording in brain
slices and from nAChRs expressed in Xenopus oocytes
(Liu et al., 2009, 2012). The apparent contradictory
observation of an exacerbation of AD effects in a7
nAChR knockout mice (Hernandez et al., 2010) versus
improvement observed in another model (Dziewczapolski
et al., 2009) can be reconciled when considering the
stage and conditions. More specifically, if it is thought
that stimulation of a7 nAChRs is neuroprotective, then
it is understandable that inhibition of these receptors
will exacerbate Ab neurotoxicity, but inhibition of a7
nAChRs may also cause impairment of cognitive func-
tion. A balance between neuroprotection and reduction
in cholinergic neurotransmission must therefore be
taken into account when considering the effects and
requires long-term studies.
Experiments conducted with Ab40 that contains the

mutation E22G corresponding to the so-called “Artic
Ab” variant revealed that this polypeptide binds to a7

nAChRs and inhibits their function, as measured by
Ca2+ influx in CHO-K1 cells expressing a7 nAChRs (Ju
et al., 2014). Unlike other Ab mutations, such as the
E22Q, which gives rise to a highly distinct phenotype
with amyloid angiopathy leading to recurrent hemor-
rhage, the E22Gmutation causes only cognitive deficits
(Nilsberth et al., 2001). Although differences observed
between distinct Ab protein products highlight the
complexity of interactions of these amyloid peptides,
results obtained with a7 nAChRs suggest a plausible
specific interaction that is therapeutically worthwhile
pursuing.

Additionally, a7 nAChR stimulation could poten-
tially play a role in rescuing presynaptic deficits in AD
as a result of decreasing levels of b-site amyloid
precursor protein-cleaving enzyme 1 (BACE1) (Vassar
et al., 2009; Kandalepas and Vassar, 2014; Yan and
Vassar, 2014). In 2010, an intriguing study examined
the connection between activation of a7 nAChRs in
BACE1 knockout mice, showing restoration of pair-
pulsed facilitation from mossy fiber-to-CA3 synapses,
which is reflective of deficits in presynaptic release
(Wang et al., 2010a). Second, activation of a7 nAChRs
also restored LTP deficits at these terminals in BACE1
knockoutmice. Both of these restorations by a7 nAChR
agonists, in this case by nicotine and PNU-282987,
were selective because pretreatment with 100 nM
a-Btx blocked the agonist actions (Wang et al., 2010a).
One mechanistic insight afforded by this study was that
this a7 nAChR-induced restoration in BACE1 knockout
micewas due to one of the hallmark characteristics of a7
nAChR stimulation, which is elevation of protective
levels of intracellular Ca2+ and the concomitant in-
crease in glutamate release from synaptic endings that
affected downstream intracellular signaling cascades
such as theERKpathway (Dickinson et al., 2008). These
studies clearly suggest that the combination of an a7
nAChR agonist with a BACE1 inhibitor may be an
attractive approach to tackling the complexity in treat-
ing AD.

In view of the unique procognitive properties of a7
nAChR agonists and their neuroprotective activity in
different models, it is reasonable to speculate that
stimulation of a7 nAChRs could be disease modifying
rather than solely compensate for cognitive decline.
Thought of as the “missing link” between the histopath-
ological hallmarks of amyloid or phosphorylated tau
and the clinical manifestation of AD, a7 nAChRs
constitute an important area of research (reviewed in
Bencherif and Lippiello, 2010; Parri et al., 2011).

The safety and efficacy of the a7 selective agonist
ABT-126 observed in a Phase 2 clinical trial conducted
on subjects with mild-to-moderate AD dementia was
recently published (Gault et al., 2015). Although this
study failed to demonstrate statistically significant
improvements with doses up to 25 mg; exposure-
response analysis suggested that additional data with
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higher concentrations should be performed either as
mono or add-on therapy.
There are also other forms of dementia that may

benefit therapeutically from an a7 nAChR agonist. MCI
is clinically defined as a patient having problems with
memory with or without cognitive deficits that interfere
with daily function (Petersen et al., 2001). Unfortu-
nately, 10–15% of these patients annually will convert
to dementia, particularly to AD (Petersen, 2009). A
genetic study suggested that the CHRNA7 might act as
a modifier gene in patients with MCI in protection from
conversion to AD (Barabash et al., 2009). A recent study
demonstrated that in a 6-month study, transdermal
nicotine improved measures of attention, memory, and
mental processing in nonsmoking MCI patients, al-
though not in the global impression clinical rating scale
(Newhouse et al., 2012).
Dementia with Lewy bodies (DLB) is the second most

prevalent form of dementia, and in DLB the psychiatric
symptoms, mainly visual hallucinations, emerge earlier
than in AD. Thus these patients use more resources to
cope with the disease and as a consequence early
intervention may prove beneficial in quality of life for
these patients and their caregivers (Mollenhauer et al.,
2010). Interestingly, visual hallucinations and delu-
sional misidentification associated with DLB were
correlated with lower a-Btx binding in the temporal
cortex, indicative of a7 nAChR localization, and not
with [3H]-epibatidine binding, indicative of a4b2
nAChR localization (Rei et al., 2000; Court et al.,
2001). As nAChRs are also strongly expressed in the
visual system, including the retina, the lateral genicu-
late nucleus and visual cortex, it would be of value to
know if the density of receptors is also modified in other
brain areas. As listed in Table 5, the CHRFAM7A gene
without the 2-bp deletion has been shown to be signif-
icantly correlated with AD (P = 0.011), DLB (P = 0.001),
and Pick’s disease (P , 0.0001) compared with healthy
controls (Swaminathan et al., 2011, 2012a). Patients
with DLB or PDwith dementia share the same profile of
dopaminergic and cholinergic deficits with widespread
reductions in choline acetyltransferase-positive neu-
rons in DLB and PD with dementia compared with PD
alone (Rei et al., 2000; Fujishiro et al., 2006). If lower
functional a7 nAChRs are present in these other forms
of dementia, then the therapeutic use of a potent a7
nAChR agonist could be potentially beneficial as well.
Numerous observations point to a critical role of the

cholinergic system in AD, as well as in other dementing
illnesses. This is best illustrated by the fact that today
acetylcholinesterase inhibitors represent one of the few
tools available for the treatment of dementia. Develop-
ment of a7 nAChR agonists and the observation that
these molecules not only can be procognitive but also
neuroprotective has strengthened the need to pursue
research into their utility in the treatment of AD.
Because no disease-modifying treatment of AD has yet

been developed, the hope is that a7 nAChR agonists
may fill this role, if only partially as a treatment to
substantially slow disease progression, if not halt it
entirely. Current Phase 3 clinical trials conducted with
the a7 nAChR agonist/5-HT3 antagonist encenicline are
hoped to mark a turning point in AD treatment. While
time will tell if encenicline can be successfully mar-
keted, it is likely that a7 nAChRs represent a promising
target for the treatment of cognitive impairment in AD
and may also alter the course of the disease.

B. Schizophrenia

Affecting about 1% of the population or more than 50
million people worldwide, schizophrenia is a life-long
severely disabling mental disorder characterized by
deficits in thought processes, perception, and emotional
responsiveness. Schizophrenia onset typically occurs in
early adulthood and symptoms such as cognitive im-
pairment and reduced attention might be indicative of
altered brain function prior to the first psychotic episode
and diagnosis. The role of a7 nAChRs in this disease was
recently thoroughly reviewed and supported by a biology
that correlates with the pathophysiology of the disease
and the involvement of cholinergic nuclei and, more
specifically, a7 nAChRs (Wallace and Bertrand, 2013a;
Freedman, 2014). From its revised and expanded char-
acterization by the Swiss psychiatrist Paul Eugen
Bleuler (1857–1939), who coined the term schizophre-
nia, it was recognized that basic symptoms included
“negative symptoms” with disorganized speech, think-
ing, affective incongruence, and withdrawal from reality
and “positive symptoms” with tactile, auditory,
visual, and gustatory hallucinations and delusions
(Pearlson and Ford, 2014). Additionally, cognitive im-
pairment in multiple domains is a core feature of
schizophrenia and accounts for much of the continued
disability and poor functional outcomes in patients after
management of the positive symptoms (Green et al.,
2004; Nuechterlein et al., 2011). Although impressive
progress in treating positive symptoms has been made
with the discovery of typical and atypical antipsy-
chotics, it is now recognized that these molecules are
ineffective at treating negative and cognitive symptoms
(Kay and Singh, 1989; Chue and Lalonde, 2014; Keefe,
2014). Schizophrenia, as with many other brain disor-
ders, is certainly multifactorial and includes environ-
mental etiologies; however, as shown by recent twin
studies, there are genetic factors predisposing for the
development of schizophrenia (Cardno and Owen,
2014). The need for better molecules that would be
efficacious for negative and cognitive symptoms is
therefore tremendous and should be readily evaluated.

Without entering into a detailed review of all the
elements linking a7 nAChRs and schizophrenia, it is
worthwhile recalling that a large percentage of patients
are smokers and that their cigarette consumption is
about twice that of smokers in the general population.
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This prompted the idea that nicotine intake from
smoking might constitute an attempt to self-medicate
and that nicotine could reduce some of the symptoms.
Post mortem examination of brain tissue revealed a re-
duction of a-Btx binding sites up to 50% in schizo-
phrenic patients (Freedman et al., 1995; Marutle et al.,
2001). Subsequent analysis of smoking versus non-
smoking schizophrenics confirmed the reduced a7
nAChR expression at the cell surface but concluded
that smoking might cause some compensation for this
deficit (Leonard et al., 2000). Genetic studies conducted
by different laboratories indicated thatmutations in the
CHRNA7 gene, its promotor region, or CHRFAM7A are
associated with schizophrenia (Riley et al., 2000; Raux
et al., 2002; Martin et al., 2007; Sinkus et al., 2009;
Stephens et al., 2009; Bakanidze et al., 2013). A survey
of the literature on schizophrenia and genetic associa-
tion revealed that several studies failed to detect any
association with CHRNA7 or CHRFAM7A, which is
indicative of the rarity of these mutations in the
schizophrenic population, the complexity of schizophre-
nia, and the need for a better classification of the disease
(Petrovsky et al., 2009). Because schizophrenia is
probably multifactorial, influenced by both environ-
mental factors and genetics, with many other genes
identified as linked to the disease, it would not be
surprising that absence of an association would be
observed in certain patient cohorts.
Because the first manifestations of the disease often

occur in late adolescence, it would be of interest to
identify biomarkers that could allow detection and
possible treatment of the disease before the appearance
of overt clinical symptoms. Interestingly, studies con-
ducted in children have shown that delay in P50
inhibition is associated with attention problems during
maturation (Ross et al., 2010). In view of the fact that
amniotic choline activates fetal a7 nAChRs and facili-
tates the development of central inhibition, it was
hypothesized that choline supplementation during
pregnancy might improve child development (Ross
et al., 2010). Randomized, placebo-controlled clinical
trials conducted on more than 100 volunteers revealed
that 76% of the children treated with phosphatidylcho-
line during development showed suppression of the P50
response at the 5th postnatal week, a marker of central
inhibition, versus 43% in placebo-treated infants. Al-
though the difference progressively diminished be-
tween treated and placebo groups by the 13th week,
perinatal choline treatment might help in the develop-
ment of central inhibition (Ross et al., 2013). In
addition, studies examining children with autism spec-
trum disorder (ASD) have shown a reduction in the
latency to evoke a P50 response, as well as a reduction
in prepulse inhibition to a startle response, similar to
that observed in schizophrenia, and suggests a role for
a7 nAChR agonist therapy for this condition (Deutsch
et al., 2010).

The importance of the cholinergic system was largely
documented in animal models that supported the de-
terminant role of a7 nAChRs by studying the effects of
molecules specific for this receptor subtype. Exposure to
a7 nAChR agonists or PAMs was found to restore
cognitive impairments caused by pharmacological
treatments. Consistent results obtained in different
animal species ranging from rodent to nonhuman
primates further strengthened the role of a7 nAChRs
in cholinergic system functioning. Preclinical studies
have demonstrated the efficacy of several a7 nAChR
agonists in an N40 sensory gating model (Hashimoto
et al., 2005; Simosky et al., 2008;Wildeboer-Andrud and
Stevens, 2011), in particular ABT-107 (Radek et al.,
2012). Other molecules such as TC-5619, SSR-180711,
A-582941, or encenicline also demonstrated efficacy in
cognitive models (Pichat et al., 2007; Tietje et al., 2008;
Mazurov et al., 2012; Prickaerts et al., 2012). Although
application of an a7 nAChR agonist alone was ineffec-
tive in a DBA/2 mouse model of sensorimotor gating
(prepulse inhibition), it increased the effects of haloper-
idol or risperidone (Kohlhaas et al., 2012). TC-5619
showed a statistically significant effect on executive
function based on measurements for the Groton Maze
Learning Task but not on other cognitive domains
(Lieberman et al., 2013). However, secondary measure-
ments for negative symptoms demonstrated efficacy in
TC-5619-treated patientswith schizophrenia, and these
effects were more pronounced in smokers than non-
smokers (Lieberman et al., 2013). However, a second
Phase 2 trial with TC-5619 failed to demonstrate any
benefit in alleviating either negative or cognitive symp-
toms (Walling et al., 2015). The logical next steps for
proof-of-concept were obtained in early clinical studies
using a7 nAChR agonists (Olincy et al., 2006; Tregellas
et al., 2011; Barbier et al., 2015; Preskorn et al., 2014).
Although a more detailed discussion of these clinical
trials is presented in section III, it is important to note
that studies of the 5-HT3 receptor antagonist tropise-
tron, which also acts as an agonist at a7 nAChRs,
caused a normalization of the P50 response in schizo-
phrenic patients (Shiina et al., 2010; Zhang et al., 2012).

The complex modifications observed in behavior and
multiple higher cognitive functions are, however, un-
likely to be caused by the modification of the a7 nAChR
pathway alone but might implicate some interdepen-
dence with other neurotransmitter systems. Contribu-
tion of the glutamatergic system and more specifically
the hypofunction of the NMDA receptor is one of the
hypotheses that is preponderantly discussed in the
field of schizophrenia (Veerman et al., 2014). This was
supported by the observation that exposure of healthy
subjects to NMDA antagonists such as ketamine causes
schizophrenic-like symptoms (Adler et al., 1999). A
possible cross-interaction between NMDA receptor and
a7 nAChR neurotransmission would therefore repre-
sent a plausible mechanism that would explain results
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observed with these two classes of receptors. Speaking
in favor of a cross-interaction, the following facts must
be considered. First, important evidence comes from
the pharmacological interactions observed in rodent
and monkey in which impairment caused by ketamine
or MK-801 exposure could be improved by the a7
nAChR agonist GTS-21 (Cannon et al., 2013; Callahan
et al., 2014). Similarly, in a mouse model, tropisetron
improved the cognitive deficits caused by phenyclidine
(Hashimoto et al., 2006). The a7 nAChR agonists enceni-
cline and TC-5619 have also been shown to reverse
phencyclidine-induced deficits that mimic negative-like
symptoms of schizophrenia inmice (Pedersen et al., 2014).
Deficits induced by the open channel blocker MK-801 can
be reversed by a7 nAChR agonists as well as by a7
nAChR PAMs (Jones et al., 2014). The use of a specific a7
nAChR agonist is probably necessary, as nicotine, a non-
selective ligand, could not restore the ketamine-induced
deficits in humans (D’Souza et al., 2012). Interestingly,
however, nicotine was able to alleviate ketamine-induced
sensory and memory impairment and improve attention
in subjects displaying a predisposition for auditory
hallucinations/delusions (Knott et al., 2012). The reports
of a possible pharmacological cross-reactivity between the
NMDAreceptors anda7nAChRs call, however, for aword
of caution in the analysis of currently available data.
Namely, it was shown that memantine, ketamine, and
MK-801 can interact with a7 nAChRs, which requires
a precise quantification of the concentration used in the
experimental conditions, before reaching a definitive
conclusion (Maskell et al., 2003; Alkondon et al., 2011;
Banerjee et al., 2012; Moaddel et al., 2013). The impor-
tance of the functional interactions between NMDA
receptors and a7 nAChRs was further defined by studies
illustrating that chronic inactivation of a7 nAChRs
markedly increased NMDA receptors at the cell surface
(Lin et al., 2010). Differences in the distribution of NMDA
receptors from synaptic to extrasynaptic and a change in
the pharmacological sensitivity to D-serine were also
observed in a7 nAChR knockout mice (Lin et al., 2014).
Direct interaction between a7 nAChRs and NMDA
receptors was recently proposed with a protein-protein
interaction that could be disrupted by the use of small
peptide fragments (Li et al., 2012, 2013). These data need,
however, to be replicated and extended to understand the
putative mechanism of direct receptor interaction.
The large body of literature documenting the effects

of NMDA receptors on memory and other intrinsic
brain functions indicate that a recognized interaction
between these glutamate receptors and a7 nAChRs
further supports the fundamental role of a7 nAChRs in
cognition. Development of compounds acting at the a7
nAChR might therefore also serve to alleviate NMDA
receptor dysfunction, as hypothesized in schizophre-
nia. Indeed, glutamate release from prefrontal cortex
was elevated after treatment with a7 nAChR agonists
in rats and nonhuman primates (Yang et al., 2013;

Huang et al., 2014a). The recent hypothesis that ket-
amine might be used for the treatment of depression
indicates that in view of the a7 nAChR/NMDA receptor
interaction, additional targets might be envisaged to
treat a wide range of psychologic afflictions.

The high prevalence of schizophrenia in the popula-
tion and lifelong debilitation associatedwith the disease
calls for the development of new molecules that could
help patients suffering from this disease. Progressive
cognitive deficits as well as negative symptoms ob-
served in patients with schizophrenia suggest that
drugs targeting the cholinergic system and more spe-
cifically the a7 nAChRs should be appropriate for the
treatment of this disease. Current Phase 3 clinical trials
are expected to provide additional information about
the utility of a7 nAChR agonists for treatment of both
cognitive impairment and negative symptoms in schizo-
phrenia. Parallel developments brought by refined
genetic analysis of the chromosome 15 sequence in the
CHRNA7 region are expected to provide additional
information about the association between schizophre-
nia or cognitive deficits and genetic modifications.
Together, these data will be valuable in determining
the contribution of a7 nAChRs or a7 dup in cognitive
impairments and the population of patients that might
benefit from treatment with a7 nAChR agonists.

C. Autism

Autism spectrum disorders (ASDs), which include
autistic disorder, Asperger’s disorder, and pervasive
developmental disorder, are defined by socialization
and communication deficits and a need for preservation
of “sameness.” Initially considered in 1943 as the
manifestation of a single affliction, autism and schizo-
phrenia became classified as two separate diseases,
although they shared several clinical features, such as
social withdrawal, communication impairment, and
poor eye contact (Barneveld et al., 2011). With a preva-
lence of up to 2/1000 individuals, autism is about four
timesmore frequent inmen thanwomen and shows up to
90% genetic inheritability (Casey et al., 2012). Despite
evidence for genetic transmission, genome-wide analysis
performed on large cohorts has failed to identify associ-
ations with specific genes or mutations, suggesting that
variants exert only a weak effect on ASD (Anney et al.,
2012). An alternative genetic analysis conducted onmore
than a thousand patients was aimed at elucidating why
a disease that is highly heritable cannot be associated
with a given gene or set of genes (Casey et al., 2012). In
rare cases, autism is associated with agents that cause
birth defects, but the impressive increase in autism of
about 30% between 2012 and 2014 suggests that envi-
ronmental causesmight be at the origin ofASD (Neggers,
2014). Similar observations were made in a meta-
analysis of results from an Asian population (Feng
et al., 2013). Questions about recent increases in ASD
have been raised because this might reflect a difference
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in diagnostic practice and government-subsidized finan-
cial incentives for named diagnoses more than a real
increase in the frequency of ASD.
With regard to the cholinergic system, neuropatho-

logical abnormalities in the basal forebrain cholinergic
nuclei originally indicated that dysfunction of cholin-
ergic neurotransmission may be involved in the etiol-
ogy of autism (Ray et al., 2005). Neurochemical studies
have shown a loss of a7 nAChRs in thalamus (specif-
ically the paraventricular nucleus and nucleus
reuniens) in autistic versus control brains, suggesting
a role in the relay of information from the periphery to
cerebral cortex and in modulation of cortical outputs
(Lee et al., 2002; Martin-Ruiz et al., 2004). Data from
this small sample suggest that cholinergic dysfunction
in the thalamus of persons with autism may contribute
to disrupted regulation of sensory input to the cerebral
cortex and disturbance of the processing of emotions
and cognition. A 15q11.2-13.3 chromatin analysis
revealed alterations in epigenetic regulation resulting
in reduced transcription of CHRNA7 in Rett syndrome
and autism brains (Yasui et al., 2011). This study also
revealed an association between ASD and genomic
instability at chromosome 15q13.3 due to recurrent
microdeletions, also resulting in a reduced level of
CHRNA7 transcripts in human frontal cortex in ASD.
CHRNA7 transcripts were high in normal subjects less
than 1 year of age and declined until about 20 years of
age. Interestingly, the postnatal decline in CHRNA7
levels around 1 to 2 years of age corresponds to the onset
of autistic symptoms (Yasui et al., 2011). Modifications
of the cholinergic system are expected to affect multiple
brain areas including the cerebellum. The abnormal
anatomy of the cerebellum in ASD, together with
cerebellar motor and cognitive deficits, suggests that
this structure might play an important role in ASD
(Fatemi et al., 2012). Interestingly, recent studies
conducted in vitro and in vivo showed a determinant
role of a7 nAChRs in the gating of LTP versus long-term
depression at cerebellar mossy fiber-granule cell syn-
apses to regulate plasticity and behavioral adaptation
(Prestori et al., 2013).

Another challenging hypothesis has been suggested
that autism, schizophrenia, and attention deficit disor-
der are part of a single neurologic disorder correspond-
ing to a spectrum of imbalances in neurotransmission
(Lippiello, 2006). Because a7 nAChRs modulate a num-
ber of neurotransmitter systems in brain regions af-
fected in ASD, therapeutically targeting this receptor
may be beneficial.

Although the linkage between autism and a genetic
cause remained elusive for a long time, the newest
findings reported for the CHRNA7 locus on chromosome
15 provide a stimulating hypothesis. Complementing
other observations of cholinergic and a7 nAChR deficits
in autism, these genetic studies are pointing to a de-
terminant role of a7 nAChRs in cognitive impairment
associated with autism. Further confirmation for the
correlation between a7 nAChRs and autism will be
provided by progress in genome-wide association studies
and will determine whether future development of new
treatments for ASD will include a7 nAChR agonists.

D. Microdeletion Syndrome

The orphan disease of 15q13.3 microdeletion syn-
drome (see Table 6) was first described in 2008 (Sharp
et al., 2008), and since then, using whole genomic
microarray analysis (International Schizophrenia Con-
sortium, 2008; Stefansson et al., 2008; Masurel-Paulet
et al., 2010), over 150 individuals worldwide with
a frequency of 1/30,000–1/40,000 have been identified
that carry these deletions. Several studies have been
conducted that demonstrate an association between
these microdeletions and neurodevelopmental pheno-
types such as bipolar depression, epilepsy, schizophre-
nia (Stefansson et al., 2008), and autism, as well as
developmental delays, mental retardation, and variable
facial and digital dysmorphisms (Sharp et al., 2008;
Lowther et al., 2015). As described in detail in section II,
the area of this microdeletion in 15q13.3 contains the
previously mentioned break points of BP4 and BP5 that
flank the CHRNA7 gene (OMIM #118511) (Deutsch
et al., 2011). It was also recently suggested that
a haploinsufficiency of CHRNA7 is causative for the

TABLE 6
Microdeletions of chromosome 15q13.3

Disease Reference

Epilepsy Taske et al., 2002; Sharp et al., 2008; Stefansson et al.,
2008; Helbig et al., 2009; Dibbens et al., 2009

Schizophrenia Stefannson et al., 2008
Psychiatric Disorders Masurel-Paulet et al., 2010
Autism Spectrum Disorder Sharp et al., 2008; Ben-Shachar et al., 2009;

Pagnamenta et al., 2009; Miller et al., 2009; Deutsch
et al., 2011; Mikhail et al., 2011

Intellectual Disability Sharp et al., 2008; Ben-Shachar et al., 2009
Dysmorphic features of face and digits and severe

neurodevelopmental features
Liao et al., 2011

Recurrent rage outbursts Cubells et al., 2011
Microdeletion Syndrome Masurel-Paulet et al., 2010; Hoppman-Chaney et al.,

2013; Le Pichon et al., 2013; Schaaf, 2014
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various phenotypes connected to the 15q13.3 micro-
deletion syndrome (Szafranski et al., 2010). In a review
of the literature on genetic data derived from screening
samples with genomic arrays, it was concluded that the
clinical presentations of 15q13.3 microdeletion syn-
drome were due to haploinsufficiency of the CHRNA7
gene and that there is a logical rationale to test a7
nAChR agonists and PAMs for potential therapeutic
efficacy (Deutsch et al., 2011; Schaaf, 2014). Another
review of patient samples and literature suggested that
CHRNA7 could potentially be a susceptibility factor for
both juvenile myoclonic epilepsy and childhood centro-
temporal spikes and epilepsy (Masurel-Paulet et al.,
2010). It was suggested that genetic screening and
identification of the 15q13.3 microdeletions could result
in early intervention with special education and speech
therapy, instead of waiting for symptoms to fully
manifest (Deutsch et al., 2011). For example, a patient
suffering from 15q13.3 deletion syndrome and also
presenting with recurrent episodes of aggressive rage
outbursts showed a dramatic decline in such events
upon treatment with galantamine, an a7 PAM and
acetylcholinesterase inhibitor, combined with behavior-
al management (Cubells et al., 2011) to suggest the
potential of this approach.
It was further suggested that clinical intervention

could also theoretically be possible with first, the
identification of patients expressing this microdeletion,
followed by the administration of an a7 nAChR agonist
alone or in combination therapy with an a7 nAChR
PAM in cases such as these inwhich there are decreased
functional a7 nAChRs (Deutsch et al., 2011; Schaaf,
2014). A preclinical proof-of-concept study for testing
the efficacy of a7 nAChR agonists and PAMs in 15q13.3
microdeletion syndrome became feasible with the re-
cent development of a mouse model that captures the
main characteristics of the human syndrome, such as
schizophrenia-like auditory processing deficits, in-
creased seizure susceptibility, and increased body
weight (Fejgin et al., 2014). This model may provide
a way to test compounds preclinically for their ability
to ameliorate symptoms in microdeletion syndrome
and establish whether clinical trials with a7 nAChR
agonists or PAMs are warranted for microdeletion
syndrome.
The recently discovered 15q13.3 microdeletion syn-

drome is marking a new step in the understanding of
the role of a7 nAChRs and cholinergic function in
neurodevelopmental disorders. The combination of the
development of better analysis of allelic expression with
appropriate cognitive assessment will provide the in-
dispensable tools to identify the syndrome early and in
time for effective therapeutic intervention. The devel-
opment of an animalmodel will aid in the determination
of whether patients with 15q13.3 microdeletion syn-
dromemay be candidates for a7 nAChR agonist or PAM
treatment.

E. Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative
disease that is characterized by hypokinetic rigid
syndrome or paralysis agitans because of the tremor
observed in the extremities (Lees, 2007). Historically
recognized, this disease began to gain the attention
of clinicians only at the turn of the 19th century with
the description by James Parkinson in his essay on the
Shaking Palsy published in 1817 to provide one of
the earliest descriptions of the clinical symptoms of
a disorder now known as Parkinson’s disease. Since
then, it was shown that PD is the consequence of
degeneration in the ventrolateral tier of the substan-
tia nigra pars compacta (Brigo et al., 2014; Grosset
et al., 2014; Niccolini et al., 2014; Stoessl et al., 2014).
The observation that exposure to 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) causes clinical
symptoms that resemble PD suggested that lesions
caused by this toxic agent could be used for animal
models of PD (Javitch et al., 1984). However, this
molecule does not show the same toxicity in human
and rodents, and the model of choice retained for rats
and mice is the local injection of 6-hydroxy-dopamine
into the brain regions containing dopaminergic cell
bodies, axons, or synaptic terminals (Perese et al.,
1989).

Degeneration of dopaminergic neurons causesmultiple
symptoms including hyposomnia, visual hallucinations,
olfactory dysfunction, anxiety, cognitive disorders, and
motor control deficits (Lees, 2007). As for most neurode-
generative diseases, prevalence increases with age and
most recent epidemiologic studies indicate a prevalence of
PD of about 0.5% at the age of 65 years (Wright Willis
et al., 2010; Schneider and Obeso, 2015). Genome-wide
association studies of large PD cohorts revealed that
several genes might contribute to PD, with an important
role for a-synuclein, and that mutations in the Parkin
gene are associated with an early age of onset of PD
(Ramanan and Saykin, 2013).

In the extrapyramidal system there is a balance
between the dopaminergic projection from the substan-
tia nigra pars compacta onto the striatum and the
corticostriatal inputs that impacts the striatum’s pro-
jection to the thalamus and the feedback loop from the
thalamus back to the cortex. Dysfunction of the dopa-
minergic projection from the substantia nigra directly
impacts upon the function of the striatum and therefore
on the cortical interactions with different brain nuclei.
The substantia nigra is an important player in partic-
ular for control of eye movement, motor planning,
reward seeking, or learning. Moreover, as the thalamus
can be considered as a relay between the sensory systems
and the cortex, indirect impairment of the thalamus
caused by the dysfunction of the substantia nigra alters
sensory perceptions (Müller et al., 2013; Barter et al.,
2014).
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The observation that PD is associated with a specific
degeneration of dopaminergic neurons suggested that
adding exogenous dopamine might counterbalance the
dysfunction of the substantia nigra. Successful introduc-
tion in the 1960s of levodopa, a brain permeable precursor
of dopamine, marked a turning point in the treatment of
PD (Katzenschlager and Lees, 2002). Long-term treat-
ment of PD with levodopa, however, includes significant
side effectswithmotor dyskinesias, visual hallucinations,
etc. Statistical analysis of PD cohorts showed, however,
no toxicity associated with levodopa treatments or the
acceleration of symptoms (Simuni and Stern, 1999).
Alternative treatments include deep brain electrical or
magnetic stimulation, which are thought to stimulate the
remaining neurons in the substantia nigra (Sanghera
et al., 2004; Chang et al., 2011). Although pharmacolog-
ical treatments and stimulation represent a significant
advance for patients, these therapies fail to change the
course or the progression of the disease.
Based on the observation of a lower prevalence of PD in

smokers, it was proposed that nicotinemay exert a neuro-
protective and possibly beneficial effect (Nefzger et al.,
1968; Gorell et al., 1999; Quik, 2004). Experimental
evidence in animal models suggesting that nicotine in-
creased production of neurotrophic factors further sup-
ported this hypothesis (Maggio et al., 1998). Albeit other
factors, including caffeine consumption, were proposed to
be associated with a reduction of PD prevalence, the
protective effects of nicotine were replicated in many
studies. Furthermore, a reduction of the olfactory im-
pairment in PD was observed in PD-affected smokers
(Lucassen et al., 2014).
Although the mechanisms by which nicotine could

reduce the susceptibility to PD may involve different
nAChRs subtypes, we shall focus the discussion on the
possible role ofa7nAChRs.Examination ofa-Btx binding
in the monkey substantia nigra revealed moderate
labeling, indicative of a7 nAChR expression (Han et al.,
2003; Kulak and Schneider, 2004). Inmonkeys, low doses
of MPTP that did not cause motor symptoms resulted in
an increase in a-Btx binding, whereas a change in a-Btx
binding was not observed in animals treated with an
acute high dose of MPTP or long-term escalating doses of
MPTP, in which PD-like motor symptoms were present
(Kulak and Schneider, 2004). This was interpreted as
reflecting a compensatory elevation of a7 nAChR expres-
sion in response to the low doses of MPTP and could
participate in minimizing the dysfunction caused by this
molecule. Interestingly in the same study, the low doses
of MPTP caused cognitive impairments, and brain
regions involved in cognition (e.g., hippocampus, pre-
frontal cortex and cingulate gyrus) did not show increases
in a-Btx binding.
In contrast to the monkey, a-Btx binding in human

revealed a high level of labeling in the substantia nigra
pars compacta, indicating that progressive atrophy of this
brain area could affect a7 nAChR neurotransmission

(Court et al., 2000). Analysis of the cortical distribution of
nAChRs, conducted with Western blots, revealed a re-
duced expression of both thea4b2 and a7 nAChRs in PD
patients (Burghaus et al., 2003), suggesting that a re-
duction of nAChR-mediated neurotransmission might
aggravate the cognitive deficits associated with PD. In
addition, impairment of cholinergic neurotransmission
in the premotor and motor areas could contribute to the
bradykinesia (slowness of movement) or othermovement-
associated functions. Simulation of a7 nAChRs might
therefore produce neuroprotective effects and represent
an important strategy tominimize the cognitive decline or
impaired motor functions associated with PD.

Further analysis of the distribution of a7 nAChRs in
human brain revealed an additional important expres-
sion of these receptors in cerebellum, both post mortem
and in vivo (Court et al., 2000; Toyohara et al., 2009). In
view of the determinant role of the cerebellum in motor
coordination as well as in cognitive processes, it will be
of value to review if, and how, a7 nAChRs are altered in
the cerebellum of PD patients.

As indicated above, long-term treatment with levo-
dopa causes multiple side effects including dyskinesia.
Stimulation of nicotinic receptors reduced PD-
associated dyskinesia by interaction with multiple re-
ceptor subtypes including a7 nAChRs (Quik et al., 2013;
Zhang et al., 2013, 2014). In agreement with these
observations, although nicotine reduced apomorphine-
induced rotational behavior in hemiparkinsonian rats
injected unilaterally with 6-hydroxydopamine, rota-
tional behavior worsened during exposure to the nico-
tinic blocker mecamylamine (Han and Wang, 2007).
Different doses of nicotine, capable of producing activa-
tion or desensitization, indicated that the rotational
behavior was only affected by desensitizing doses of
nicotine, not by nAChR activation. The specific a7
nAChR agonist ABT-107 at 0.03–1 mg/kg decreased
levodopa-induced dyskinesias in parkinsonianmonkeys
(Zhang et al., 2014). Similar effects were reported for
another selective a7 nAChR agonist, AQW051 (15 mg/kg)
(Di Paolo et al., 2014), indicating that this therapeu-
tic strategy can apply to higher mammals and may be
beneficial in humans. It remains, however, to be de-
termined whether activating or desensitizing concen-
trations of a selective a7 nAChR agonist will be required
in humans, because ABT-107 was efficacious at activat-
ing and desensitizing doses and AQW051 at only desen-
sitizing doses in the MPTP monkey model (Bitner et al.,
2010; Feuerbach et al., 2015). If desensitizing concen-
trations are required, the effects on dyskinesia of
a7 nAChR agonists may be achieved at the expense of
improvements in cognition.

PD is characterized first by movement disorders
that are thought to be caused initially by the neuro-
degeneration of the dopaminergic neurons in the
substantia nigra. PD is also accompanied by choliner-
gic deficits and cognitive impairment in some patients.
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The negative association between PD and smoking
provided the first clues for the possible contribution of
nAChRs in this disease. Most recent evidence is now
pointing to the role of a7 nAChRs in treating levodopa-
induced dyskinesias and cognitive impairment.

F. Nonneuronal Related Diseases

The discoveries that the neuromuscular junction is
a chemical synapse and that these synaptic events are
mediated by nAChRs suggested that such neurotransmit-
ter receptors were restricted to the nervous system.
However, expression of mRNAs in different tissues sur-
prisingly revealed that genes encoding for ligand-gated ion
channels are not exclusively expressed in neurons but can
also be expressed inmany other cell types. As an example,
NMDA receptors are also expressed in red blood cells
(Makhro et al., 2013). However, when considering biologic
questions from a broader perspective, it became obvious
that cells from different tissues might exploit the vast
repertoire of membrane proteins encoded in the genome.
In this respect, it is interesting to note that nAChRs are
widely expressed throughout the body and that a7
nAChRs are thought to play a role in many physiologic
functions outside the CNS. In this section we shall discuss
evidence for CHRNA7 expression in different tissues, the
possible role(s) of a7 nAChRs in nonneuronal cells, and
their validity as a therapeutic target for nonneuronal
related diseases.
1. Cancer. Cancer is characterized by abnormal cell

division and proliferation and, sometimes, by migration
of a small number of cells to form metastases (http://
www.cancer.gov). The main categories of cancer
include:

Carcinoma - cancer that originates in the skin or in
tissues that line or cover internal organs, (i.e., cells
of epithelial origin). Numerous subtypes of carci-
noma exist to include adenocarcinoma, basal cell
carcinoma, squamous cell carcinoma, and transi-
tional cell carcinoma.

Sarcoma - cancer that originates in bone, cartilage,
fat, muscle, blood vessels, or other connective or
supportive tissues (i.e., cells of mesenchymal
origin).

Leukemia - cancer that originates in blood-forming
tissues such as the bone marrow and causes large
numbers of abnormal blood cells to be produced
and enter the blood.

Lymphoma and myeloma - cancers that origi-
nate in the cells of the immune system.

Central nervous system cancers – cancers that
originate in the tissues of the brain and spinal
cord and are neuronal or glial in origin.

Whereas it would be beyond the scope of this work to
review all forms of cancer, their origins, outcomes, and
the possible role of nAChRs, it is important to delineate

the main features that characterize cancer and the
development of tumors. It is generally accepted that
cancer begins by a modification of DNA that triggers
abnormal cell division. Furthermore, when, in normal
conditions, cells begin aberrant division they undergo
apoptosis and cancer cells are not stopped and can
initiate further divisions. Importantly, as the tumor
grows, its generalmetabolism increases, requiringmore
oxygen and nutrients, and is accompanied by a neo-
vascularization to support its metabolic requirements.
Cells that initiate migration and will ultimately cause
metastases are thought to be changing fate and,
temporarily, returning to a more embryonic cell type
with the capacity of migration through lymphatic and
blood vessels to other organs.

Smoking-associated lung cancers with more than
about 200,000 new cases per year in the United States
alone and more than 150,000 associated deaths per year,
are the most obvious cancers linked to nicotine. Lung
cancers are subdivided into non-small cell lung cancers
and small cell lung cancers, according to histologic
observations (DeSantis et al., 2014). The devastating link
between tobacco products and cancer results from the
association of carcinogenic compounds such as nitros-
aminesN9-nitrosonornicotine and 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone together with nicotine (Hecht,
2003; West et al., 2003). Although there is still debate
about the carcinogenicity of nicotine itself, recent evidence
points to a possible effect of nicotine on long-term mini-
organ cultures (Ginzkey et al., 2014). Additional evidence
for nicotine-inducedmutationswas provided by the recent
analysis of nicotine and oxidative stress in lung cancer
(Bavarva et al., 2014). There is good agreement, however,
on the fact that nicotine promotes cell survival and
division, which are key factors for tumor growth and can
precipitate development of lung cancer in susceptible
individuals (Davis et al., 2009; Schaal and Chellappan,
2014). Furthermore, the antiapoptotic activity of nicotine,
which is beneficial in other conditions like neurodegener-
ative diseases, is considered to be deleterious in lung
cancer (Zeidler et al., 2007; Egleton et al., 2008; Schuller,
2012). An additional and determining factor in tumor
formation associated with nicotine is its angiogenic
activity of promoting neovascularization (Cooke and
Ghebremariam, 2008; Dasgupta and Chellappan, 2006;
Arias et al., 2009; Lee and Cooke, 2012). A susceptibility
locus for lung cancer and nAChRs was found on chromo-
some 15 but mapped to 15q25, which corresponds to the
position of theCHRNA5 gene encoding for the a5 nAChR
subunit (Hung et al., 2008). Expression ofCHRNA7was,
however, observed in human lung, indicating that a7
nAChRs might contribute to the regulation of lung
epithelia (Plummer et al., 2005).

Data pointing to the determinant role of nicotine in
the development of lung cancer have prompted numer-
ous studies using culture models and shown that pro-
liferation could be reduced by use of nAChR antagonists

1056 Bertrand et al.

http://www.cancer.gov
http://www.cancer.gov


(see for example Tsurutani et al., 2005; Improgo et al.,
2013). In view of the important role of a7 nAChRs, both
in terms of their expression levels and their relevance
for downstream biologic pathways to which they are
associated, it was proposed that specific a7 nAChR
antagonists such as toxins might be of use in cancer
treatment (Alama et al., 2011; Pillai and Chellappan,
2012; Brown et al., 2012).
Because angiogenesis is indispensable for tumor

growth, it is of interest to examine by which mechanism
stimulation of a7 nAChRs could lead to the develop-
ment of neovascularization. Critical features of a7
nAChRs include their unique Ca2+ permeability and
wide range of expression in neuronal and nonneuronal
cells including vascular endothelial cells. Biochemical
pathway analysis revealed that several regulatory
elements, including adhesion factors, and stimulation
of vascular endothelial growth factor are modified by
nicotine and can be blocked by a-Btx, confirming the
determinant role of a7 nAChRs in these regulatory
processes (Heeschen et al., 2002; Hoshino et al., 2005;
Arias et al., 2009; Alamanda et al., 2012). Proangio-
genesis mediated by a7 nAChRs was also observed in
models of age-related macular degeneration, which is
one of the major ophthalmologic risks associated with
nicotine consumption (Dom et al., 2011).
Nicotine is associated with several forms of cancer in

which the common mechanisms of cell migration, tumor
growth, etc., observed in lung cancer are replicated. For
example, nicotine stimulated cell proliferation and in-
creased cell survival in colon cancers, and these effects
were inhibited by a-Btx (Cucina et al., 2012; Dinicola
et al., 2013). In pancreatic cancers, nicotine was also
shown to stimulate the production of membrane-bound
mucin, a protein known to induce tumor initiation and
development by modulating cellular growth, differenti-
ation, transformation, adhesion, invasion, and immune
surveillance (Kunigal et al., 2012; Momi et al., 2013).
Additional insights in the biochemical pathways

implicated in nicotine-associated cancer are discussed
in a recent review (Grando, 2014).
Although smoking-associated cancer is well acknowl-

edged, the direct contribution of nicotine as a carcinogenic
compound remains rather tenuous. Nonetheless, differ-
ential expression of nAChRs was reported in several
forms of cancer with notably overexpression of the a7
nAChRs. Because inhibition of these receptorswas shown
to reduce tumor growth, neovascularization, and metas-
tasis, an a7 nAChR antagonist might broaden the
therapeutic possibilities to fight some forms of cancer.

G. a7 Nicotinic Acetylcholine Receptors and the
Immune Connection

Inflammation caused by excessive cytokine produc-
tion is the culprit in many diseases, leading to both
human morbidity and mortality; however, at the same
time inflammation is an important part of the defense

mechanism that is critical for survival. The innate
immune system is activated during infection and injuries
by initiating the release of proinflammatory cytokines
such as interleukin-6 and tumor necrosis factor alpha
(TNFa) to control infection and promote tissue repair
(Medzhitov, 2008). However, a balance must be main-
tained, because an excessive release could lead to amore
severe inflammatory state and spread of inflammation
(Nathan, 2002). Neural reflex circuits that detect periph-
eral inflammation provide regulatory feedback via spe-
cific nerve signals to suppress the innate immune
response (Olofsson et al., 2012). The autonomic nervous
system has been shown to regulate this cytokine pro-
duction via neural pathways involving the vagus nerve,
which provides parasympathetic innervation to most
organ systems, with ACh being the principle neurotrans-
mitter connecting the nervous system to the immune
system. Collectively, these connections form the “cholin-
ergic anti-inflammatory pathway” (Wang et al., 2003). A
detailed review of the neural circuits involved in the
reflex control over the innate immune response has been
published elsewhere (Tracey, 2009).

About 10 years ago, it was found, through use of
antisense and pull-down experiments, that the cholin-
ergic control of inflammation depended on the a7
nAChR subunit (Wang et al., 2003). Experiments con-
ducted with a7 nAChR knockout mice confirmed the
essential role of these receptors in the cholinergic anti-
inflammatory pathway, with these mice exhibiting
higher TNFa serum levels over wild-type mice 2 hours
post lipopolysaccharide (LPS) injection (Wang et al.,
2003). The vagus nerve has been shown to be a vital
component in this pathway, involving transduction of
vagal signals via the celiac and superior mesenteric
ganglia to result in release of norepinephrine in the
spleen (Vida et al., 2011) and in inhibition of proin-
flammatory cytokines through a7 nAChR signaling on
macrophages (Wang et al., 2003; Sun et al., 2013).
Additional studies involving experimental models of
local and systemic inflammation used electrical stimu-
lation of the vagus nerve or cholinergic drugs acting via
a7 nAChRs to modulate inflammation and showed that
stimulation of a7 nAChRs results in blockade of endo-
thelial cell activation and the subsequent recruitment of
leukocytes during inflammation (Saeed et al., 2005).

Stimulation of a7 nAChRs in a murine macrophage
cell line by the agonists nicotine GTS-21 and choline
have all been shown to inhibit LPS-induced TNFa and
high-mobility group box 1 (HMGB1) protein release to
improve survival in experimental sepsis (Wang et al.,
2004), which supports the role of a7 nAChR agonists as
anti-inflammatory agents. It was initially postulated
and later confirmed that in macrophages and other
inflammatory-related cells a7 nAChRs interact with
janus kinase 2 (JAK2) to stimulate and phosphorylate
the anti-inflammatory signal transducer and activator
of transcription 3 (STAT3), a key component of the
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STAT3-NF-kB cascade, which dimerizes to decrease
proinflammatory cytokines, such as TNFa, HMGB1,
and interleukin (de Jonge and Ulloa, 2007; Marrero and
Bencherif, 2009). It was also demonstrated that stimu-
lation of the vagus nerve attenuates inflammation in
macrophages of STAT3 knockout mice (de Jonge and
Ulloa, 2007). Recent data have further expanded this
mechanism to demonstrate that a7 nAChR activation
significantly induced microRNA, miR-124, a potential
modulator in the anti-inflammatory response (Sun
et al., 2013).
Outside the CNS, a7 nAChRs are thought to have

a pivotal role in peripheral immune cells via the
cholinergic anti-inflammatory pathway, with the poten-
tial for therapeutic intervention in several inflamma-
tory diseases such as endotoxemia (Rosas-Ballina et al.,
2008), rheumatoid arthritis (van Maanen et al., 2009,
2010), artherosclerosis (Bencherif et al., 2011), and
inflammatory bowel disease (Sandborn, 1999). The a7
nAChR subunit is widely expressed in immune cells
including monocytes (Matsunaga et al., 2001), macro-
phages (Rosas-Ballina et al., 2008), B and T cells (Fujii
et al., 2008), and dendritic cells (Aicher et al., 2003).
More recently, a7 nAChR subunit expression has been
found within the celiac and superior mesenteric ganglia
and splenic nerve fibers, key components of the vagus
nerve signaling pathway to the spleen (Downs et al.,
2014).
Stimulation of the vagus nerve was found to induce

multiple effects, including a reduction of inflammation.
Results accumulated over the past 10 years point to
a role of a7 nAChRs in the regulation of inflammatory
pathways, and it was proposed that ACh released
during vagus nerve stimulation mediates its effects
through stimulation of this nAChR subtype. As vagus
nerve stimulation effects were mimicked by a7 nAChR
agonists, this opens new strategies for the treatment of
inflammation with a7 nAChR agonists.
1. Sepsis. Severe sepsis is the third leading cause of

death in most developed countries and accounts for
.9% of overall deaths in the United States alone (Ulloa,
2005). Sepsis has been defined as systemic inflamma-
tion in response to an infection, whereas "severe sepsis"
refers to organ dysfunction observed during systemic
inflammation with or without an associated infection
(Ulloa and Tracey, 2005). To date there are no approved
drugs specific for the treatment of sepsis, a costly
illness that is poorly understood (Deutschman and
Tracey, 2014). It is known that severe sepsis involves
a flood of cytokine production, including TNFa,
interleukin-1b, interleukin-10, interferon gamma, and
HMGB1 (Bencherif, 2009; Bencherif et al., 2011), in
which HMGB1 is a late lethal mediator of sepsis (Kim
et al., 2014b). This flood of cytokines involves the
participation of intracellular and extracellular “danger
signals” that activate inflammasomes to mediate the
release of these cytokines and involves both P2X7

receptors anda7nAChRs (DeutschmanandTracey, 2014).
This reaction in sepsis is extreme such that an anti-TNFa
antibody approach has met with limited success due to
the fact that this disease involves multiple cytokines
and requires a treatment thatwould have a broad effect.

As mentioned in the introduction of this section,
a selective a7 nAChR agonist, acting through the
cholinergic anti-inflammatory pathway, could be more
efficient at inhibiting production of proinflammatory
cytokines by preventing the phosphorylation of STAT3
and in turn preventing activation of the NF-kB pathway
(Peña et al., 2010). It has been shown that administra-
tion of nicotine to mice after cecal ligation and puncture
or LPS treatment significantly reduced serum levels of
HMGB1 (Huston and Tracey, 2011) by suppressing Toll-
like receptor expression through activation of the P13K/
Akt pathway (Kim et al., 2014b). It has been reported
that HMGB1 has a deleterious effect on epithelial and
endothelial barriers, causing a failure at these sites of
protection and making the events of sepsis result in
organ as well as mitochondrial dysfunction by depleting
cells of ATP needed to support survival (Deutschman
and Tracey, 2014). A recent paper demonstrated how a7
nAChR signaling inhibits the events of inflammasome
activation, as well as the release of mitochondrial DNA,
through the use of a selective agonist or vagus nerve
stimulation, all of which pointed to a direct role of a7
nAChRs expressed on mitochondria in this cascade of
events (Lu et al., 2014). Further evidence was provided
in a7 nAChR knockoutmice where there was a failure of
inhibition of inflammasome activation with vagal nerve
stimulation (Lu et al., 2014). Collective understanding
of these studies and events may eventually lead to
a more efficacious method of treatment of the compli-
cations of sepsis.

Defined as a systemic response to inflammation,
sepsis is expected to benefit from the findings that
inflammation may be downregulated through the cho-
linergic anti-inflammatory pathway. This pathway can
be activated by stimulation of the vagus nerve and the
response is mediated through a7 nAChRs. Further
study of the role of a7 nAChR activation in sepsis will
yield a better understanding of mechanisms to curb
inflammasome activation and perturbation of mito-
chondrial activity.

2. Inflammatory Bowel Disease, Focus on Ulcerative
Colitis. Inflammatory bowel disease (IBD), which
encompasses Crohn’s disease (CD) and ulcerative colitis
(UC), affects approximately 3.6 million patients in the
United States and Europe combined (Loftus, 2004).
Unlike CD, UC is a disease of nonsmokers, exhibiting
a fivefold increased risk, whereas smoking decreased
the risk of disease and had a favorable effect on disease
course and severity (Harries et al., 1982). Conventional
treatments include corticosteroids and aminosalicy-
lates but only 60–80% of IBD sufferers achieve
remission with these drugs, however, not without
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complications due to unwanted side effects. UC has
been associated with altered STAT3 expression and
phosphorylation, and it is possible that an a7 nAChR
agonist can reverse that alteration in the STAT3
pathway (Wang et al., 2004). Thus, therapeutic in-
tervention with new small molecule a7 nAChR agonists
has potential that would be greatly needed.
It has been shown that nicotine, given by transdermal

or enema delivery, attenuated disease in colitis models
induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) or
dextran sulfate sodium (DSS), as well as in clinical
trials, with improvements in histologic and global
clinical scores of colitis (Pullan et al., 1994). However,
several clinical trials using nicotine have led to mixed
results because of the limitations of associated side
effects (McGilligan et al., 2007). In a TNBS-induced
colitis model, anabaseine (GTS-21), an a7 nAChR
agonist, showed less tissue damage, less myeloperox-
idase activity, less TNFa production in the colon, and
inhibited NF-kB activation (Bai et al., 2007). Other
studies have shown that acetylcholinesterase inhibitors
effectively modulate the acute colonic inflammation in
colitis possibly by an increase in the cholinergic tone of
the colon (Miceli and Jacobson, 2003). Vagal nerve
stimulation via ACh also ameliorates disease activity
(van der Zanden et al., 2009). In this same study, it has
been shown that vagotomized a7 nAChR knockout mice
display more severe colitis than wild-type mice. More
recently, nicotine suppressed hyperexcitability of co-
lonic dorsal root ganglion neurons in DSS-induced
colitis, which was attenuated by the a7 nAChR antag-
onist MLA (Abdrakhmanova et al., 2010). In the same
study, nicotine failed to suppress hyperexcitability of
dorsal root ganglion neurons in a7 nAChR knockout
mice. In a 2011 study, nicotine attenuated oxazolone-
induced colitis (a model of UC) but worsened TNBS-
induced colitis (a model of CD), and these opposing
effects were dependent on the differential expression of
a7 nAChRs on CD4+ T cells in the colon, with more
than two-thirds of CD4+ T cells expressing a7 nAChRs
in the UC model versus less than 3% of CD4+ T cells
in the CD model (Galitovskiy et al., 2011). This study
also associated the improvement in the UC model with
an immunosuppressive effect of increasing CD25+/
Foxp3+ regulatory T cells and reducing Th17 cells
versus in the CD model in which the Th17 pro-
inflammatory cells were increased. More recently, it
was shown that the dose and route of administration of
nicotine was critical to the protective outcome in the
DSS-induced colitis model, with administration of low
(12.5–50 mg/ml), but not high, doses of oral nicotine in
DSS-treated mice having a significant effect on de-
creasing disease severity, histologic scores of damage
and TNFa levels in colon tissue (AlSharari et al., 2013).
These data are consistent with a role for activation
rather than desensitization of a7 nAChRs in the DSS-
induced colitis model.

It will be interesting if a selective a7 nAChR agonist
can attenuate the severity of colitis and reduce the
unwanted side effects of other therapies, as well as
clarify the mixed results that have been associated with
transdermal nicotine. It will also be of significance if
the human-specific CHRFAM7A gene, shown to be
expressed in human intestinal epithelial cells (Dang
et al., 2015), plays a mechanistic role in regulating a7
nAChR activity in IBD.

Inflammatory bowel disease (IBD) affects a growing
number of people throughout the world. Although the
etiology of IBD inmost cases remains elusive, the need for
additional treatment strategies that could, at least,
attenuate the effects is rapidly increasing, because
current therapies are not effective in all patients and
have unwanted side effects. The observation that stimu-
lation of the vagus nerve can attenuate the symptoms,
together with results from animal models, suggests that
activation of a7 nAChRs might prove beneficial for the
treatment of IBD.

3. a7 Nicotinic Acetylcholine Receptors and
Osteoarthritis. Smoking-associated side effects reveal
a plethora of activity of nicotine on different organ
systems. For example, smoking is thought to affect bone
healing (Truntzer et al., 2015; Miller, 2014) and repre-
sents a detrimental factor when considering dental
implants (Baig and Rajan, 2007; Heitz-Mayfield and
Huynh-Ba, 2009). In other studies it is suggested that
nicotine might reduce or prevent osteoarthritis (OA)
(Gullahorn et al., 2005), a finding that is supported by
analysis of total knee replacement surgery in large
Chinese populations where there was a 51% reduction
in the number of smokers versus nonsmokers requiring
surgery (Leung et al., 2014). However, a less clear image
emerges from other studies, indicating no positive
reduction in OA associated with smoking (Wilder
et al., 2003). Because it was shown that nicotine exerts
both positive and negative modulatory effects as a func-
tion of its concentration (Rothem et al., 2009), differ-
ences in conclusions from the various studies might
depend upon the amount of circulating nicotine in the
patient’s blood.

Inflammation is an important factor in OA, and the
role of cholinergic modulation of the inflammatory
pathway provides insight into the understanding of
the complex mechanisms underlying OA. Examination
of the inflamed synovium from OA patients revealed
expression of a7 nAChRs predominantly in the intimal
lining in vivo, as well as in fibroblast-like synoviocytes
in vitro (van Maanen et al., 2009). Nicotine treatment
decreased infiltration of inflammatory cells into the
synovial tissue and bone erosion in a DBA/1 mouse
model of collagen-induced arthritis (van Maanen et al.,
2010). As a complement to these observations, a7
nAChR knockout mice present an exacerbated response
in the collagen-induced arthritis model (van Maanen
et al., 2010). The presence of choline acetyltransferase
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mRNA and marked expression of a7 nAChRs was
reported in the pannus of the knee joint, supporting
the hypothesis that this nAChR subtype is involved in
OA (Forsgren, 2012).
Because nicotine interacts with many nAChRs sub-

types, it is important to examine the effects of selective
a7 nAChR compounds including agonists and PAMs.
The attenuation of cytokine release in stimulated whole
blood cells isolated from patients with OA by nicotine or
GTS-21 supports the hypothesis of a predominant role
of a7 nAChRs in the inflammatory response (Bruchfeld
et al., 2010). A similar conclusion was reached from
experiments conducted with the a7 nAChR agonist
AR-R17779, which attenuated the elevation in TNFa in
the blood and synovial tissue, delayed the onset of
disease, and was protective against joint destruction
(van Maanen et al., 2009).
Joint afflictions are a serious cause of morbidity, with

effects lasting for decades. Improving OA would have
broad consequences for the general population and
more specifically for the elderly. Given the strong link
between inflammation and OA, it is readily understood
thatmolecules acting on inflammatory pathways will be
beneficial for this disease. Preliminary data obtained
with a7 nAChR agonist tool compounds suggest that
stimulation of these receptors represents a novel strat-
egy to treat OA that needs to be followed up with more
potent a7 nAChR agonists displaying better drug-like
properties.

H. a7 Nicotinic Acetylcholine Receptors and
Cardiac Function

Atherosclerosis is an additional inflammatory condi-
tion that is a major contributor to cardiovascular
disease and often leads to sudden cardiac arrest or
myocardial infarction. In the progression of atheroscle-
rosis, inflammatory cells are engaged to release a host of
proinflammatory cytokines, chemokines, adhesion mol-
ecules, and growth factors (Libby, 2002). a7 nAChRs are
expressed on rat atrium and localized to the endothelial
layer (Mazloom et al., 2013) and in the intracardiac
ganglion (Cuevas andAdams, 1994; Cuevas andAdams,
1996). As previouslymentioned, thea7 nAChRs are also
expressed on immune cells and are key mediators in the
cholinergic anti-inflammatory pathway in which a7
nAChRs become activated via release of ACh from the
vagus nerve to attenuate the inflammatory response
that occurs by activation of the JAK2-STAT3 and
suppression of the NF-kB pathways (Wang et al.,
2004). In a recent study using infusion of angiotensin II
to induce atherosclerosis in apolipoprotein E knockout
mice, it was demonstrated that AR-R17779, a selec-
tive a7 nAChR agonist, attenuated atherosclerosis as
well as abdominal aortic aneurysms via decreased
interleukin-6 and interleukin-1b gene expression in
aortic tissue (Hashimoto et al., 2014). In addition,
AR-R17779 also decreased atherosclerotic plaque

build-up and total cholesterol and triglyceride levels
as well as lowering blood pressure in these mice. This
group plans to study this compound using a7 nAChR/
apolipoproteinEdouble knockoutmice to establish amore
definitive connection between a7 nAChRs and atheroscle-
rosis. Chronic hypertension has also been shown to
contribute to end-organ damage and a study tested if a7
nAChR dysfunctional signaling is also involved. In this
study, a7 nAChR knockout mice were used in a two-
kidney one-clip hypertension model, which caused the
release of proinflammatory cytokines and more severe
organ damage than in wild-type mice (Li et al., 2011). In
addition, the a7 nAChR agonist PNU-282987 was used to
chronically treat spontaneously hypertensive rats and
shown to attenuate the inflammatory effects induced in
this hypertension model (Li et al., 2011).

In contrast, the role of a7 nAChRs in heart rate
variability (HRV) was examined in endotoxemic rats
because HRV, a reflection of the strength of vagus nerve
signaling, has been used as a noninvasive measure of
sepsis (Mazloom et al., 2013). In this study, the a7
nAChR agonist PHA-543613 was unable to prevent the
reduction in HRV that occurs in endotoxemic rats but
was able to modulate the effect of LPS on body
temperature, supporting past research that demon-
strates a tonic role for a7 nAChRs in systemic in-
flammation (Andersson and Tracey, 2012; Mazloom
et al., 2013). However, pretreatmentwith the a7 nAChR
antagonist, MLA, was able to further reduce HRV and
induce a febrile response in endotoxemic rats but had no
effect on either measure in naive rats. Future analysis
with selective a7 nAChR agonists or a7 nAChR knock-
out mice will continue to provide insight into the role of
a7 nAChRs in heart rate dynamics during sepsis.

Cardiovascular diseases are recognized to be one of
the major factors causing premature death, with ath-
erosclerosis being one of multiple contributory factors.
Atherosclerosis is often closely related to inflammation
and would therefore represent another possible target
for a7 nAChR specific compounds.

I. The Role of a7 Nicotinic Acetylcholine Receptors in
Renal Function

Data from the Centers for Disease Control and Pre-
vention reveal that more than 20 million Americans
may have kidney disease, with the risk increasing each
year. Kidney disease falls into several categories but the
focus here will be on the two main forms. The sudden
loss of kidney function is referred to as acute kidney
injury (AKI), also known as acute renal failure, which
can occur due to traumatic injury, damage from shock or
sepsis, damage from drugs or toxins, obstruction, or
sudden reduction in blood flow. When kidney damage
and decreased function last longer than 3 months, it is
referred to as chronic kidney disease (CKD) and is
a devastating illness that has recently increased at an
alarming rate and now affects over 13% of the
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population (Couser et al., 2011), caused primarily by
diabetes (type 1 and 2) and high blood pressure. The
involvement of a7 nAChRs in renal disease was shown
in a study that found nicotine pretreatment protected
mice from renal dysfunction in a dose-dependentmanner
and that this protection was absent in a7 nAChR
knockout mice (Sadis et al., 2007). Subsequent studies
showed thata7nAChRsare strongly expressed in kidney
cortex with the highest protein levels in the proximal
tubules compared with the distal tubules (Rezonzew
et al., 2012). Flow cytometry on human kidney cells and
cell lines demonstrated the expression of a7, a4, and b2
nAChR subunits, with a7 nAChR being higher than the
other two subunits in the proximal tubule epithelial cell
line (HK-2) and renal glomerular endothelial cells
(Chatterjee et al., 2012). Collectively, these studies place
a7 nAChRs in areas affected by renal disease.
Severe sepsis and septic shock are major contributing

factors leading to AKI, because the kidney is the main
target of the proinflammatory assault. AKI is also
a major issue for many intensive care patients, account-
ing for more than 50% of patients affected with AKI
(Zarjou and Agarwal, 2011), and to date there is no
effective treatment. Sepsis-induced AKI has a patho-
genesis that involves multiple pathways and requires
a therapeutic approach that would attack this compli-
cated cascade of events. An a7 nAChR agonist ap-
proach, involving the cholinergic anti-inflammatory
pathway, may be beneficial. In an LPS-induced AKI
sepsis model, nicotine and GTS-21 attenuated kidney
injury with a reduction in serum TNFa levels as well as
in kidney levels of TNFa, chemokine CCL2, and chemo-
kine CXCL10. Both nicotine and GTS-21 also improved
renal function as measured by blood-urea-nitrogen
levels and leukocyte infiltration (Chatterjee et al.,
2012). Mice with LPS-induced AKI exhibited signifi-
cantly enhanced renal proteasome activity compared
with saline control mice, but treatment with nicotine or
GTS-21 attenuated both the ATP-dependent and in-
dependent renal proteasome activity induced by LPS
(Chatterjee et al., 2012). It was concluded by these
studies that proteasome inhibition preserves the in-
hibitor of kappa B alpha-NF-kB complex and that a7
nAChR agonists regulate proteasome activity, which
supports previous studies demonstrating that a7
nAChR agonism regulates protein turnover by partial
inhibition of proteosome activity (Rezvani et al., 2007).
In addition, many kidney diseases have been associated
with altered STAT3 expression and phosphorylation
(Liu et al., 2014) and it is possible that a7 nAChR
agonists may reverse that alteration, because they have
been shown to be neuroprotective through the JAK2/
STAT3 and NF-kB pathways (de Jonge andUlloa, 2007;
Marrero and Bencherif, 2009).
Ischemia-reperfusion (I/R) injury, another model of

human AKI with the characteristic signs of kidney
inflammation (i.e., infiltration of circulating immune

cells and renal dysfunction), was also investigated with
use of a7 nAChR agonists for efficacy in preclinical
models. Pretreatment with nicotine or GTS-21 attenu-
ated acute tubular injury and renal dysfunction in the
I/R model in rats but was not significantly protective if
the agonists were administered 2 hours after the onset
of the injury (Yeboah et al., 2008). This study also
demonstrated that functional a7 nAChRswere detected
in rat tubular epithelial cells, which are also involved in
the inflammatory response of this AKI model, and
suggested a local cholinergic effect. More recently, an
innovative approach demonstrated that an ultrasound
treatment 24 hours before I/R also prevented renal
injury in mice (Gigliotti et al., 2013). It was further
shown that cytisine, an a7 nAChR agonist, also trig-
gered this protective effect. The protective effect of
ultrasound pretreatment was abrogated in a7 nAChR
knockout mice or by a-Btx treatment in wild-type mice,
suggesting involvement of the splenic “cholinergic anti-
inflammatory pathway” and activation of a7 nAChRs in
causing the reduction in the inflammation in this injury
model. Splenectomy and adoptive transfer showed that
the spleen and CD4+ T cells mediated the protective
effects of ultrasound pretreatment. This study revealed
the importance of an intact spleen for the efficacy of a7
nAChR agonists, because activation of adrenergic
receptors on the spleen activated CD4+ T cells to
stimulate the production of ACh, triggering the activa-
tion of a7 nAChRs and the accompanying anti-
inflammatory response (Gigliotti et al., 2013). This
study clearly demonstrated the role of a7 nAChRs in
AKI, as well as the importance of the spleen versus
a direct effect on the kidney.

Cigarette smoking has been shown to be a factor
associated with high risk for several chronic diseases,
with CKD being no exception, because cigarette smoking
has contributed to the progression of this disease (Orth,
2000, 2002). In the well-validated 5/6 nephrectomized
model of human CKD disease, rats exhibited increased
proteinuria and increased oxidative stress, and chronic
nicotine pretreatment of the rats further exacerbated the
proteinuria and oxidative stress (Rezonzew et al., 2012).
Pretreatment with the a7 nAChR antagonist MLA
significantly improved the glomerular injury score as
well as reduced oxidative stress. This result is in
contrast to the beneficial effects of a7 nAChR agonists
in AKI, and these opposing effects in AKI versus CKD
models may parallel the contrasting effects of nicotinic
agonists in UC and CD models of IBD. However, more
research is needed in this area with the use of safer and
more selective agonists than nicotine. In addition,
studies need to be performed across species, age, and
sex to ensure consistent results and to account for the
sex differences noted in both preclinical (Kang et al.,
2014) as well as clinical studies demonstrating that sex
plays a role in the prediction of renal decline (Halbesma
et al., 2008). From preclinical studies, the sex difference
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resulted in greater renovascular vasodilation in female
rat kidney tissue with the suggestion that it could be
facilitated by estrogen having a direct effect on a7
nAChR downstream signaling (El-Mas et al., 2011).
Overall, the studies mentioned in this section high-

light the recent interest in a7 nAChRs and kidney-
related diseases. The association between smoking and
CKD is illustrative of the presence of a7 nAChRs in the
kidney and their relevance in renal function. Prelimi-
nary data from animal models indicate, however, that
by reducing inflammation, a7 nAChR agonists should
be beneficial for certain kidney diseases, most notably
AKI. On the contrary, it was found that treatment with
a7 nAChR antagonists showed beneficial outcomes in
other renal conditions such as CKD. Refined character-
ization and classification of the kidney disease and
design of adequate treatment regimens with a7 nAChR
agonists or antagonists may allow novel approaches for
treating renal disorders.

V. Conclusions

Our understanding of the nervous system has been
advanced by DNA cloning and sequencing that has
allowed the discovery of entire families of genes encod-
ing for neurotransmitter receptors. The nAChRs are
a good example of the diversity existing within a single
receptor family. Given its structure and particular
physiologic properties, which include a high Ca2+

permeability, the a7 nAChR has been the center of
attention of many laboratories, opening up speculation
about its physiologic role in cognitive processes and its
contribution in neurologic and psychiatric diseases.
Structure-function studies conducted at the homo-

meric a7 nAChRs concluded that a functional complex is
composed of five subunits arranged around an axis of
pseudosymmetry with the ion channel in the center.
Each subunit spans the membrane four times, with the
N and C termini facing the extracellular domain. The
channel pore is made by the assembly of the five
identical a7 subunits in a barrel-like manner and lined
by the second TMD. Specific cationic selectivity of the a7
nAChR is provided by the specificity of the amino acids
of the second TMD that are pointing toward the ionic
pore. The LBD, where ACh binds, lies at the interface
between two adjacent a7 subunits, and, given its
homomeric structure, the a7 nAChRs display five
identical LBDs. Recent studies, however, indicate that
in some conditions (in vivo and in vitro), a7 subunits can
assemble with another subunit, with heteromeric a7
nAChRs containing b2 or a7 dup subunits, which have
been described. These heteromeric nAChRsmay display
different physiologic or pharmacological characteristics.
Recent detailed genetic studies have demonstrated

the complex nature of the chromosome localization of
CHRNA7, the gene encoding for the a7 nAChR, and the
presence in human of a duplication of exons 5-10 in

CHRFAM7 on the same chromosome arm that encodes
the dup a7 protein. Most recent work using different
techniques combined with FISH examination have
surprisingly revealed an unforeseen degree of variation
at this gene locus in the human population. Moreover
a correlation emerges between these variants in chro-
mosome 15 and cognitive performance in patients with
a variety of neurologic and psychiatric disorders. De-
letion of CHRNA7 observed in some patients correlates
with severe cognitive impairment. These genetic find-
ings further support the hypothesis of the involvement
of a7 nAChRs in cognition that was initially suggested
by studies with a7 nAChR agonists and PAMs.

To exploit the promise offered by selectively targeting
a7 nAChRs, efforts were dedicated to the identification
of selective a7 nAChR agonists to serve as new phar-
macological tools and as therapeutic interventions.
These studies conducted by several laboratories yielded
a panoply of small molecules displaying exquisite
binding selectivity for a7 nAChRs. After the identifica-
tion of PNU-282987, chemical structures containing
a quinuclidine moiety represent the majority of com-
pounds, showing sufficient discrimination of a7 versus
other nAChR subtypes. The close structural homology
among the ligand-gated ion channels offered an addi-
tional challenge because many molecules displaying
agonistic properties at the a7 nAChR acted as antago-
nists of the 5-HT3 receptor. Nonetheless,molecules such
as RG3487 and encenicline (EVP-6124) displayed ade-
quate profiles to be introduced into clinical trials. Some
success was achieved in reducing activity at the 5-HT3

receptor with a7 nAChR agonists such as TC-5619,
AQW051, and ABT-126, which were also studied in
clinical trials through Phase 2.

Because a7 nAChR agonists were primarily targeted
as cognitive enhancers, novel chemical compounds were
mainly tested in AD or schizophrenic patients. One of
the difficulties encountered in clinical studies relates to
the cognitive tests employed to examine the efficacy of
a7 nAChR agonists and the multiplicity of available
tests (e.g., ADAS-Cog 13, Cog-State, RBANS, MCCB,
etc.) and the lack of consensus to date on the most
effective testing instruments. Nonetheless, progress
made with the a7 nAChR agonist encenicline, which is
now in Phase 3 clinical trials for AD and schizophrenia,
illustrates the continued hope that use of an a7 nAChR
agonist will be beneficial in the treatment of cognitive
deficits in these disorders.

Development of new molecules acting at a7 nAChRs
is not limited to direct acting agonists and antagonists,
but data from the literature illustrate the feasibility of
identifying allosteric modulators. Binding at a site
distinct from the ACh orthosteric site, these compounds
are able to modulate receptor function by potentiating
or inhibiting the response to a ligand and, in some cases,
to reduce or suppress agonist-induced desensitization.
Preclinical studies have already shown the potential of

1062 Bertrand et al.



these molecules as cognitive enhancers, and it is likely
that new and even more active compounds will be
identified in the near future.
Moreover, although initial studies were largely focused

on the CNS, where dysfunction of a7 nAChRs has been
linked to cognitive deficits in numerous neurologic and
psychiatric diseases, numerous publications have collec-
tively demonstrated the pivotal role of a7 nAChRs in
other organ systems, particularly the immune system.
Obtaining a thorough understanding of the a7 nAChR is
indispensable for the development of better personalized
therapy and, despite the difficulties, efforts in the discov-
ery of new ligands active at a7 nAChRs are expected to
provide new therapeutic avenues for the treatment of
neurologic and immunologic diseases.
Based on current knowledge it can be foreseen that

molecules targeting a7 nAChRsmay have a broad range
of therapeutic applications ranging from brain to dif-
ferent organs or to the immune system. Providing the
first review of the pleiotropic role of a7 nAChRs
throughout the body, we have attempted to underline
the therapeutic potential of this cholinergic receptor
and the benefits as a therapeutic target for a variety of
disease indications that it has to offer.
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