
1521-0081/71/4/596–670$35.00 https://doi.org/10.1124/pr.118.017178
PHARMACOLOGICAL REVIEWS Pharmacol Rev 71:596–670, October 2019
Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics

ASSOCIATE EDITOR: QIANG MA

Targeting Foam Cell Formation in Atherosclerosis:
Therapeutic Potential of Natural Products

Dongdong Wang, Yang Yang, Yingnan Lei, Nikolay T. Tzvetkov, Xingde Liu, Andy Wai Kan Yeung, Suowen Xu, and Atanas G. Atanasov

The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of
Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L.,
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Abstract——Foam cell formation and further accu-
mulation in the subendothelial space of the vascular
wall is a hallmark of atherosclerotic lesions. Targeting
foam cell formation in the atherosclerotic lesions can
be a promising approach to treat and prevent athero-
sclerosis. The formation of foam cells is determined by
the balanced effects of three major interrelated bi-
ologic processes, including lipid uptake, cholesterol
esterification, and cholesterol efflux. Natural products
are a promising source for new lead structures. Multi-
ple natural products and pharmaceutical agents can

inhibit foam cell formation and thus exhibit anti-
atherosclerotic capacity by suppressing lipid up-
take, cholesterol esterification, and/or promoting
cholesterol ester hydrolysis and cholesterol efflux.
This review summarizes recent findings on these
three biologic processes and natural products with
demonstrated potential to target such processes.
Discussed also are potential future directions for
studying the mechanisms of foam cell formation and
the development of foam cell-targeted therapeutic
strategies.

I. Atherosclerosis: An Introduction

Atherosclerosis is a chronic inflammatory (Ross,
1999; Kasikara et al., 2018), immune (Hansson and
Hermansson, 2011), and epigenetic (Xu et al., 2018,
2019) disease characterized by low-density lipoprotein
(LDL) retention and defective resolution of vascular
inflammation in the vessel wall. It is the major cause of
acute cardiovascular events, such as unstable angina
pectoris, myocardial infarction, ischemic stroke, and
sudden cardiovascular death (Tabas et al., 2015). The
pathobiology of atherosclerosis is very complex and
involves multiple cell types, such as endothelial cells,
monocytes, macrophages, vascular smooth muscle cells
(VSMCs), T cells, B cells, mast cells, and dendritic cells
(Tabas et al., 2015). Atherosclerosis preferentially devel-
ops at arterial branching points and ascending aortic
arch, where local disturbance of blood flow occurs. In
contrast, regions of high laminar shear stress, such as
thoracic aorta, are protected against atherosclerosis
(Davies, 2009; Chiu and Chien, 2011; Rezvan et al.,
2011; Abe and Berk, 2014; Baeyens et al., 2016; Niu
et al., 2019). Shear stress can also regulate atheroscle-
rosis by causing the breach of the intimal layer that
leads to increase of inflammation, leukocyte adhesion,
and the occurrence of late stage atherothrombotic
events (Franck et al., 2019). Therefore, the integrity of
the vascular endothelium is critical for maintaining
endothelial function, such as regulation of vascular
tone, antioxidative response, and antithrombotic effects
(Vanhoutte et al., 2017; Nafisa et al., 2018). It has been
well established that passive movement of LDL across
the compromised endothelial layer instigates athero-
sclerosis. A recent study has shown that scavenger
receptor class B type I (SR-BI)-mediated endothelial
LDL transcytosis also promotes LDL entry into the artery
wall and promotes atherosclerosis development, raising

a new therapeutic target in combating atherosclerosis
(Huang et al., 2019). Dysfunctional properties of endo-
thelial cell cause endothelial dysfunction, which leads to
the development of atherosclerosis (Vanhoutte et al.,
2017; Nafisa et al., 2018). Under such circumstances,
circulating LDLs penetrate into the injured vascular
endothelium and accumulate in the subendothelial
space, where LDLs are prone to various atherogenic
modifications, including oxidation, glycation, enzymatic
modification, and carbamylation (Alique et al., 2015).
Among these modifications, oxidation is the most com-
mon form of atherogenic modification (Quinn et al.,
1987). It occurs during increased oxidative stress via
cellular sources and enzymatic routes [such as nicotin-
amide adenine dinucleotide phosphate (NADPH) oxi-
dases, lipoxygenases, and myeloperoxidases] (Quinn
et al., 1987). These types ofmodifiedLDLmimic damage-
and pathogen-associated molecular patterns, thus serv-
ing as the primary sources of cholesterol accumulation
and chronic inflammation in atherosclerotic plaques
(Tabas et al., 2015). In addition, these modified LDLs
can cause oxidative stress, inflammation,NLRP3 inflam-
masome activation, and immune response, thus ampli-
fying the vicious cycle of atherogenic cellular events
(Steinberg and Witztum, 2010; Wang et al., 2017h). In
addition tomodified LDL, interleukin 1 (IL-1) (IL-1a and
IL-1b) also drives vascular inflammation, with IL-1a
mainly being involved in arterial remodeling during the
early phase of atherosclerosis, whereas IL-1b drives
inflammation and atheroprogression to advanced state
of atherosclerosis (Vromman et al., 2019). The recent
CANTOS clinical trial has shown that anti-inflammatory
effect with canakinumab (a monoclonal antibody target-
ing IL-1b) significantly reduces the rate of recurrent
cardiovascular events in patients with atherosclerotic
diseases without reducing the lipid levels (Ridker et al.,
2017). IL-1b, together with other proatherogenic stimuli
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such as modified LDL, can promote endothelial activa-
tion and persistent inflammatory responses lead to the
proliferation,migration, phenotypic switching ofVSMCs,
and lipid accumulation in VSMCs [i.e., VSMC-derived
foam cell formation (Allahverdian et al., 2012)]. Choles-
terol loading (by incubation with cyclodextrin-cholesterol
complexes) leads to an inhibited expression of the VSMC
marker genes and increased expression of proinflamma-
tory and macrophage marker genes (Rong et al., 2003;
Vengrenyuket al., 2015).TheseVSMCscould substantially
contribute to pooled population of foam cells (Allahverdian
et al., 2014). Lineage tracing experiments have shown that
VSMC can form foam-like cells, and transcription factor
Kruppel-like factor 4 and octamer-binding transcription
factor 4 can differentially regulate VSMC-derived foam cell
formation in mice (Shankman et al., 2015; Cherepanova
et al., 2016). The existence of VSMC-derived foam cells in
mouse and human atherosclerotic plaques significantly
expand our understanding of the contribution of foam
cells and the lipid-deposition theory of atherosclerosis
(Allahverdian et al., 2014; Wang et al., 2019b).
Macrophages are heterogeneous immune and meta-

bolic cells that play important roles in the initiation,
growth, and ultimate rupture of atherosclerotic plaques
(Koelwyn et al., 2018) and serve as an elusive thera-
peutic target of treating atherosclerosis and designing
of novel antiatherosclerotic drugs (Santamarina-Fojo
et al., 2000; Tiwari et al., 2008). It has been well
recognized that monocytes in the bloodstream are
recruited to the atherosclerotic lesion site after endo-
thelial injury and increased vascular permeability.
These recruited monocytes then differentiated into
mature macrophages (in local prodifferentiation micro-
environment), which avidly ingest modified LDL and
accumulate lipids, thus giving rise to the formation of
“foam cells” stuffed with lipid droplets (LD) (Tabas
et al., 2015). Lesional macrophages can also proliferate,
self-renew, and accumulate in advanced atherosclerotic
lesions in mice. This mechanism represents an impor-
tant pathway of macrophage build-up and probable
macrophage-derived foam cell formation viamacrophage
replication, in addition to monocyte influx/infiltration
(Robbins et al., 2013). The lipid in foam cells (derived
from macrophages and VSMCs) represents the major
source of plaque lipid content and drives the develop-
ment of fatty streak and atherosclerotic plaque forma-
tion. Macrophages have migratory potential, however,
under stimulation with oxidized LDL (oxLDL) the migra-
tory capability has shown to be reduced, leading to
macrophages trapping in the arterial wall and athero-
progression (Park et al., 2009b). Macrophages regulate in-
plaque inflammatory response and oxidative stress by
secreting various cytokines and chemokines, as well as
generating reactive oxygen species (ROS). In advanced
plaques, the death of macrophages drives the enlarged
formation of necrotic core. Normally, the necrotic core
within the plaque is covered by a “protective” barrier—the

fibrous cap, which serves as an “insulator” between
platelets in circulating blood and prothrombotic substan-
ces within the lesion (Tabas et al., 2015). The thickness of
the fibrous cap is determined by the balanced effects of
collagen synthesis byVSMCs and collagen degradation by
matrix metalloproteinase 2/9 (MMP-2/9). However, when
the necrotic core size is increased (such as under con-
ditions of increased primary necrosis, VSMC apoptosis,
defective efferocytosis, and defective inflammation reso-
lution by specialized proresolving mediators) and the
fibrous cap gets thinner, the plaques are susceptible to
rupture (Tabas et al., 2015; Bennett et al., 2016). The
rupture of plaques leads to a vessel occlusion, an arterial
thrombosis, and the occurrence of acute cardiovascular
events (Arbab-Zadeh et al., 2012; Libby, 2013).

II. Foam Cell Formation as a Hallmark
of Atherosclerosis

In the setting of atherosclerosis, lipid uptake and
cholesterol esterification are increased, while choles-
terol efflux is insufficient. The final outcome is excessive
accumulation of cholesterol esters (CE) in macrophages
to form foam cells (Yu et al., 2013; Maguire et al., 2019).
Therefore, the formation of foam cells is determined by
the balanced effects of three major interrelated biologic
processes, including lipid uptake, cholesterol esterifica-
tion, and cholesterol efflux. Each process is regulated
by multiple transcription factors, including receptors,
enzymes, and transporters, all of which work in concert
to regulate lipid homeostasis (Yu et al., 2013; Maguire
et al., 2019). Yearly publication counts on “foam cell”
have been increasing dramatically (Fig. 1). Multiple
natural products and pharmaceutical agents can inhibit
foam cell formation and atherosclerosis by affecting
one or more of the involved biologic processes. The gene
expression of scavenger receptors (SRs) and cholesterol
transporters can be regulated through transcriptional,
posttranscriptional, translational, and epigenetic mech-
anisms [suchasmicroRNAs (miRNA) and longnoncoding
RNAs (lncRNAs)]. Also, macrophage-derived foam cell
formation is influenced bymultiple cytokines and chemo-
kines (McLaren et al., 2011a). Therefore, targeting the
outlined major pathways (uptake, esterification, and
efflux) could be effective therapeutic strategies to
combat atherosclerosis (Fig. 2).

A. Cholesterol Uptake

Cholesterol uptake is a biologic process by which
modified LDLs (such as oxLDL) are taken up by macro-
phages and VSMCs via SR-mediated pathways, as well
as phagocytosis (Schrijvers et al., 2007) and pinocytosis
(via receptor-independent endocytic pathway) (Kruth,
2011; Moore et al., 2013). Among thesemechanisms, the
SR-mediated uptake is themajor pathway of cholesterol
uptake. The primary functions of SRs are to clear in-
vading pathogens and apoptotic cells as well as modified
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lipids. Seminal findings from the Brown and Goldstein
laboratories in 1970s (Brown et al., 1979; Goldstein
et al., 1979) showed that the uptake ofmodified LDLs by
macrophage “scavenger receptors” is faster than the
uptake of native LDL. Since then, burgeoning studies
have identified various SRs and elucidated the contri-
bution of SRs to atherosclerosis development in diverse
mouse models. Macrophages express several SRs that
can bind, internalize, and degrade modified LDL, such
as SR-A, CD36, and lectin-like oxLDL receptor-1 (LOX-1)
(Xu et al., 2013c). Other SRs include macrosialin/CD68,
SR expressed in endothelial cells, macrophage receptor
with collagenous structure (MARCO), and C-X-C motif
chemokine ligand 16 (CXCL16, also known as SR-PSOX)
(Greaves and Gordon, 2005). The different SRs have
different binding affinities and preference for various
forms of modified LDL. Quantitative analysis in SR-A
and CD36 knockout macrophages have shown that SR-
A and CD36 account for 75%–90% of oxLDL internali-
zation by macrophages (Kunjathoor et al., 2002;
Rahaman et al., 2006). Experiments in LOX-1-deficient
macrophages indicated thatLOX-1accounts for 5%–10%of
oxLDL uptake by murine macrophages under basal con-
ditions, but in lysophosphatidylcholine-treated macro-
phages, the contribution of LOX-1 to macrophage oxLDL
uptake and lipid accumulation is increased by more
than 40% (Schaeffer et al., 2009). Thus, CD36, SR-A,

and LOX-1 are the major SRs responsible for the
binding and subsequent uptake of modified LDL by
macrophages (Kunjathoor et al., 2002). A detailed
description of functions of all SRs in health and disease
was reviewed elsewhere (Zani et al., 2015).

1. CD36. CD36 (also known as fatty acid translo-
case, FAT) belongs to class B of the SR family, repre-
senting 88 kDa heavily glycosylated transmembrane
platelet glycoprotein III b/IV (Yu et al., 2013). It was
first identified in 1993 as a macrophage receptor that
binds (with high affinity), internalizes, and degrades
oxLDL (Endemann et al., 1993). CD36 has an extracel-
lular domain, two cytoplasmic domains, and two trans-
membrane domains. CD36 is ubiquitously expressed in
multiple cell types, including monocytes/macrophages,
endothelial cells, platelets, and many others (Yu et al.,
2013). In addition to regulating modified LDL binding,
CD36 has other functions as well, such as involvement
in inflammatory processes, lipid metabolism, fatty acid
transport, and immunity (Febbraio et al., 2001). An-
other important function of CD36 is to modulate the
migration of macrophages upon oxLDL stimulation,
which may contribute to macrophage trapping/reten-
tion in arterial lesions (Park, 2014). CD36 can also be
released to the circulation in patients with atheroscle-
rosis, which leads to the formation of soluble CD36
(Handberg et al., 2008). Thus, solubleCD36 is a promising

Fig. 1. Yearly publication counts on foam cells for the period 1946–2017. PubMed search was performed on Sep 11, 2018 using the subject term “foam
cells.”
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biomarker of plaque instability and symptomatic ca-
rotid atherosclerosis, as well as associated with carotid
intima-media thickness (Handberg et al., 2008; Jiang
et al., 2017b).
The expression of CD36 in macrophages is upregu-

lated by several proatherogenic stimuli, such as oxLDL
(Endemann et al., 1993), palmitate (Kim et al., 2017),
and dysfunctional HDL from coronary artery disease
(CAD) patients (Sini et al., 2017). The CD36 gene tran-
scription is regulated by peroxisome proliferator-activated
receptor-g (PPARg) (Nagy et al., 1998; Tontonoz et al.,
1998), nuclear erythroid-related factor 2 (Nrf2) (Ishii et al.,
2004; Olagnier et al., 2011), as well as by signal transducer
and activator of transcription 1 (STAT1) (Kotla et al., 2017)
pathways. In addition, CD36 expression can also be
regulated by retinol-binding protein 4 (Liu et al.,
2017b), protein kinase Cu (PKCu)/activating transcrip-
tion factor 2 (Raghavan et al., 2018), epidermal growth
factor receptor (Zeboudj et al., 2018), trimethylamine

N-oxide (Geng et al., 2018), NACHT, LRR, and PYD
domains-containing protein 3 inflammasome (Chen
et al., 2018b), transient receptor potential vanilloid 4
(TRPV4) (Goswami et al., 2017), cellular communica-
tion network factor 3 (Shi et al., 2017), melanocortin 1
receptor (Rinne et al., 2017), cluster of differentiation
146 (CD146) (Luo et al., 2017), triggering receptor
expressed on myeloid cells (Joffre et al., 2016), cyclo-
philin A (Ramachandran et al., 2016), and many others.
Furthermore, CD36-mediated foam cell formation and
atherosclerosis were negatively regulated by C1q/tumor
necrosis factor-related protein 13 via autophagy/lysosome-
dependent degradation of CD36 (Wang et al., 2019a).

Recently, noncoding RNAs (ncRNA), such as miRNAs
and lncRNAs, were proposed as a new layer of gene
regulation in cardiovascular biology. A few miRNAs
have been shown to regulate the CD36 expression, thus
influencing foam cell formation and lipid accumulation
inmacrophages (Dai et al., 2016), including miRNA-155

Fig. 2. Therapeutic targets in macrophage-derived foam cell formation. After endothelial injury, LDL penetrates endothelial monolayer, then LDL is
modified to form atherogenically modified LDL (such as oxidized LDL). The modified LDL is taken up by multiple scavenger receptors (SRs, such as
CD36, SR-A, and LOX-1) on the cell membrane of differentiated macrophages. Then, LDL is delivered to late endosomes/lysosomes, where lysosomal
acid lipase (LAL) degrades cholesteryl esters (CE) from the LDL particles to generate free cholesterol (FC) and free fatty acids. The FC can be re-
esterified by acyl-coenzyme A: cholesterol acyltransferase-1 and -2 (ACAT1 and ACAT2) in the endoplasmic reticulum (ER), thus contributing to CE
accumulation and lipid droplet formation. CE can be hydrolyzed by neutral cholesteryl ester hydrolases (NCEHs), such as NCEH1 and hormone-
sensitive lipase (HSL) to liberate FC, which can be reverse transported outside of macrophages by cholesterol efflux transporters, ATP-binding cassette
A1 (ABCA1, ApoA-1 as the acceptor) and G1 (ABCG1, HDL as the acceptor), as well as SR-B1 (HDL as the acceptor). Under physiologic conditions,
cholesterol homeostasis is fine-tuned by a balance of “input” and “output” of lipids. Under pathologic conditions (such as atherosclerosis), the balance is
disrupted, leading to foam cell formation. Therefore, there are three major strategies to reduce foam cell formation, i.e., by 1) reducing the SR-mediated
lipid uptake, 2) reducing the ACAT-mediated cholesterol esterification, and 3) promoting the transporter-mediated cholesterol efflux. Other strategies
to inhibit foam cell formation include the decrease of LDL modification and inhibition of monocyte to macrophage differentiation.
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(Huang et al., 2010). The CD36 expression is also
regulated by lncRNAs. For example, lncRNA RP5-
833A20.1 interacted with miRNA-382-5p to suppress
nuclear factor I A (NFIA), thus increasing the expres-
sion of nuclear transcription factor-kB (NF-kB), SR-A,
and CD36, leading to increased cholesterol accumulation
and higher inflammatory response (Hu et al., 2015).
lncRNAs nuclear paraspeckle assembly transcript 1
(Neat1), which has two isoforms, Neat1_1 (shorter) and
Neat1_2 (longer), regulate the formation of paraspeckles
(subnuclear structures). Two recent studies have shown
that Neat1 is an oxLDL inducible lncRNA that regulates
the macrophage inflammation, oxidative stress,
apoptosis, and foam cell formation (Chen et al., 2018a;
Huang-Fu et al., 2018). Similarly, metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1),
a macrophage-enriched and oxLDL inducible lncRNA,
also involves in regulation of oxLDL-induced CD36
expression and oxLDL uptake through activation of
b-catenin (a transcriptional factor for CD36) (Huangfu
et al., 2018). Despite reduced uptake of oxLDL by
MALAT1 deficiency, heterozygous deletion of MALAT1
aggravated atherosclerosis in ApoE-deficient (ApoE2/2)
mice by inducing massive immune system dysregulation
(Gast et al., 2019). Gain- and loss-of-function assays of
homeobox protein transcription antisenseRNA (HOTAIR)
in oxLDL-stimulated macrophages suggest that HOTAIR
controlled CD36 expression, oxLDL uptake, inflammation
[interleukin-6 (IL-6), IL-1b, cyclooxygenase 2 (COX2),
and tumor necrosis factor-a (TNF-a)], and macrophage-
derived foam cell formation via miRNA-330-5p (Liu et al.,
2019). Therefore, ncRNAs present potential targets to
fine-tune macrophage function within atherosclerotic
lesions. For a detailed review of ncRNAs in regulating
SRs, we refer to a recent review (Dai et al., 2016).
Studies performed using CD362/2 mice to dissect the

role of CD36 in atherosclerosis have yield controver-
sial results (Collot-Teixeira et al., 2007). For example,
targeted disruption of CD36 reduced the oxLDL uptake,
foam cell formation, and atherosclerotic plaques in
ApoE2/2 mice (Febbraio et al., 2000). This was sup-
ported by an independent study using shRNA-mediated
gene silencing of CD36, which showed that silencing of
CD36 in bone marrow-derived cells decreased athero-
sclerotic plaques (Mäkinen et al., 2010). Another study
showed that CD362/2-deficient male ApoE2/2 mice, but
not female mice, showed reduced atherosclerotic plaque
area after feeding normal diet and Western-type diet;
however, this was unexpectedly related to increased
aortic sinus lesion areas (Moore et al., 2005). In
contrast, a second study observed that CD36 deficiency
reduced atherosclerosis in both sexes of ApoE2/2 mice
(Kuchibhotla et al., 2008). A third study observed
increased atherosclerosis only in male CD362/2 and
ApoE2/2mice fed aWestern-type diet, albeit with reduced
foam cell formation in vitro; however, simultaneous
deletion of both CD36 and SR-A significantly reduced

atherosclerosis as well as plaque necrosis in ApoE2/2

mice without affecting foam cell formation (Manning-
Tobin et al., 2009). These discrepancies in phenotypic
observations suggest that CD36 in other cell types (such
as endothelial cells, VSMCs, monocytes, and dendritic
cells)may have lipid uptake-independent functions, and
the possible reciprocal interaction network among SRs
may be complicatedly regulating lipid metabolism and
atherosclerosis (Maguire et al., 2019).

2. Macrophage Scavenger Receptor 1. SR-A (also
known as CD204, or macrophage scavenger receptor 1)
is a 77-kDa glycoprotein belonging to class A of the SR
family. SR-A is the first identified and cloned SR in
macrophages (Kodama et al., 1990). Alternative splicing
of SR-A leads to the generation of several variants, such
as SR-A1/2/3 (human SR-A) and SR-A1/2 (mouse SR-A).
SR-A gene is located on chromosome 8 (8p22). SR-A
protein has a cysteine-rich C-terminal domain, an extra-
cellular domain, and a collagen-like domain (McLaren
et al., 2011a). SR-A1/2s are the common functional
receptors that mediate the endocytosis of modified LDLs,
such as acetylated LDL (acLDL) (Terpstra et al., 1997).
The expression of SR-A was upregulated by multiple
proatherogenic stimuli [such as acLDL (Terpstra et al.,
1997), oxLDL (Terpstra et al., 1997), TNF-a (Hashizume
and Mihara, 2012), IL-6 (Hashizume and Mihara, 2012),
high glucose (Fukuhara-Takaki et al., 2005), etc.] and
downregulated by many plant-derived phytochemicals
(Yu et al., 2013). SR-A1 gene transcription is primar-
ily regulated by PU.1 (Horvai et al., 1995), NF-kB
(Hashizume and Mihara, 2012), activating protein-1
(AP-1) (Mietus-Snyder et al., 1998), and CCAAT/
enhancer binding protein (C/EBP) (Mietus-Snyder
et al., 1998). Several miRNAs were shown to regulate
the SR-A expression, such as miRNA-29a (Dai et al.,
2016). SR-A1 expression can be upregulated through
Orai1 store-operated calcium channel (Liang et al.,
2016), chloride channel ClC3 (Tao et al., 2015b), and
endophilin-A2 (Huang et al., 2016a).

Earlier studies in the 1990s showed that deletion of
SR-A can reduce atherosclerosis development in both
LDL receptor-deficient (LDLR2/2) mice (Sakaguchi
et al., 1998) and ApoE2/2 mice (Suzuki et al., 1997).
The pathologic role of SR-A is supported by its silencing
in LDLR2/2ApoB100 mice. However, simultaneous de-
pletion of SR-A and CD36 did not reduce atherosclero-
sis, due to reciprocal regulation of both receptors
(Mäkinen et al., 2010). Follow up studies suggested
the more complex role of SR-A in atherosclerosis. For
example, deficiency of either SR-A or CD36 alone had no
impact on atherosclerotic development in ApoE2/2

mice, although it attenuated foam cell formation
(Moore et al., 2005), but SR-A and CD36 double knock-
out reduced plaque complexity without significant
impact on macrophage-derived foam cell formation.
Also, SR-A transgenic in either LDLR2/2 mice or ApoE-
3 Leiden mice decreased the atherosclerosis development
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despite increased foam cell formation in SR-A overex-
pressed macrophages (De Winther et al., 2000). This
discrepancy may be attributed to several factors, in-
cluding different diet, time of feeding, and different
atherosusceptible mouse strain. To avoid the systemic
effects caused by global knockout, macrophage-specific
overexpression of SR-A was done and unexpectedly led
to attenuated atherosclerosis development in LDLR2/2

mice (Whitman et al., 2002). Similarly, overexpressing
SR-A in LDLR2/2 mice (via bone marrow transplanta-
tion) does not affect atherosclerotic lesion development
despite increased SR activity in vitro (Herijgers et al.,
2000). In addition to regulating lipid uptake, SR-A
also has other biologic functions, such as regulation of
vascular inflammation, host defense, innate immunity,
cell fate determination, and ischemic injury, highlight-
ing that SR-A could be a double-edged sword implicated
in cardiovascular health as well as in multiple cardio-
vascular diseases (CVD) (Kelley et al., 2014; Ben et al.,
2015).
3. Lectin-like Oxidized Low-density Lipoprotein

Receptor-1. LOX-1 (lectin-like oxLDL receptor-1)
belongs to the Class E of scavenger receptors located
at chromosome 12 (12p13.2). LOX-1 is encoded by the
gene-oxLDL receptor 1 (OLR1). LOX-1 was identified
in 1997 as a major SR in endothelial cells that binds,
internalizes, and degrades oxLDL (Sawamura et al.,
1997). Genetic variants of LOX-1 were associated
with increased risk of CVD (Chen et al., 2003; Wang
et al., 2010c; Morini et al., 2016). The human LOX-1
gene has six exons and five introns, encoding LOX-1
protein, which has 273 amino acid residues. LOX-1 is
composed of a C-type lectin-like domain, an extra-
cellular domain, a transmembrane domain, and an
N-terminal cytoplasmic domain (Dunn et al., 2008;
Ogura et al., 2009). The C-type lectin domain is
critical for oxLDL binding. In terms of expression,
LOX-1 is ubiquitously expressed in vascular cells,
such as endothelial cells (Sawamura et al., 1997),
macrophages (Draude et al., 1999), VSMCs (Zhang
et al., 2017), cardiomyocytes (Schlüter et al., 2017),
and fibroblasts (Liu et al., 2016a). The ubiquitous
expression pattern of LOX-1 in cardiovascular cells
implicates its important role in regulating cardio-
vascular pathophysiology. In patients with advanced
atherosclerotic plaques, LOX-1 protein expression
was markedly increased in lesional macrophages and
VSMCs (Kataoka et al., 1999). In addition, LOX-1
is cleaved to form soluble LOX-1, which serves as
a diagnostic and prognostic biomarker for CAD (Tian
et al., 2019a).
To date, oxLDL is the most common and well-

characterized ligand for LOX-1 (Yoshimoto et al.,
2011). Other ligands of LOX-1 include carbamylated
LDL (Speer et al., 2014; Holy et al., 2016), glycoxi-
dized LDL (Shiu et al., 2009), electronegative LDL
fraction L5 (Wang et al., 2018g), and advanced glycation

end-products (Jono et al., 2002). Expression of LOX-1
under basal unstimulated conditions is very low, but
LOX-1 expression can be significantly upregulated by
several atheroprone stimuli, such as disturbed blood
flow (Lee et al., 2018), lipopolysaccharide (LPS) (Zhao
et al., 2014), TNF-a (Kume et al., 2000), and high
glucose (Li et al., 2003). Dysfunctional HDL from
patients with CAD can also cause endothelial dysfunc-
tion by reducing endothelial nitric oxide (NO) synthase
(eNOS)-dependent NO production, anti-inflammatory
responses, and endothelial repair capacity via LOX-1
activation (Besler et al., 2011; Xu et al., 2013b).
Similarly, dysfunction of HDL could probably lead to
LOX-1-mediated uptake of modified LDL and result in
foam cell formation.

LOX-1 gene transcription can be regulated by several
transcriptional factors, including NF-kB, AP-1, and
POU-domain transcription factor (Oct-1) in a context-
dependent manner (Hermonat et al., 2011). LOX-1 gene
expression can be epigenetically mediated by several
miRNAs. For example, silencing of miRNA-155 pro-
moted oxLDL-elicited lipid uptake by increasing the
expression of LOX-1 (Huang et al., 2010). A recent
miRNA transcriptional profiling assay showed that
LOX-1 is the target of miRNA-30c-1-3p and miRNA-
28a-5p in oxLDL-stimulated RAW264.7 macrophages
(Li et al., 2018b). Sirtuin 1 (Sirt1), a class III histone
deacetylase, can downregulate LOX-1 expression and
LOX-1-mediated foam cell formation, as well as atten-
uate development of atherosclerosis by deacetylating in
macrophages (Stein and Matter, 2011). It remains to
be investigated whether there are lncRNAs that can
regulate LOX-1 expression and LOX-1-mediated foam
cell formation.

LOX-1 transgene accelerates endothelial dysfunction,
aortic inflammation, intramyocardial vasculopathy,
and atherosclerotic development in ApoE2/2 mice
(Inoue et al., 2005). Experiments using endothelial
cell-specific overexpression of LOX-1 obtained similar
phenotype in either ApoE2/2 or LDLR2/2 mouse back-
ground by impairing endothelial function (White et al.,
2011; Hofmann et al., 2017). In contrast, LOX-12/2 and
LDLR2/2 mice show reduced collagen deposition, oxi-
dative stress, and developed fewer atherosclerotic pla-
ques (Mehta et al., 2007; Hu et al., 2008). These series of
gain- and loss-of-function studies provide the “proof-of-
concept” that LOX-1 is a proatherogenic SR and can
serve as a promising therapeutic target for atheroscle-
rosis. The molecular mechanisms of LOX-1 in promoting
atherosclerosis include induction of endothelial dysfunc-
tion (injury, apoptosis, impaired NO production, and
endothelial-mesenchymal transition), the proliferation/
migration of VSMCs, macrophage-derived foam cell
formation, and platelet activation (Tian et al., 2019a).

For a detailed understanding of the functions and
pharmacological modifiers of LOX-1 in atherosclerosis,
we refer the readers to a recently published review
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(Tian et al., 2019a). More studies are needed to un-
derstand the specific role of LOX-1 in macrophage foam
cell formation and atherosclerosis (by macrophage-
specific knockout mice and/or transgenic mice) (Maguire
et al., 2019). Also, LOX-1 was expressed in VSMCs in
mice and human atherosclerotic plaques, the potential
role of LOX-1 in lipid uptake and foam cell formation in
VSMCs remains to be investigated.
4. Others. Other SRs that mediate lipid uptake

include MARCO (Elomaa et al., 1998), SR expressed
in endothelial cells (Adachi et al., 1997), and CXCL16
(Shimaoka et al., 2000). For example, CXCL16 was a SR
highly expressed in macrophages (Shimaoka et al.,
2000). Knockdown experiments have demonstrated
that CXCL16 was important for foam cell formation in
human macrophages (Zhang et al., 2008). It is plausible
that these less common SRs also contribute to the
uptake of modified LDL to certain extent or under
specific disease conditions (McLaren et al., 2011a).
Further studies are warranted to assess the contribu-
tion of these SRs to foam cell formation and atheroscle-
rosis in genetically manipulated mice.

B. Cholesterol Esterification and Hydrolysis

After uptake and internalization by macrophage SRs,
modified LDL is transported to the late endosome/
lysosomes where the cholesteryl esters (CEs) are fur-
ther hydrolyzed to free cholesterol (FC) and free fatty
acids by lysosomal acid lipase [LAL, also known as
lipase A (LIPA)] (Du et al., 2004; Ouimet et al., 2011;
Dubland and Francis, 2015; Schlager et al., 2017). To
prevent the potential cell toxicity caused by an excessive
FC accumulation, FC can be re-esterified by acetyl-CoA
acetyltransferases (ACAT) at the endoplasmic reticu-
lum (ER) to formCE, which is stored in cytoplasm in the
form of lipid droplets (LD). Optimal cholesterol esteri-
fication is regarded as a protective self-defense mecha-
nism to avoid the excessive accumulation of cytotoxic
FC. The excessive accumulation of CE in macrophages
and VSMCs leads to the formation of foam cells, which
represents a major hallmark for the development of
atherosclerosis. The accumulated CE within the cells
can be hydrolyzed by two neutral CEhydrolases (NCEH),
termed NCEH1 (also known as KIAA1362) (Okazaki
et al., 2008; Sekiya et al., 2009) and hormone-sensitive
lipase (HSL, also known as lipase E) (Escary et al., 1998,
1999; Okazaki et al., 2002; Yeaman, 2004). The result is
the release of FC for transporters-mediated efflux.
Therefore, preventing cholesterol esterification and stim-
ulating CE hydrolysis are crucial for maintaining cho-
lesterol homeostasis, and therefore, represent novel
therapeutic modalities of atherosclerosis.
1. Acetyl-CoA Acetyltransferases 1 and Acetyl-CoA

Acetyltransferases 2. ACAT has two isoforms: ACAT1
(which is expressed in macrophages, VSMCs, and other
cell types) and ACAT2 (mainly expressed in the in-
testinal enterocytes, macrophages, and hepatocytes).

ACAT2 has 44% sequence similarity with ACAT1
(Cases et al., 1998; Lee et al., 2000b; Sakashita et al.,
2003; Allahverdian et al., 2012). ACAT1 was first
identified in 1993 by Chang et al. (1993) and is the
well-studied ACAT isoform in mediating CE synthesis.
ACAT1 is located in chromosome 11 (11q22.3). Human
ACAT1 gene spans 27 kb and has 12 exons and 11
introns. ACAT1 gene encodes a 45.1-kDa product, which
is composed of 427 amino acids. ACAT1 was predomi-
nantly expressed in plaque macrophages in human
patients, and its expression was significantly increased
duringmonocyte differentiation tomacrophages (Miyazaki
et al., 1998). Moreover, several proatherogenic stimuli,
including interferon-g (Panousis and Zuckerman, 2000b),
oxLDL (Wang et al., 2016b), TNF-a (Lei et al., 2009),
insulin (O’Rourke et al., 2002), leptin (O’Rourke et al.,
2002),Chlamydia pneumoniae infection (Liu et al., 2010a),
and asymmetric dimethylarginine (Zhu et al., 2010),
upregulated the expression/activity of ACAT1 in macro-
phages. Furthermore, cholesterol loading of aortic VSMCs
also leads to increase in ACAT1 activity, while ACAT2
was not expressed by arterial VSMCs (Rong et al.,
2005). Also, oxLDL increases the ACAT1-dependent
foam cell formation in VSMCs via toll-like receptor 4
(TLR4)/MyD88/NF-kB-mediated proinflammatory path-
ways (Yin et al., 2014). In contrast, the ACAT1 expres-
sion in macrophages can be decreased by ghrelin [via
growth hormone secretagogue receptor (Wan et al.,
2009)], incretins [via cyclic AMP (cAMP) activation
(Nagashima et al., 2011)], and the vasoprotective gaso-
transmitter hydrogen sulfide (H2S) [via KATP/ERK1/2
pathway (Zhao et al., 2011)]. The expression of ACAT1
can be regulated by a few miRNAs, including miRNA-9
(Xu et al., 2013a), miRNA-27a/b (Zhang et al., 2014),
and miRNA-467b (Wang et al., 2017a), all of which
reduced the macrophage-derived foam cell formation.
Clinically relevant, two genetic variants of ACAT1 gene
(such as rs1154556 and rs10913733) were associated
with an increased risk of CAD in Chinese population
(Wang et al., 2017i).

A large part of the scientific knowledge about ACAT1
and ACAT2 has been gained from genetically engi-
neered mice by breeding with atherosusceptible mouse
strains. Total deficiency or liver-specific deletion (by
administeringantisense oligonucleotide targetingACAT2)
of ACAT2 has consistently reduced atherosclerosis in
mice (Willner et al., 2003; Bell et al., 2006, 2007),
whereas the outcome of deletion/pharmacological in-
hibition of ACAT1 in experimental atherosclerosis is
controversial (Rudel et al., 2005; Farese, 2006). On the
one hand, global deletion of ACAT1 in either ApoE2/2 or
LDLR2/2 mice show reduced CE accumulation and
atherosclerosis development, but caused cutaneous
xanthomatosis and dry eye in mice, probably due to an
excessive FC accumulation (Yagyu et al., 2000). Simi-
larly, myeloid-specific ACAT1 deficiency (by breeding
with LyzM-Cre mice) reduces the content of CE and
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leukocyte adhesion to activated endothelium, lesional
macrophage content, and atherosclerosis plaque area in
ApoE2/2 mice, without causing common side effects
caused by the ACAT1 total deficiency (Huang et al.,
2016b). Myeloid-specific ACAT1 ablation also reduces
macrophage inflammation and prevents diet-induced
obesity (Huang et al., 2018). On the other hand, myeloid
cell-specific deletion of ACAT1 (by bone marrow trans-
plantation) unexpectedly show accelerated atheroscle-
rosis in both ApoE2/2 (Su et al., 2005) and LDLR2/2

mice (Fazio et al., 2001). Pharmacological inhibition of
ACAT by inhibitors increases atherosclerotic lesion
area in ApoE2/2 mouse and rabbit models of athero-
genesis (Perrey et al., 2001). These unexpected findings
are probably due to a FC-induced cytotoxicity and an
impairment of cholesterol efflux (Fazio and Linton,
2006).
Diverse pharmacological inhibitors of ACAT have

been explored as effective therapeutic strategies to
assess the therapeutic potential of ACAT inhibition in
atherosclerosis. Most of these inhibitors have shown
promising results in ameliorating atherosclerosis de-
velopment in animal models. For example, ACAT
inhibitors, such as avasimibe (Nicolosi et al., 1998;
Delsing et al., 2001; Kharbanda et al., 2005), CS-505
(Terasaka et al., 2007), T-2591 (Yasuhara et al., 1997),
HL-004 (Ishii et al., 1998), K604 (Yoshinaka et al.,
2010), F1394 (Rong et al., 2013), and tomatidine
(Fujiwara et al., 2012), have been reported to inhibit
foam cell formation and atherosclerosis in hyperlipi-
demic mice. Some ACAT inhibitors, like avasimibe,
have been shown to reduce the systemic inflammation
and improve the endothelial functions in patients with
hypercholesterolemia (Kharbanda et al., 2005). Most of
these inhibitors partially inhibited the ACAT activity
and both isoforms of ACAT. Recently, Shibuya et al.
(2018) identified a highly potent ACAT1 inhibitor
(IC505 4.0 nM), which reduced lipid-accumulation in
the aortic arch of hamsters fed with an atherogenic diet,
raising the therapeutic potential of this compound to
attenuate atherosclerosis in other experimental animal
models and human patients with atherosclerosis. Other
recent studies have shown that other treatment options,
such as losartan (Rafatian et al., 2013) or inhibition of
theNLRP3 inflammasome (by compoundMCC950) (Chen
et al., 2018b), inhibit theACATactivity, CEaccumulation,
and foam cell formation. However, three randomized,
double-blind, placebo-controlled trials failed to observe
significant differences in carotid as well as coronary
atherosclerosis between treatment with ACAT inhibitors
(by pactimibe and avasimibe) and placebo (Tardif et al.,
2004; Nissen et al., 2006; Meuwese et al., 2009). The
evidence indicates that selective ACAT inhibition might
be desired and should be used in combination with
therapies that increase cholesterol acceptors (such as
HDL or ApoA-1 targeted therapies), driving out excessive
FC of the plaques (Fazio and Linton, 2006).

2. Neutral Cholesterol Ester Hydrolase 1. NCEH1
gene is located at chromosome 3 (3q26.31) in the ER.
Compared with HSL, NCEH1 contributes more to CE
hydrolysis in macrophages (Sakai et al., 2014). NCEH1
gene yields four isoforms that result from differences in
mRNA cleaving. Structurally, NCEH1 is a membrane
protein consisting of an N-terminal transmembrane
domain, a catalytic domain, and C-terminal lipid-binding
domains (Okazaki et al., 2008). The N-terminal domain
has an ER-anchoring sequence. NCEH1 gene was first
cloned and biologically characterized in macrophages
(Ghosh, 2000; Okazaki et al., 2008). It was recently shown
that estrogen significantly increases the activity of
NCEH1 in mouse macrophages, suggesting the possibil-
ity of resulting sex difference of atherosclerosis develop-
ment (Chiba et al., 2011).

To dissect the role of NCEH1 in foam cell formation
and atherosclerosis, Igarashi et al. (2010) showed that
NCEH overexpression enhanced the CE hydrolysis
and promoted cholesterol efflux from macrophages. In
contrast, the NCEH1 depletion promoted foam cell
formation, indicating the critical role of NCEH1 in
maintaining cholesterol homeostasis (Okazaki et al.,
2008). In vivo, NCEH1 deletion accelerated foam cell
formation and increased atherosclerotic plaque area in
ApoE2/2 mice without impacting lipid profile. NCEH1
and HSL1 have comparable NCEH activity in macro-
phages despite one contradictory report (Buchebner
et al., 2010), which showed that HSL deficiency, but
not NCEH1 deficiency, abolished the NCEH activity.
Mice with deficiency of both NCEH1 and HSL1 showed
exaggerated atherosclerotic plaque increase in an addi-
tive manner (Sekiya et al., 2009). In contrast, mice
overproducing both NCEH and ApoA4 (as cholesterol
acceptor) showed decreased atherosclerosis develop-
ment (Choy et al., 2003). Also, macrophage-specific
overexpression of NCEH1 reduced atherosclerotic le-
sion area and plaque necrosis in LDLR2/2 mice due to
enhanced FC efflux and reverse cholesterol transport
(RCT) (Zhao et al., 2007). Excessive accumulation of FC
or oxysterols induces macrophage apoptosis and ath-
erosclerosis. NCEH1-deficient, but not HSL-deficient,
macrophages were more sensitive to 25-hydroxycholes-
terol-induced apoptosis (Sekiya et al., 2014). Therefore,
NCEH1 not only reduced the CE content in foam cells,
but also prevented the oxysterols-induced apoptosis
in atherosclerosis (Sekiya et al., 2014). Overall, these
results highlight NCEH1 as a promising target for
treating atherosclerosis.

3. Lysosomal Acid Lipase (Lipase A) and Hormone-
sensitive Lipase 1 (Lipase E). In addition to NCEH1,
LAL is also a principal lipase that hydrolyzes lysosomal
CE derived from LDL and modified LDL (Dubland and
Francis, 2015). Genome-wide association studies iden-
tified several genetic variants of LAL gene, which was
associated with increased risk for CAD (Morris et al.,
2017). Inmice, intravenous administration of recombinant
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LAL reduced coronary and aortic atheromatous lesions
in LDLR2/2 mice fed an atherogenic diet (Du et al.,
2004). A recent study has shown that LAL promotes
RCT in culturedmacrophages and inmice by increasing
the expression of ABCA1 and ABCG1 (Bowden et al.,
2018).
Unlike LAL, HSL is a neutral lipase expressed in

macrophages. Macrophage-specific HSL-transgenic
mice show enlarged aortic lesions and increased lipid
accumulation in coronary arteries (Escary et al., 1999).
However, the overexpression of cholesterol acceptors
(ApoA4) reduces atherosclerosis in HSL-transgenic
mice (Choy et al., 2003). Studies using macrophages
and LDLR2/2 mice have indicated that HSL has compa-
rable neutral CE hydrolase activity to those of NCEH1.
The deletion of bone marrow-derived HSL increased
a diet-induced atherosclerosis (Sekiya et al., 2009).
To date, pharmacological activators of LAL andHSL1

are not available. The specific role of LAL and HSL
in foam cell formation of macrophages and VSMCs, as
well as eventual effect on atherosclerosis remains to be
investigated in future studies.

C. Macrophage Cholesterol Efflux

To maintain intracellular cholesterol homeostasis,
excessive cholesterol is removed from cells through
multiple pathways, with the cholesterol export process
being termed “macrophage cholesterol efflux.” The CE
stored in the LD can be hydrolyzed to FC by CE
hydrolase (Hopkins, 2013). Then, FC could be out-
flowed from macrophages by aqueous diffusion and by
ATP-binding cassette (ABC) transporters ABCA1,
ABCG1, and SR-BI (Rosenson et al., 2012; Chistiakov
et al., 2016a). Caveolins (Murata et al., 1995) and sterol
27-hydroxylase (CYP27A1) (Escher et al., 2003) are also
known as contributors to cholesterol efflux. ABCA1
promotes FC efflux to lipid-poor apolipoprotein A-1
(ApoA-1) (often referred to as pre-b HDL) or apolipo-
protein E (ApoE). ABCG1 can promote FC efflux to
mature HDL (HDL2 and HDL3) particles (Hopkins,
2013). ABCA1 and ABCG1 expression are positively
regulated by the nuclear receptor liver X receptor
(LXR), which forms a heterodimer by binding with the
retinoid X receptor (RXR), and acts as a transcription
factor. The expression of ABCA1, ABCG1, SR-BI, and
LXR can also be induced by activation of PPARg (Lusis,
2000; Hopkins, 2013). If cholesterol cannot be exported
from cells to a sufficient extent, macrophages are
transformed into foam cells (Hansson, 2005; Hansson
et al., 2006).
1. Aqueous Diffusion Efflux Pathway. Aqueous dif-

fusion efflux pathway recently was reviewed elsewhere
(Phillips, 2014). This pathway involves a simple diffu-
sion process, representing in this way the nonprotein-
mediated cholesterol efflux pathway. It was shown
that it is one major contributor to cholesterol efflux
particularly in normal mouse peritoneal macrophages

(MPMs) (;80%) (Adorni et al., 2007). However, in
cholesterol-loaded MPMs, aqueous diffusion was not
changed and its contribution to cholesterol efflux be-
came smaller (Adorni et al., 2007). In addition, the
major variations in cellular cholesterol efflux rates are
not due to aqueous diffusion efflux pathway, but to
membrane transporters-mediated cholesterol efflux
pathways (Phillips, 2014).

2. Transporter-Dependent Cholesterol Efflux
Pathway. A significant pathway for cholesterol efflux
from macrophages involves the interaction between
transporters (ABCA1 and ABCG1), SR-BI, and accept-
ors (ApoA-1, HDL, and ApoE) (Brunham et al., 2006;
Rosenson et al., 2011). It is proposed that ABCA1 and
ABCG1 can act in a sequential way, in which ABCA1
generates nascent HDL, which then further promotes
cholesterol efflux via ABCG1 (Gelissen et al., 2006).
Genetic knockdown studies indicate that ABCG1 and
ABCA1 account for about 20% and 50% of the net
cholesterol efflux from cholesterol-enriched MPMs,
respectively (Adorni et al., 2007). Furthermore, both
ABCA1 and ABCG1 together account for about
60%–70% of the net cholesterol efflux to serum or
HDL from LXR-activated macrophages loaded with
cholesterol (Yvan-Charvet et al., 2007a). This part of
the review will focus on current understanding of the
function and regulation of these transporters (ABCA1
and ABCG1), SR-BI, and the acceptors (ApoA-1, HDL,
and ApoE), which are related to cholesterol efflux from
macrophages.

a. ATP-binding Cassette Transporter A1. ABCA1 is
a member of the ABC transporter superfamily that
utilizes ATP as a source of energy to transport various
substrates across cellularmembranes (Dean et al., 2001).
ABCA1, originally named as ABC1, was identified by
a PCR-based approach and cloned in 1994 (Luciani et al.,
1994). The ABCA1 gene consists of 50 exons spanning
149 kb and encodes a 2261 amino acid integral membrane
protein, consisting of two transmembranedomains (TMDs)
with six helices each and two nucleotide-binding domains
(NBDs) (Santamarina-Fojo et al., 2000; Wang and Smith,
2014). The NBDs exhibit a nucleotide-free state, while the
two TMDs link each other via a narrow interface in the
membrane. Additionally, two extracellular domains of
ABCA1 form an elongated hydrophobic tunnel. There are
two large extracellular loops that are linked by a disulfide
linkage (Fitzgerald et al., 2002; Qian et al., 2017).

It was not until 1999 that mutations of ABCA1 gene
were identified as underlying the etiology of Tangier
disease (Rust et al., 1999), which is characterized in the
homozygous state by an HDL deficiency, frequently
premature CAD, extremely enlarged yellow tonsils, and
clouding of the cornea (Bale et al., 1971; Serfaty-
Lacrosniere et al., 1994; Rust et al., 1999). Further
studies indicate that ABCA1 plays a major role in HDL
biosynthesis by mediating FC and phospholipid efflux
to lipid-poor ApoA-1, thereby producing nascent HDL

Targeting Foam Cells by Natural Products 607

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


particles in the liver (Yokoyama, 2006; Phillips, 2014).
Fibroblasts from subjects with Tangier disease are
deficient in cholesterol efflux to ApoA-1 (Remaley
et al., 1997), indicating that ABCA1 is an important
transporter mediating the cholesterol efflux. Details
about the interaction of the ABCA1 protein with ApoA-1
in mediation of the cholesterol efflux were reviewed
recently (Wang and Smith, 2014; Phillips, 2018). To
date, there is no clear consensus regarding the process
by which the ABCA1 protein regulates the transport of
cholesterol and lipoprotein from the plasma membrane
to the acceptor ApoA-1.
Consistent with the proposed function of ABCA1 in

nascent HDL formation, ABCA1-deficient mice have
almost undetectable levels of HDL, with a significant
decrease in total plasma cholesterol and phospholipids
(McNeish et al., 2000; Orsó et al., 2000). Overexpression
of ABCA1 in mice led to increased HDL-cholesterol
(HDL-C) and ApoA-1 levels, facilitating hepatic RCT
and biliary cholesterol excretion (Singaraja et al., 2001;
Vaisman et al., 2001). However, the studies in vivo from
some groups have led to opposite results about the role
of ABCA1 expression in atherosclerosis development.
Complete ABCA1 deficiency in wild-type, LDLR2/2,
and ApoE2/2 mice did not alter progression of athero-
sclerosis (McNeish et al., 2000), but repopulation of
ABCA12/2 mice with wild-type macrophages (McNeish
et al., 2000) or macrophages from ABCA1-overexpressing
mice (McNeish et al., 2000) led to a significant decrease
of atherosclerotic lesion in mice. In addition to lipid
regulation, ABCA1 protein is also involved in the
regulation of apoptosis and inflammation (Soumian
et al., 2005). ABCA1 executes its anti-inflammatory
effects by modifying cell membrane lipid rafts and
directly activating signaling pathways, including Janus
kinase 2/STAT3, protein kinase A (PKA), Rho family G
protein CDC42, and PKC (Liu and Tang, 2012).
ABCA1 protein plays a critically important role in

cholesterol homeostasis and may be viewed as a pro-
tector against atherosclerosis, thus there are many
studies to decipher how its expression is regulated
at both transcriptional and posttranscriptional levels
(Schmitz and Langmann, 2005; Zarubica et al., 2007)
(Fig. 3). ABCA1 expression is regulated in a tight
pathway with a short protein half-life (1 to 2 hours)
(Yokoyama et al., 2012) and rapid turnover in macro-
phages (Soumian et al., 2005). ABCA1 protein expres-
sion is highly regulated by a variety of molecules,
including secondary messengers (e.g., cAMP), nuclear
receptors [e.g., LXR, RXR, PPAR, pregnane X receptor
(PXR)], and cytokines [e.g., TNF-a, transforming growth
factor-b (TGF-b), interleukin-1b (IL-1b)] (Zarubica et al.,
2007). cAMP upregulates the expression of ABCA1 pro-
tein by acting at both the transcriptional and trans-
lational levels (Haidar et al., 2002; Denis et al., 2003).
Nuclear receptors are ligand-dependent transcriptional
factors that mediate the expression of their target genes

(Beaven and Tontonoz, 2006). The activation of LXR
and RXR by physiologically occurring oxysterols (e.g.,
27-hydroxycholesterol), retinoids, or synthetic agonists
stimulates the transcription of ABCA1 via the DR4
element in the ABCA1 promoter (Zarubica et al., 2007).
PPAR upregulates ABCA1 expression and RCT in-
directly via enhancement of the transcription of LXRa
(Chinetti et al., 2001). PXRs, regulated by many com-
pounds including both natural and synthetic steroids,
downregulate the ABCA1 gene transcription (Sporstol
et al., 2005). Cytokines were shown to exhibit pleiotro-
pic and contradictory effects on ABCA1 expression by
cross-talks between the cellular process of cholesterol
and inflammatory reactions (Zarubica et al., 2007).
TNF-a, IL-1b, and interferon-g downregulate the
LXR-mediated increase of ABCA1 protein expression
(Lusis, 2000; Panousis and Zuckerman, 2000a),
whereas TGF-b positively regulates the ABCA1 expres-
sion (Panousis et al., 2001). Posttranscriptional regula-
tion also plays a critical role in the regulation of ABCA1
protein levels by adjusting either protein stability or its
transporter activity (Llaverias et al., 2005). It was
reported that the protein stability of ABCA1 is regu-
lated by the proteasomal, lysosomal, and calpain sys-
tems (Ogura et al., 2011; Yokoyama et al., 2012; Aleidi
et al., 2015), whereas its activity is under the fine
control of diverse protein kinases, such as PKA and
protein kinase CK2 (Haidar et al., 2004; Roosbeek et al.,
2004). It was shown that a proline, glutamic acid, serine,
and threonine sequence in ABCA1 is very important for
its degradation by calpain protease, since deletion of
this motif leads to increase ABCA1 protein levels by
four- to fivefold (Wang et al., 2003).

The regulation of ABCA1 protein expression by
miRNA was recently investigated. miRNAs, are a class
of ncRNAs that are predominantly posttranscriptional
regulators of gene expression (Ambros, 2004; Bartel,
2009). To date, miRNA-10b (Wang et al., 2012a),
miRNA-23a-5p, miRNA-33 (Rayner et al., 2010),
miRNA-106b (Kim et al., 2012), miRNA-128-2 (Adlakha
et al., 2013), miRNA-148a (Goedeke et al., 2015),
miRNA-183 (Sarver et al., 2010), and miRNA-758
(Ramirez et al., 2011) have been reported to regulate
the ABCA1 protein expression. MiRNA-10b directly
repressed ABCA1 expression and also suppressed
cholesterol efflux from both murine and human macro-
phages (Wang et al., 2012a). Transfection of miRNA-
23a-5p inhibitor enhanced cholesterol efflux and de-
creased foam cell formation through upregulating the
ABCA1 expression levels. miRNA-23a-5p reduced
ABCA1 expression via repressing the 39-untranslated
regions (UTR) activity of the ABCA1 transcripts. Long-
term in vivo systemically delivered miRNA-23a-5p
antagomir significantly increased ABCA1 expression,
reduced atherosclerosis development, and promoted
plaque stability in the aorta of ApoE2/2 mice (Yang
et al., 2018a).miRNA-33, locatedwithin the gene encoding
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sterol regulatory element-binding factor-2, inhibited
ABCA1 expression, thus resulting in the decreased
cholesterol efflux (Rayner et al., 2010). miRNA-128-2
inhibited the ABCA1 expression directly via binding to
its 39-UTR. The administration of miRNA-128-2 led to
the decrease both protein and mRNA levels of ABCA1
(Adlakha et al., 2013). miRNA-148a decreased expres-
sion of ABCA1 and circulating HDL-C levels in vivo
(Goedeke et al., 2015). miRNA-758 directly targeted the
39-UTR of ABCA1, repressed the expression of ABCA1,
and reduced cellular cholesterol efflux to ApoA-1.
Conversely, the application of anti-miRNA-758 in-
creased ABCA1 expression (Ramirez et al., 2011).
miRNA-106b significantly decreased the ABCA1 levels
and the cholesterol efflux in neuronal cells (Kim et al.,
2012). miRNA-183 targeted the 39-UTR of ABCA1
mRNA to degrade ABCA1 mRNA in the colon cancer
cells and other tumor cells (Sarver et al., 2010). There
has been no further study to investigate the effect of
miRNA-106b and miRNA-183 on macrophages and
liver cells so far.
Recent studies also showed that lncRNA, a large

subgroup of RNAs that are.200 nucleotides. Although
most lncRNAs do not have apparent protein coding
potential, lncRNAs also play a very important role in

modulating ABCA1 protein expression. lncRNAs can
regulate the ABCA1 expression at both transcriptional
and posttranscriptional levels. It was reported that
lncRNA macrophage-expressed LXR-induced sequence
(MeXis) increased the ABCA1 protein expression at the
transcriptional level by interacting with and guiding
promoter to bind to the transcriptional coactivator
DDX17 in macrophages (Sallam et al., 2018). Further-
more, the loss of MeXis in mouse bone marrow cells
impaired the cellular reaction to cholesterol overload
and accelerated the atherosclerotic development
(Sallam et al., 2018). Increased long intervening non-
coding RNA-DYNLRB2-2 expression promoted the
ABCA1-mediated cholesterol efflux by upregulation of
theABCA1expression through theglucagon-likepeptide-1
(GLP-1) receptor signaling pathway (Hu et al., 2014)
and decrease of TLR2 expression (Li et al., 2018c)
in macrophages. A newly identified lncRNA named
lnc-HC, which interacts with hnRNPA2B1 to form an
lnc-HC-hnRNPA2B1 complex, decreased the ABCA1
expression at the posttranscriptional level within he-
patocytes (Lan et al., 2016). However, the effect of lnc-
HC on ABCA1 expression in macrophages remains to
be examined. On the contrary, another lncRNA, RP5-
833A20.1, attenuated the ABCA1 levels, thus reducing

Fig. 3. Regulation of ABCA1 expression at both transcriptional and post-transcriptional levels. At the transcriptional level, ABCA1 protein expression
is highly regulated by a variety of molecules, including secondary messengers [e.g., cyclic AMP (cAMP)], nuclear receptors (e.g., LXR, RXR, PPAR, and
PXR), and cytokines [e.g., TNF-a, transforming growth factor-b (TGF-b), interleukin-1b (IL-1b)]. At the post-transcriptional level, the protein stability
of ABCA1 is governed by the proteasomal, lysosomal, and calpain systems. Also, miRNA-10b, miRNA-23a-5p, miRNA-33, miRNA-106b, miRNA-128-2,
miRNA-148a, miRNA-183, and miRNA-758 have been reported to regulate ABCA1 protein expression. The long noncoding RNAs (lncRNAs), including
lncRNA MeXis, long intervening lincRNA-DYNLRB2-2, lnc-HC, and lncRNA RP5-833A20.1, have also been involved in the regulation of ABCA1
expression (green arrows: upregulation; red lines: downregulation).
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the cholesterol efflux via the miRNA-382-mediated
NFIA pathway (Hu et al., 2015).
b. ATP-binding Cassette Transporter G1. ABCG1 is

another member of the ABC superfamily of transporters
(Tarr et al., 2009; Tarling and Edwards, 2012). ABCG1 is
a half transporter that contains a singleABCand a single
TMD/6 transmembrane a-helice on one polypeptide
chain (Tarling, 2013). The half transporter ABCG1 is
generally considered to function by forming homodimers
(ABCG1:ABCG1) to transport substrates across the cell
membrane (Tarling and Edwards, 2011). ABCG1 was
first described and cloned in 1996 as the human homolog
of the Drosophila white gene (Chen et al., 1996). After
that, it took around 4 years until ABCG1 again received
intensive attention because it is similar to ABCA1 in the
expression pattern in monocytes (Schmitz et al., 2001).
ABCG1 is involved in regulation of intracellular choles-
terol homeostasis and cholesterol efflux from cells to
HDL particles for RCT (Rosenson et al., 2012). ABCG1
also effluxes cholesterol to LDL, liposomes, and cyclo-
dextrin (Wang et al., 2004; Kennedy et al., 2005) and it
exports sphingomyelin, phosphatidylcholine, and oxy-
sterols to HDL and albumin (Kobayashi et al., 2006; Xu
et al., 2009). In addition to regulation of cholesterol efflux
from cells, ABCG1 protein exhibits other physiologic
functions as well (Sano et al., 2014). For example,
ABCG1 is involved in cell proliferation, apoptosis, and
immune response (Sano et al., 2014). It has been shown
that ABCG1 suppresses the proliferation of T cells by
LXR signaling (Bensinger et al., 2008). ABCG1 also
induced the apoptosis of cultured cells (Seres et al.,
2008), but inhibited the apoptosis of macrophages and
prostate cancer cells by decreasing signaling of TLR4
and NADPH oxidase 2 (Yvan-Charvet et al., 2010a) and
downregulating Akt signaling (Yvan-Charvet et al.,
2010a), respectively.
Consistent with the function of ABCG1 in regulation

of macrophage cholesterol efflux from cultured macro-
phages, ABCG1-deficient mice, first described in 2005,
when fed a Western-type diet, displayed excessive lipid
accumulation in macrophages within multiple organs,
particularly in the lung (Kennedy et al., 2005). Un-
expectedly, whole body loss of ABCG1 or overexpression
of human ABCG1 had no influence on plasma lipid or
lipoprotein levels (Kennedy et al., 2005; Burgess et al.,
2008), which are in stark contrast to loss of ABCA1.
Deeper insights about the coordinated participation of
ABCA1 and ABCG1 in regulation of cholesterol efflux
from macrophage have been obtained from animal
studies (Rosenson et al., 2012). The combined deficiency
of ABCA1 and ABCG1 resulted in markedly accelerated
atherosclerotic lesion development in mice compared
with the deficiency of either ABCA1 or ABCG1 (Yvan-
Charvet et al., 2007b; Out et al., 2008). ABCA1 and
ABCG1 double knockout macrophages showed appar-
ently defective cholesterol efflux to HDL and ApoA-1
compared with either ABCA1 or ABCG1 knockout

macrophages (Yvan-Charvet et al., 2007b; Out et al.,
2008).

ABCG1 protein expression is mediated at both the
transcriptional and posttranscriptional levels (Fig. 4).
At the transcriptional level, ABCG1 shares the common
regulatory pathways of gene expression with ABCA1.
The ABCG1 expression is upregulated by the nuclear
receptors LXR, RXR, and PPAR activated by their
agonists (oxysterols, retinoids, fatty acids, or synthetic
agonists) (Venkateswaran et al., 2000; Hardy et al.,
2017). Upregulation of ABCG1 expression mediated by
LXR agonists probably involves the presence ofmultiple
LXR responsive elements by the ABCG1 gene promoter
and likely only requires the isoform LXRa in human
macrophages (Sabol et al., 2005; Ishibashi et al., 2013).
Further study suggests that LXR recruitment at the
human ABCG1 locus is promoted by the G protein
pathway suppressor 2 (Jakobsson et al., 2009). ABCG1
in macrophages is also transcriptionally regulated by
the PPARg-LXR pathway (Li et al., 2004a). Retinoic
acid receptor/RXR heterodimer can bind LXR respon-
sive elements in ABCG1 promoters and transactivates
ABCG1 in macrophages as well (Ayaori et al., 2012).

Othermechanisms also contribute to the stability and
activity of human ABCG1. Compared with ABCA1,
there is limited evidence concerning the posttranscrip-
tional regulation of ABCG1 or protein-protein interac-
tions involving ABCG1. It was reported that calpain
facilitated ABCG1 degradation by slicing ABCG1 on the
cell surface (Adlakha et al., 2013). The proteasomal
inhibition prevented degradation of ABCG1 and led to
the accumulation of phosphorylated ABCG1 (Nagelin
et al., 2009). Degradation of ABCG1 is suggested to be
mediated via the ubiquitin-proteasome system-mediated
non-lysosomal pathways (Nakaya et al., 2017) by the
NEDD4-1 (neural precursor cell-expressed developmen-
tally downregulated gene 4) and E3 ubiquitin ligases
HUWE1 (HECT, UBA, and WWE domain containing 1
E3 ubiquitin protein ligase) (Aleidi et al., 2015). ABCG1
ubiquitination and its proteasomal degradation can
be inhibited by cholesterol through interplay with a cho-
lesterol recognition/interaction amino acid consensus
(CRAC) motif located in the ABCG1 transmembrane
domain (Hsieh et al., 2014; Sharpe et al., 2015).

ABCG1 protein expression was also recently investi-
gated in relation to regulation bymiRNAs. ThemiRNAs
implicated in ABCG1 protein regulation includemiRNA-
10b (Wang et al., 2012a), miRNA-23a-5p, miRNA-33,
miRNA-128-2, miRNA-146a-5p, and miRNA-378. The
inhibition of miRNA-23a-5p enhanced cholesterol efflux
and decreased foam cell formation through upregulating
ABCG1 expression levels. miRNA-10b repressed ABCA1
expression and downregulated cholesterol efflux from
murine or human macrophages (Wang et al., 2012a).
Long-term in vivo systemically delivered miRNA-23a-5p
antagomir significantly increased the ABCG1 expres-
sion in the aorta of ApoE2/2 mice (Yang et al., 2018a).
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miRNA-33 inhibited ABCG1 expression, thus resulting
in decreasing cholesterol efflux (Rayner et al., 2010).
Upregulation of miRNA-33a-5p stimulated by inflam-
matory cytokines (i.e., IL-6, TNF-a) inhibited the ABCG1-
mediated cholesterol efflux from THP-1 macrophages
(Mao et al., 2014). miRNA-128-2 inhibited the expres-
sion of ABCG1 directly. The administration of miRNA-
128-2 led to decrease in the mRNA and protein levels of
ABCG1 inmice (Adlakha et al., 2013). ElevatedmiRNA-
146a-5p antagonized the increase of ABCG1 in low-dose
LPS-tolerized cells (Li et al., 2015b). The decrease of
miRNA-378 level enhanced ABCG1-mediated macro-
phage cholesterol efflux to HDL by inducing ABCG1
protein expression (Wang et al., 2014a).
c. Scavenger Receptor Class B Type 1. SR-BI is an

82-kDa integral membrane protein, which (together
with lysosomal integral membrane protein-2) is a mem-
ber of the CD36 superfamily of scavenger receptor
proteins (Phillips, 2014). SR-BI has a hairpin-looped
structure with two short N- and C-terminal transmem-
brane domains, two cytoplasmic tails, and a large
extracellular domain (Williams et al., 1999; Meyer
et al., 2013). In 1996, it was identified that SR-BI is
an HDL receptor that regulates cholesterol uptake into
liver cells (Acton et al., 1996). This process selectively
transports the CE from mature HDL into cells with-
out endocytosis and degradation of the HDL particles

(Acton et al., 1996). This receptor is expressed primarily
in liver, where it acts in the RCT pathway (Zannis et al.,
2006). In addition to promotion of delivery of HDL-C to
cells, SR-BI increases the efflux of cellular cholesterol to
HDL (Ji et al., 1997; Jian et al., 1998). When incubated
with synthetic cholesterol-free HDL, SR-BI-transfected
Chinese hamster ovary cells increased initial rates of
efflux by approximately threefold compared with con-
trol cells, suggesting that SR-BI expression enhanced
net cholesterol efflux regulated by HDL (Ji et al., 1997).
However, compared with ABCA1 and ABCG1, the
contribution of SR-BI to efflux from macrophages is
small (Adorni et al., 2007). The performed studies
indicated that the SR-BI is a multifunctional receptor
that regulates bidirectional flux of lipids, which might
be dependent on the content of cholesterol in cells
(Rosenson et al., 2012).

In addition to regulating lipid metabolism, SR-BI can
also mediate inflammatory responses. SR-BI interac-
tion with HDL reduced the inflammatory response to
LPS in human macrophages by markedly reducing NF-
kB activation (Song et al., 2015). Furthermore, recent
studies have shown that the interaction of macrophage
SR-BI with apoptotic cells activated phosphoinositide
3-kinase (PI3K)/Akt signaling and induced the expres-
sion of anti-inflammatory cytokines (Tao et al., 2015a).
HDL activated PI3K/Akt signaling in macrophages,

Fig. 4. Regulation of ABCG1 expression at both transcriptional and post-transcriptional levels. At the transcriptional level, ABCG1 shares common
gene expression regulatory pathways with ABCA1. The ABCG1 expression is upregulated by the nuclear receptors LXR, RXR, and PPAR activated by
their agonists (oxysterols, retinoids, fatty acids, or diverse synthetic agonists). At the post-transcriptional level, the protein stability of ABCA1 is
governed by the proteasomal and calpain systems. Also, miRNA-10b, miRNA-23a-5p, miRNA-33, miRNA-128-2, miRNA-146a-5p, and miRNA-378 are
involved in the regulation of ABCG1 protein (green arrows: upregulation; red lines: downregulation).
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which is mediated by SR-BI and involves interaction
with its adaptor protein PDZK1 (PDZdomain-containing
1) and activation of sphingosine 1-phosphate receptor 1
signaling (Al-Jarallah et al., 2014). SR-BI interaction
with HDL also prevents endothelial cell inflammation
reaction by regulating eNOS activation and expression
of the antioxidant enzyme 3-beta-hydroxysteroid-delta
24-reductase (Yuhanna et al., 2001; McGrath et al.,
2009). SR-BI-mediated production of NO and 3-beta-
hydroxysteroid-delta 24-reductase lead to alleviation of
TNF-a-stimulated NF-kB activation, resulting in the
reduced expression of inflammatorymonocyte adherence
proteins and chemokines in endothelial cells, thereby
reducing monocyte recruitment into the intima (Bess
et al., 2011). Additionally, a major portion of the endo-
thelial cell-mediated transcytosis of HDL from the apical
to the basolateral side is mediated by SR-BI, suggesting
that SR-BI regulated HDL transport to the subendothe-
lium, increasing cholesterol efflux from macrophages
(Rohrer et al., 2009; Vaisman et al., 2015).
In vivo studies showed that SR-BI deficiency in the

bone marrow led to an accelerated atherosclerosis
despite increased plasma HDL-C level, which indicated
that it played a critical role in the HDLmetabolism and
exhibited atheroprotective effects in mice (Covey et al.,
2003; Rigotti et al., 2003; Van Eck et al., 2004; Brundert
et al., 2006). SR-BI overexpression in bone marrow-
derived cells protected against atherosclerosis in LDLR2/2

mice, as well as in ApoE2/2mice (Covey et al., 2003; Zhang
et al., 2003a). However, the physiologic effect of SR-BI-
mediated arterial macrophage-specific cholesterol efflux
in vivo is not clear (Brundert et al., 2006; Burgess et al.,
2008;Yvan-Charvet et al., 2008). Somestudies showed that
a selective uptake of HDL-CE and the cholesterol efflux
from MPMs are independent of SR-BI (Brundert et al.,
2006). SR-BI in primarymacrophages, although increasing
cholesterol efflux in vitro, did not contribute tomacrophage
RCT in vivo (Wang et al., 2007a). Hepatic SR-BImodulates
the changes in the composition and structure of HDL (El
Bouhassani et al., 2011). It was indicated that SR-BI
polymorphisms contributed to the functional potential of
the cholesterol disposition pathway (Vergeer et al., 2011),
suggesting that this receptor is involved in RCT and
atherosclerosis. Human studies show that carriers of the
mutation of SR-BI inhumans (P297Smutation) hadhigher
HDL-C levels, but decreased the potential for cholesterol
efflux from macrophages without aggravation of athero-
sclerosis (Alam et al., 2001). In addition, a recent study has
shown that endothelial SR-BI promoted LDL transcytosis
via dedicator of cytokinesis (DOCK4) and ensuing circulat-
ing LDL entry into and retention in the artery wall to
instigate atherosclerosis (Huang et al., 2019). The differ-
ential functions of SR-BI in macrophage and endothelial
cells suggest the necessity to target SR-BI in a specific cell
type to achieve atheroprotection.
SR-BI expression is mediated by both transcrip-

tional and posttranscriptional mechanisms (Fig. 5).

Many molecules have been proposed to be involved in
the regulation of SR-BI expression at the transcrip-
tional level, including nuclear transcription factors
[i.e., PPAR (Straus and Glass, 2007), LXR (Malerød
et al., 2002), RXR, farnesoid X receptor (Malerød et al.,
2005), PXR (Sporstol et al., 2005), estrogen receptors
(Stangl et al., 2002), sterol regulatory element-binding
proteins (SREBPs) (Lopez and McLean, 1999)] and
some endogenous factors [e.g., IGF-1 (Cao et al., 2004),
p38-mitogen-activated protein kinase (MAPK) cascade
(Murao et al., 2008; Leiva et al., 2011]. Recent progress
toward understanding the mechanisms of regulating
the SR-BI expression at the transcriptional level was
summarized in several reviews (Leiva et al., 2011; Shen
et al., 2018a,b).

SR-BI can also be regulated posttranscriptionally, for
example, by hormones such as estrogens (Zhang et al.,
2007), triiodothyronine and thyromimetics (Johansson
et al., 2005; Tancevski et al., 2010), insulin (Shetty
et al., 2006), as well as glucagon (Nakamura et al.,
2005). One important component of the posttranscrip-
tional regulation of SR-BI is the scaffolding protein
PDZK1, which regulates the SR-BI protein stability
(Nakamura et al., 2005). The exact mechanisms by
which the PDZK1 regulates SR-BImembrane expression
remain unknown (Leiva et al., 2011). PDZK1/Na1/H1

exchanger regulatory factor 3 (NHERF3), NHERF1,
and NHERF2 were shown to regulate hepatic SR-BI
stability (Kocher et al., 2003; Hu et al., 2013b). The
mechanisms involved in regulation of the SR-BI expres-
sion at the posttranscriptional level were also summa-
rized in recently published works (Leiva et al., 2011;
Shen et al., 2018a,b).

Recently, ncRNAs were also investigated in the
regulation of SR-BI expression. The miRNAs, which
regulate the SB-BI expression, include miRNA-96,
miRNA-125a, miRNA-185, miRNA-455, and miRNA-
223 (Wang et al., 2013). It was shown that miRNA-96,
miRNA-185, andmiRNA-223 directly bound the 39-UTR
of SR-BI mRNA to repress the level of SR-BI expression
and the uptake of HDL. Furthermore, the decrease of
miRNA-185 and miRNA-96 is related to the increase of
SR-BI in the livers of ApoE2/2 mice with a high-fat diet
(HFD) (Wang et al., 2013). Another study reported that
miRNA-125a and miRNA-455 negatively regulated the
SR-BI expression by binding to 39-UTR of SR-BI mRNA
(Hu et al., 2012). Recent work also demonstrated that
obesity induced miRNA-24 and repressed the SR-BI
expression, further influencing HDL uptake, lipid me-
tabolism, and steroid hormone synthesis (Wang et al.,
2018d). However, the effect of miRNAs on the SR-BI
expression and cholesterol efflux inmacrophage remains
to be further studied.

3. Acceptors that Mediate Macrophage Cholesterol
Efflux.

a. Apolipoprotein A-1. ApoA-1 is a main protein
constituent of HDL (;70% of theHDLprotein) (Phillips,
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2013). Human mature ApoA-1 (molecular weight: 28
kDa) comprises a total of 243 amino acid residues. The
C-terminal domain of human ApoA-1 contains 11- and
22-amino acid tandem repeats (Li et al., 1988). Each
repeat has an amphipathic a-helix, which is crucial for
its efficient interaction with lipids in an exchangeable
manner (Segrest et al., 1992). Themotifs of amphipathic
a-helices in ApoA-1 are evolutionally preserved
(Bashtovyy et al., 2011). The C-terminal domain takes
responsibility for the almost all ApoA-1 lipid-solubilizing
property (Tanaka et al., 2008). Furthermore, the
C-terminal domain performs as an intact protein, which
is able to solubilize phospholipids and facilitate HDL
disk formation (Lyssenko et al., 2012). The hydrophobic
character of the C-terminal domain and the stability of
the N-terminal helix bundle are the major factors for
lipid-solubilizing and lipid-binding properties of ApoA-1
(Chistiakov et al., 2016b).
ApoA-1 regulates RCT through mediating cholesterol

efflux from foam cells by interaction with the trans-
porter ABCA1 (Mukhamedova et al., 2008). Lipidation
of ApoA-1 by cooperation with ABCA1 generates discoi-
dal nascent HDL particles (Wang and Smith, 2014).

Since ApoA-1 is directly involved in lipid metabolism, it
is considered as one of the key molecular players in the
pathogenesis of atherosclerosis (Chistiakov et al.,
2016b). In plasma, ApoA-1 is also involved in the
esterification of FC in serum lipoproteins by stimula-
tion of lecithin cholesterol acyltransferase (LCAT), an
enzyme secreted by the liver (Zannis et al., 2006). The
effect of ApoA-1 in the protection against atherosclero-
sis has been examined in some in vivo studies. In
LDLR2/2 mice, ApoA-1 deficiency resulted in aggravat-
ing atherosclerosis (Moore et al., 2003). On the contrary,
human ApoA-1 overexpression and ApoA-1 infusions in
mice mitigated atherosclerotic lesion formation in ani-
mal models of atherosclerosis (Duverger et al., 1996).
Furthermore, mutations of ApoA-1 enhance CVD risk in
humans.Most of the carriers ofmutations in the ApoA-1
gene have a lower level of HDL-C and a higher risk of
CVD compared with those who do not carry the
mutation (Hovingh et al., 2004). Thus, ApoA-1 is widely
believed as a promising target for treatment of CVD
(Stoekenbroek et al., 2015). There have been some
therapies to mimic ApoA-1, including full-length ApoA-1,
mutated variants ofApoA-1, andApoA-1mimetic peptides,

Fig. 5. Regulation of SR-BI expression at both transcriptional and post-transcriptional levels. At the transcriptional level, SR-BI protein expression is
regulated by a variety of molecules, including nuclear transcription factors [such as the heterodimeric nuclear receptors PPAR, LXR, RXR, FXR
(farnesoid X receptor), and PXR], estrogen receptors, sterol regulatory element-binding proteins (SREBPs), and other endogenous signaling factors
(e.g., IGF-1 and p38-MAPK cascade). At the post-transcriptional level, SR-BI can be regulated by estrogens insulin and glucagon as well as other
hormones [e.g., triiodothyronin (T3) and thyromimetics]. In addition, miRNA-96, miRNA-125a, miRNA-185, miRNA-455, and miRNA-223 are involved
in SR-BI protein regulation. (green arrows: upregulation; red lines: downregulation).
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that were well described in several reviews (Millar and
Cuchel, 2015; Stoekenbroek et al., 2015). The ApoA-1-
mimetic peptides (e.g., 4F, 6F, FX-5A, ATI-5261, and
ETC-642) (Garber et al., 1992; Wool et al., 2008;
Stoekenbroek et al., 2015) and modified ApoA-1
(Graversen et al., 2008) strongly induced the macro-
phage cholesterol efflux and exhibited antiatherogenic
properties. In the “ApoA-1 Milano Trial,” plaque thick-
ness was significantly decreased in patients treated
with ApoA-1Milano compared with the control group
(Nissen et al., 2003; Nicholls et al., 2006). However,
additional well-designed clinical trials are required to
address the therapeutic role of ApoA-1 mimetics on
CVD (Stoekenbroek et al., 2015). In addition, it remains
a challenge whether increase of the ApoA-1 production
or infusion can be performed effectively and safely.
The studies of regulation of ApoA-1 showed that

PPARa was able to regulate ApoA-1 transcription.
Activators of PPARa (e.g., fibrate) increased HDL-C
levels by promoting ApoA-1 transcription in preclinical
studies (Singh et al., 2005; Fruchart, 2013). However,
treatment with a PPARa agonist LY518674 did not
remarkably alter HDL-C levels in humans (Nissen
et al., 2007). The mechanisms of the regulation of
ApoA-1 expression remain to be further studied.
b. High-density Lipoprotein. In 1929, HDL was

firstly discovered as a protein-rich, lipid-poor complex,
which was isolated from equine serum (Kingwell et al.,
2014). Later in the 1950s, HDL was also extracted from
human serum as a chemical entity by ultracentrifuga-
tion (Barr et al., 1951). Among lipoprotein particles,
HDL are the smaller (7–12 nm in diameter) but denser
(1.063–1.21 g/ml) particle due to the higher protein ratio
(50% of the content is protein) (Phillips, 2013). HDL is
mainly produced by liver and intestine (Nofer et al.,
2002). Nascent HDL (discoidal HDL) is formed through
lipidation of ApoA-1. Discoidal HDL particles were shown
to contain two ApoA-1 molecules and 140 1-palmitoyl-2-
oleoyl-sn-glycero-3-phosphocholine molecules (Davidson
and Thompson, 2007). Duringmore ApoA-1 incorporation
to theHDLparticles, conformational changes increase the
a-helix content by 40% (Koppaka et al., 1999). In human
blood, the circulating HDL is predominantly presented in
the form ofHDL spheres. The spherical HDL particles are
formed from free cholesterol-containing discoidal HDL
particles by converting FC into CE, which can then be
internalized into the core of the HDL particles (Ferretti
et al., 2006; Kuai et al., 2016). In spherical HDL, ApoA-1
plays the major role in stabilizing HDL structure and
shape (Hewing et al., 2014). Spherical HDL can further
internalize cholesterol from cells (which is mediated by
ABCG1 and SR-BI) to form more mature and larger
spherical HDL (Kennedy et al., 2005). Mature HDL trans-
ports the lipids to liver via an SR-BI-mediated endocytosis
to be further metabolized (Kingwell et al., 2014).
Today, it is verified that HDL plays an important role

in the lipid [cholesterol and triglycerides (TG)] transport

and metabolism (Wang and Briggs, 2004). HDL par-
ticles induce the efflux of excessive lipids from cells,
thus being involved in RCT from macrophages (Lund-
Katz and Phillips, 2010). In addition to its role in the
HDL-mediated macrophage cholesterol efflux, it also
has anti-inflammatory, antiapoptotic, antioxidative,
and vasodilatory properties, which are also protective
in the cardiovascular system (Besler et al., 2012).
Circulating HDL also delivers signaling lipids, vita-
mins, endogenous proteins, hormones, and miRNA
to different organs (Kuai et al., 2016), indicating that
HDL plays multiple roles in complicated intercellular
communication (Vickers et al., 2011). Treatment with
infusions of homologous HDL-VHDL significantly re-
duced the aortic surface area covered by lipid-rich
lesions compared with controls (Stoekenbroek et al.,
2015), and decreased the extent of preexisting lesions in
a rabbit model (Badimon et al., 1990). However, recent
clinical studies show that inhibitors of cholesteryl ester
transfer protein (CETP) upregulated the HDL-C levels
in subjects with normal or low HDL-C. Nevertheless,
reduced risk of atherosclerotic diseases was not demon-
strated (Schwartz et al., 2009, 2012).

Some reconstituted HDL (rHDL)-based medicines
have been propelled to different stages of clinical trials
(Krause and Remaley, 2013). Some rHDL products that
have been evaluated in clinical trials include CSL-111,
CSL-112, ETC-216, ETC-642, SRC-rHDL, and CER-001
(Kuai et al., 2016). The results of one clinical trial
showed that there was no significant difference in the
atheroma volume and coronary score between patients
treated with rHDL CER-001 and those treated with
placebo (Tardif et al., 2014). Some other studies suggest
that against a background of statin treatment, there
may be no clinical benefit of raising HDL-C (Schwartz
et al., 2012; Niesor et al., 2015). On the contrary,
preliminary clinical results at the 2013 PACE Snapshot
session (ESC, Amsterdam) display that CER-001 in-
creased RCT and might decrease the aortic atheroma
volume (Goffinet et al., 2012). A clinical report also
showed thatmost patients with elevated cardiovascular
risk were treated with a statin and large meta-analyses
suggest low HDL-C still represents a cardiovascular
risk factor on a background of statin treatment (Baigent
etal., 2005). Overall, further clinical studies are required
to confirm the anti-atherosclerotic effect of rHDL.

c. Apolipoprotein E. ApoE is a soluble 34-kDa
glycoprotein, coded by three alleles (Mahley, 1988).
ApoE is essential for the lipid metabolism (production,
conversion, and clearance of lipoproteins) in all tissues
and organs (Liehn et al., 2018) and is recognized for its
ability to suppress atherosclerosis (Raffai, 2012). Al-
though ApoE is synthesizedmainly by liver (Kraft et al.,
1989), many other cells or tissues are also able to
synthesize ApoE, such as macrophages, adipocytes,
smooth muscle cells, brain, and kidney (Driscoll and
Getz, 1984; Zechner et al., 1991). The expression of
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ApoE in the macrophages has been believed to prevent
atherosclerosis by inducing cholesterol efflux from foam
cells (Fazio et al., 1997; Curtiss and Boisvert, 2000).
ApoE has been shown to mediate uptake of chylomi-

crons, very LDL (VLDL) remnants, and ApoE-containing
HDL (Liehn et al., 2018), as well as to regulate myelopoi-
esis (Murphy et al., 2011). ApoE is also known to regulate
cellular signaling through the interaction with its recep-
tors and heparin sulfate proteoglycans and to influence
several biologic effects, including macrophage plasticity,
smooth muscle cell proliferation and endothelial cell
activation (Curtiss andBoisvert, 2000). ApoE suppresses
NF-kB-driven inflammationand atherosclerosis by influ-
encing the levels of miRNA-146a in monocytes and
macrophages in hyperlipidemic mice (Li et al., 2015a).
ApoE inhibited the VSMC proliferation and aortic
stiffening by regulating p27 through reducing the levels
of miRNA221/222 and increasing the levels of miRNA-
145, respectively (Kothapalli et al., 2013). In addition,
ApoE stimulated the eNOS activation and exhibited
anti-inflammatory property, thus preventing neointima
formation by binding to ApoE receptor 2 (ApoER2)
(Ulrich et al., 2014). Additionally, there is a tight link
between ApoE and neurodegenerative diseases. It was
reported that the ApoE4 polymorphism is one main risk
factor for the development of Alzheimer disease (AD)
(Giau et al., 2015). In animal studies, ApoE2/2 mice
developed atherosclerotic lesions spontaneously, simi-
lar to those observed in humans, and these lesions were
exacerbatedwhenmice were fed with aHFD. Therefore,
the ApoE2/2 mice became one of the main animal
models of atherosclerotic plaque initiation and growth
in cardiovascular research (Daugherty, 2002). ApoE
prevents the formation of foam cells through mediating
cholesterol efflux via ABCA1/ABCG1 pathway (Yvan-
Charvet et al., 2010b).
ApoE is mediated at both the transcriptional and

posttranscriptional levels. A recent review (Kockx et al.,
2018) summarized the insights regarding the regula-
tion of ApoE production and secretion by monocytes/
macrophages, adipocytes, hepatocytes, and the central
nervous system. The regulation of ApoE expression is
remarkably cell, differentiation, and tissue specific. At
the transcriptional level, cholesterol loading in macro-
phages increased transcription and secretion of ApoE
and thus promoted macrophage cholesterol efflux
in vitro (Kockx et al., 2012). ApoE can also be regulated
by LXR at the transcriptional level (Kockx et al., 2018).
At the posttranscriptional regulation, synthesized
ApoE in the ER is moved via the Golgi and trans-Golgi
network, during which ApoE is further glycosylated and
sialylated (Kockx et al., 2018). Accumulation of exces-
sive FC in the ER prevented the movement of ApoE
from the ER to Golgi (Kockx et al., 2012). In macro-
phages, large ratio of ApoE is degraded after leaving
the Golgi. Stimulation by ApoA-1 or HDL can prevent
ApoE degradation and increases its secretion (Dory,

1991; Kockx et al., 2004). Adipocytes are induced to
express and secrete substantial amounts of ApoE
during differentiation (Zechner et al., 1991). PKA and
dynamin was reported to mediate ApoE secretion in
HepG2 cells (Kockx et al., 2009). The LXR-ABCA1
pathway is a common ApoE-activating pathway in
astrocytes (Kockx et al., 2018). ApoE secretion by
neurons in the central nervous system depends on
calcium and microtubule (Dekroon and Armati, 2002).
The mechanisms regulating the ApoE expression and
secretion in different cell types and tissues have not
been extensively studied yet.

III. Models for Studying Foam Cell Formation

Foam cell formation is a hallmark of atherosclerosis.
Thus, numerous studies have used a variety of models
to study the process of foam cell formation and to screen
promising bioactive compounds targeting foam cell
formation. In this section, we will discuss the models
widely used for in vitro, ex vivo, and in vivo studies on
both cholesterol uptake and efflux.

A. Cellular Models

So far, prevention of foam cell formation has mostly
been focused on monocytes and macrophages. It was
also demonstrated that different cell types present in
the artery wall, such as endothelial cells, VSMCs
(Maguire et al., 2019), as well as stem cells can exhibit
foam cell-like characters and behavior in the growing
neointima of atherosclerosis in both human beings
(Daub et al., 2006) and mice (Feng et al., 2012). Thus,
the cellular models for study on inhibition of foam cell
formation include monocytes, macrophages (Hayden
et al., 2002), endothelial cells (Constantinescu et al.,
2000), VSMCs (Zhang et al., 2016b), and stem/progenitor
cells (Zhang et al., 2018). At present, mouse macrophage
cell types used for study on inhibition of foam cell
formation include J774A.1, RAW264.7 (Li et al., 2013),
P388D1 macrophages (Koren et al., 1990), primary
MPMs (Sengupta et al., 2013), and bone marrow-
derived macrophages (BMDMs). One study has sug-
gested that different types of mousemacrophagesmight
not have significant difference on the cholesterol efflux
assays because RAW264.7 and J774A.1 macrophages
have highly correlated assay values (Li et al., 2013).
Human macrophage cell types used in foam cell forma-
tion studies include phorbol 12-myristate 13-acetate
(PMA)-stimulated THP-1-derived macrophages, HL-60
cell-derived macrophages and primary human monocyte-
derived macrophages (HMDMs) (Kosaka et al., 2001).

1. Models for Studying Cholesterol Uptake. Lipid
uptake can be assessed by neutral lipid-targeting
lysochrome Oil red O staining, Nile red staining, 1,19-
dioctadecyl-3,3,3939-tetra-methylindocyanide percho-
lorate (DiI)-labeled oxLDL (DiI-oxLDL), DiI-LDL,
and DiI-acLDL (Xu et al., 2010), NBD-cholesterol, as
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well as radiolabeled LDL or derived LDL (e.g.,
125I-LDL, 131I-LDL) (Suits et al., 1989).
For Oil red O staining, macrophages are incubated

with oxLDL with or without ACAT1 inhibitor in the
presence or absence of tested natural products. The cells
are then fixed with 4% formaldehyde and stained with
Oil red O solution to identify lipid droplets containing
CE to assess the amount of lipid inside the cell (lipid
uptake) (Kosaka et al., 2001). Lipid accumulation in
cells can be assessed by amicroscope and separated into
different grades according to the intracellular lipid
droplet-occupied area. The percentage of foam cells is
calculated by counting the total cell and foam cell
numbers (Kosaka et al., 2001; Das et al., 2013). Oil red
O-stained lipid droplets can also be assessed spectro-
photometrically at 518 nm after lysis of the cells (Guo
et al., 2006). Nile red, 9-diethylamino-5H-benzo[alpha]
phenoxazine-5-one, is also an important staining
method for the determination of intracellular lipid
droplets by using fluorescent microscopy and flow
cytofluorometry (Greenspan et al., 1985). The increase
in fluorescence intensity can be quantitatively deter-
mined by the interactive laser cytometer (Koren et al.,
1990). Its staining process and application are almost
the same with Oil red O for staining lipids. In addition,
fluorescent NBD-cholesterol [22-(N-(7-nitrobenz-2-oxa-
1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3b-Ol)] is
also used to assess cholesterol uptake (Frolov et al.,
2000; Sengupta et al., 2013). Cells are incubated with
NBD-cholesterol and then lysed by adding methanol.
Supernatant of cells lysate is used to measure fluores-
cence intensity by using fluorescence plate reader at
emission spectra of 535 nm upon excitation at 475 nm
(Frolov et al., 2000; Sengupta et al., 2013).
Staining with Oil Red O requires fixation of cells and

staining in the presence of organic solvents (e.g.,
isopropanol) and is, therefore, limited to the analysis
of dead cells (Majka et al., 2014). Water soluble Nile red
can be used to stain both live and dead cells. However,
its emission maximum at 528 nm may overlap with
green (FITC, GFP) and yellow-orange fluorophores in
flow cytometry (Majka et al., 2014). In recent years,
a big progress has beenmade to develop newLD-specific
probes [e.g., LipidTOX stains (Majka et al., 2014)],
which are discussed in a recent review (Fam et al.,
2018).
For cellular uptake of DiI-oxLDL, DiI-LDL, or DiI-

acLDL, cells are incubated with them and then lysed
(Teupser et al., 1996; Xu et al., 2010). Fluorescent
intensity of the cell lysates is detected by using a micro-
titer plate reader with excitation-emission set at 520
and 580 nm, respectively (Teupser et al., 1996). DiI-
oxLDL, DiI-LDL, or DiI-acLDL uptake in macrophages
can also be evaluated by confocal microscopy and flow
cytometry as described previously (Xu et al., 2010). For
cellular uptake of radiolabeled LDL or derived LDL,
cells are incubated with modified lipoproteins and then

lysed inNaOH (Selmer et al., 1997). Internalized LDL is
determined by measuring the NaOH solution in the
gamma-counter (Selmer et al., 1997). In addition, foam
cell formation can be indirectly evaluated by measuring
the total cholesterol (TC) via using cholesterol/CE
quantification kit (Das et al., 2013).

2. Models for Studying Cholesterol Efflux. One
cause for foam cell formation is the inability of cells
to export cholesterol to a sufficient extent (Hansson,
2005; Hansson et al., 2006), which can be assessed by
quantitating the rate of cholesterol efflux from the cells.
Cholesterol efflux assay is usually used to assess the
influence of natural products on plasma acceptor-
induced cholesterol efflux from cells (Low et al., 2012).
Dr. Rothblat’s group (Rothblat et al., 1999) pioneered
methodologies allowing the assessment of the capacity
of human serum- or HDL-induced cholesterol efflux.
In general, first of all, cells are loadedwith labeled lipids
to form foam cells and then incubated in serum-free
medium to balance labeled cholesterol in cholesterol
pools in cells (de la Llera-Moya et al., 2010; Khera et al.,
2011), which can be combined with treatment or stim-
ulation of tested natural products. Then the cells are
incubated with acceptors to induce cholesterol efflux.
The efflux of labeled lipids from the cells can be
quantified (Low et al., 2012). In addition, some studies
used ACAT inhibitor to prevent re-esterification of
FC to CE (de la Llera-Moya et al., 2010; Khera et al.,
2011) when loading lipids to cells or other steps (e.g.,
equilibration).

a. Loading cells with labeled lipids to form foam cells.
The conversion of macrophages to foam cells by the
accumulation of modified LDL is a critical step in
atherosclerosis development. One of the widely used
techniques to form the foam cell model is by incubation
macrophages with radioactive 3H-cholesterol-labeled
modified LDL, especially acLDL or oxLDL (Asztalos
et al., 2005; Singh et al., 2009). This method mimics
the critical pathologic step (uptake of modified LDL by
macrophages) in the atherosclerosis development. How-
ever, the methods of labeling acLDL with radioactive
or fluorescent tags have some flaws (Sengupta et al.,
2013). For example, LDL is inherently unstable and
with limited shelf life, and is easy to be oxidized during
the long-lasting isolation processes (Parthasarathy et al.,
1999). Isolation and acetylation of LDL can also differ
qualitatively between different preparations, which
might offer inconsistent information regarding foam cell
formation (Sengupta et al., 2013).

In recent time, a novel approach to load lipids to form
foam cells has been adopted for high-throughput mac-
rophage cholesterol efflux assay (Khera et al., 2011; Li
et al., 2013). Radio-labeled cholesterol (3H-cholesterol,
and 14C-cholesterol) to load macrophages was used to
study cholesterol efflux in the presence of serum from
human subjects (Khera et al., 2011; Li et al., 2013). For
example, J774A.1 cells were plated and labeled with
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2mCi of 3H-cholesterol permilliliter (Khera et al., 2011).
In fact, the basic challenge to incorporate cholesterol in
cells is its high hydrophobicity (Sengupta et al., 2013). A
recent study reported a biologically relevant detergent
compound, lysophosphatidylcholine, form mixed micelles
with cholesterol or CE, incubation with which could
efficiently generate macrophage foam cells (Sengupta
et al., 2013). Further results indicated that such micelles
were quite stable at 4°C and maintained the solubilized
cholesterol at 4°C for at least 1 month (Sengupta et al.,
2013), suggesting this technique could be less time-
consuming and thus highly reproducible. It is worth
noting that there are some studies using cholesterol-
methyl-b-cyclodextrin, which significantly increases cho-
lesterol solubility in water, to load cells with cholesterol to
successfully form foam cells (Wang et al., 2018a,b,d). In
this method, labeled cholesterol is added to serum-
containing media. It is supposed that the labeled choles-
terol is incorporated into lipoproteins in serum, which are
further taken up by cells. So, it is necessary to allow
sufficient time (24–48 hours) for uptake of lipoproteins
(Low et al., 2012).
In recent years, fluorescently labeled cholesterol

types (e.g., NBD-cholesterol, the fluorophore Pennsyl-
vania green/N-alkyl-3b-cholesterylamine-derived mo-
lecular probe [F-Ch), the dipyrromethene boron
difluoride (BODIPY)-cholesterol] have become an im-
portant tool to study cholesterol metabolism including
cholesterol efflux (Frolov et al., 2000; Sankaranarayanan
et al., 2011; Zhang et al., 2011), because they closely
mimic the properties of cholesterol regarding metabo-
lism and intracellular trafficking (Atshaves et al., 2000).
In fact, other studies indicated that NBD-cholesterol
has a higher aqueous solubility compared with choles-
terol, and might not really represent the uptake and
efflux of cholesterol (Atshaves et al., 2000). However,
a report showed that the influence of higher solubility of
NBD-cholesterol on cholesterol uptake and efflux was
ruled out by using 3H-cholesterol, a common used
cholesterol analog (Sengupta et al., 2013). On the
contrary, it was reported that the functional property
of fluorescent sterol analogs was not closely similar with
that of cholesterol (Frolov et al., 2000). F-Ch is also
a recently reported fluorescent mimic of cholesterol,
which is structurally similar to other cholesterylamine
conjugates (Zhang et al., 2011). It was demonstrated
that cholesterol efflux of this fluorescent cholesterol
mimic is similar compared with 3H-cholesterol (Zhang
et al., 2011). However, the extent of export quantified
using F-Ch was somewhat smaller than that of
3H-cholesterol, which may be due to the molecular
weight of F-Ch, which is over twice that of cholesterol,
and it accumulates in early endosomes that might affect
its rate of export (Zhang et al., 2011). It was demon-
strated that BODIPY-cholesterol efflux is significantly
associated with 3H-cholesterol efflux when apoB-depleted
sera and preb1-HDL were used but not total HDL-C in

J774A.1 macrophages, suggesting that the efflux of
BODIPY-cholesterol from cells was regulated primar-
ily by ABCA1 (Sankaranarayanan et al., 2011). It is
important to recognize that fluorescent cholesterol
cannot completely mimic the behavior of cholesterol,
thus one should choose suitable labeled cholesterol
according to scientific aims.

b. Inducing cholesterol efflux to extracellular accept-
ors and quantification. After being loaded with lipids
to form foam cells, cells are incubated in serum-free
medium to balance labeled cholesterol in cholesterol
pools and treated or stimulated by tested natural
products. After stimulation of tested natural products,
macrophages are exposed to cholesterol acceptors for
several hours (2–8 hours), allowing resultant choles-
terol efflux from the foam cells (Rothblat et al., 1999). In
general, the time of incubation with acceptors should
not be very long. Long incubation time (such as 24hours)
would reflect a state of equilibrium and therefore does
not reflect the rate of cholesterol efflux (Low et al., 2012).
Radioactive and fluorescent cholesterol are quantified
by liquid scintillation counting (Khera et al., 2011) and
fluorescence, respectively (Atshaves et al., 2000).

Numerous studies have showed that various choles-
terol acceptors, ranging from cyclodextrins to serum,
stimulate cholesterol efflux frommacrophages (Rothblat
et al., 1999). The common cholesterol acceptors include
cyclodextrin (;200 mg/ml), whole serum (;1% to 2%),
plasma (;1% to 2%), apoB-depleted serum (;1% to 2%),
HDL (;20 mg/ml), and ApoA1 (;10 mg/ml) (Khera et al.,
2011; Li et al., 2013; Wang et al., 2018a). ApoB-depleted
serum, also called HDL fraction, can be obtained after
removal of ApoB particles using polyethylene glycol
(molecular weight 8000) (de la Llera-Moya et al., 2010).
Itwas reported that thismethod yielded recovery ofmore
than 97% of ApoA1-containing HDL particles and less
than 2% of ApoB-containing LDL and VLDL particles
(Khera et al., 2011).

For the quantification of exported radioactive choles-
terol, the relative cholesterol efflux ratio can be calcu-
lated as the radiolabeling counts in the medium divided
by total radiolabeling counts (medium and cells) in
samples (Li et al., 2013). To validate the methods to
measure cholesterol efflux, some additional studies are
needed to be considered, such as relationship between
cholesterol efflux capacity duplicates and stability of
cholesterol efflux assay over time (Khera et al., 2011).
Some studies used a pooled serum control to correct for
plate to plate and day to day variations by normalizing
the data to this pooled value in subsequent analyses
(Khera et al., 2011; Li et al., 2013).

For NBD-cholesterol efflux measurement, confocal
microscopy can be used to analyze HDL-mediated NBD-
cholesterol efflux in living cells as previously described
(Atshaves et al., 2000). Briefly, after loading, the cells
were placed in serum-free medium with tested natural
products and thenHDLwas added tomediate cholesterol
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efflux. Amedial section passing through cellswas chosen,
and the fluorescence intensity of NBD-cholesterol in the
total area of each cell was assessed over time and used to
calculate NBD-cholesterol efflux from the cells (Atshaves
et al., 2000). Since only little (;8%) NBD-cholesterol was
esterified at 24 hours (Frolov et al., 2000), the ACAT
inhibitor was not applied in the fluorescence experi-
ments. The cholesterol efflux assay has several limita-
tions (Khera and Rader, 2013). The cell-based assays
require numerous efforts to standardize and rarely enter
clinical studies. In addition, this method evaluates only
one step of the RCT pathway.

B. Animal Models for Studying Foam Cell Formation

The knowledge on development of atherosclerosis has
been greatly deepened by studies in various animal
models, including rodents, rabbits, pigs, and nonhuman
primates (Tamminen et al., 1999). Mouse and rabbit
models have been most broadly used (Emini Veseli
et al., 2017). During the past decades, knowledge about
the molecular mechanisms of development of athero-
genesis has been largely improved by studies performed
on transgenic and gene-targeted mice (Smithies and
Maeda, 1995), including ApoE2/2, LDLR2/2, ApoE/
LDLR double-knockout, ApoE*3-Leiden, pro-protein
convertase subtilisin/kexin type 9 (PCSK9)-adeno asso-
ciated virus, and ApoE2/2 fibrillin-1 mutant
(ApoE2/2Fbn1C1039G1/2) mice (Emini Veseli et al.,
2017; Maguire et al., 2019). These animal models of
atherosclerosis were well detailed by several recent
reviews (Getz and Reardon, 2012; Emini Veseli et al.,
2017; Lee et al., 2017). It is worth noting that a reliable
mouse model for lesion rupture has been developed,
ApoE2/2Fbn1C1039G1/2 mice (Emini Veseli et al., 2017).
All these mouse models, as well as rabbit models,
provide a good platform to evaluate the effect of natural
products on foam cell formation in vivo and to search for
promising drug candidates for treatment of atheroscle-
rosis (Getz and Reardon, 2012; Hilgendorf and Swirski,
2012). However, it should be pointed out that studies in
mice have limited suitability because of significant
species differences between mice and humans (Lusis,
2000). In addition, these animal models require a ge-
netic variation of the cholesterol processing capacity,
which is coupled with extreme changes in diet (e.g.,
Western-type diet) (Meir and Leitersdorf, 2004; Getz
and Reardon, 2012). Moreover, different monocyte bi-
ology between humans and mice renders the study on
the questions regarding macrophage foam cells to be
more difficult (Hilgendorf and Swirski, 2012;
Angelovich et al., 2017).
Some studies established the in vivo assay of macro-

phage RCT, which traced movement of radiolabeled
cholesterol or acLDL that originated from peripheral
cholesterol-enriched macrophage cells into the blood
stream and subsequent fecal elimination (Zhang et al.,
2003b; Rothblat and Phillips, 2010; Weibel et al., 2011).

In this method, after treatment with tested natural
products, recipient mice were injected with 3H-choles-
terol-loaded J774A.1 macrophages intraperitoneally
(Zhang et al., 2003b). Transport of 3H-cholesterol from
the macrophages into blood, liver, and bile, as well as
elimination in the feces, wasmeasured at 48 hours after
injection (Zhang et al., 2003b). In this model, over-
expression of ApoA1 promoted macrophage RCT com-
pared with control mice (Zhang et al., 2003b). Although
this method is believed to be a sensitive approach
to monitor cholesterol movement from macrophages
in vivo, there are some critical questions (Weibel et al.,
2011). For example, it is not possible to monitor cellular
cholesterol homeostasis by this method (Weibel et al.,
2011). One study developed a novel method employing
hollow fibers to re-collect the macrophage-derived foam
cells at the end of the in vivo RCT experiments, allowing
quantitative analysis of the changes in cholesterol mass
in foam cells for the first time (Weibel et al., 2011).
Simply, cholesterol-enriched peritoneal macrophages
were entrapped in semipermeable hollow fibers and
implanted into the peritoneum of mice. Twenty-four
hours after implantation, the fibers were removed from
the peritoneum, which allowed for complete re-collection
of these macrophages for quantification of changes of
cellular cholesterol and protein (Weibel et al., 2011).
Furthermore, it was demonstrated that the cholesterol
content was increased when this experiment was per-
formed in LDLR/apobec double knockout mice (Weibel
et al., 2011). So far, this method has not yet been used to
evaluate the effect of natural products on changes of
cellular cholesterol.

Themeasurement of foam cell formation is of primary
interest as a critical end-point analysis for assessing the
influence of natural products on atherosclerosis de-
velopment in vivo (Xu et al., 2010). Atherosclerotic
lesions in in vivo studies are traditionally quantified
by staining lesions en face in the whole aorta or aortic
cross-section from the proximal aorta and the innomi-
nate artery with Oil red O or Sudan IV to identify lipid
droplets containing CE (Kobayashi et al., 2004), fol-
lowed by computer-assisted image analysis (Paigen
et al., 1987; Teupser et al., 2003; Xu et al., 2010;
Maganto-Garcia et al., 2012). For en face preparations
of the aorta, the aortic tree is fixed and opened
longitudinally, from the heart to the iliac arteries, while
still linked to the heart and main branching arteries in
the body, and “pinned out.” After fixation and rinse,
the aortas are stained with Oil red O or Sudan IV
and photographed for quantification of atherosclerotic
lesions (Kobayashi et al., 2004). En face lesion area of
the aorta is quantified relative to its surface area. The
detailed protocol for this method is reviewed elsewhere
(Maganto-Garcia et al., 2012). For cross-sectional anal-
ysis of the aorta, sections of the proximal aorta are
obtained sequentially, starting at the aortic valve
(Kobayashi et al., 2004). Sections are stained with Oil
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red O and then counterstained with hematoxylin
(Plump et al., 1992). Several sections are used to
quantify lesion areas by using appropriate software
(e.g., Image Pro Plus) (Kobayashi et al., 2004). It was
noted that lesions in innominate artery are normally
more advanced and larger than that in other areas
(Bentzon et al., 2001; Reardon et al., 2001). For cross-
sectional analysis of the innominate artery (also named
brachiocephalic artery), the Y-shaped piece of innomi-
nate artery is sectioned distally (Teupser et al., 2003).
Sections are stained with hematoxylin and eosin and
used for quantification of lesion areas (Kobayashi et al.,
2004). Atherosclerotic lesions in luminal and the in-
ternal elastic lamina are evaluated in equidistant Oil
red O-stained sections (Teupser et al., 2003). The
detailed protocol for this method is reviewed elsewhere
(Maganto-Garcia et al., 2012).

IV. Natural Products Targeting Foam Cell
Formation in Atherosclerosis

Natural products from plants, fungi, and marine
sources (Dias et al., 2012) represent a rich source for
the discovery of new drug leads, since only about 6% of
the existing higher plants have been investigated
pharmacologically (Cragg and Newman, 2013). In the
past several decades, an increasing number of publica-
tions have reported that diverse natural products are
able to modulate foam cell formation in atherosclerosis,
including naturally occurring flavonoids, terpenoids,
phenolic compounds, phenylpropanoids, alkaloids, ste-
roids, fatty acids, amino acids, carbohydrates, and
among others (Table 1). In this section, we review some
important natural products targeting foam cell forma-
tion in atherosclerosis.

A. Flavonoids

Flavonoids are a class of secondary metabolites from
plant and fungus, possessing 15 carbon atoms and
divided into 6 major subclasses, namely anthocyani-
dins, flavans, flavanones, flavononols, anthoxanthins,
and isoflavonoids. Flavononols and anthoxanthins (par-
ticularly the group of flavones) are the two main classes
and most widespread in the human diet. They have
been shown to exhibit antiallergic (Yamamoto and
Gaynor, 2001), anti-inflammatory (Yamamoto and
Gaynor, 2001; Cazarolli et al., 2008), antioxidative
(Cazarolli et al., 2008), antibacterial (Cushnie and
Lamb, 2011), anticancer (de Sousa et al., 2007), and
antiatherosclerotic activities through different mecha-
nisms in vitro and in vivo. The biologic effects of
flavonoids appear to be related to their ability to
regulate diverse cell-signaling cascades. In this section,
we review the studies focusing on natural products
belonging to the class of flavonoids, which have dis-
played influence on macrophage foam cell formation.

1. Alpinetin. Alpinetin (also known as 7-hydroxy-5-
methoxyflavanone) is the main bioactive component in
the seeds of Alpinia katsumadai Hayata. Alpinetin
is also present in Amomum subulatum, Scutellaria
rivularis, and plants from the ginger family, such as
turmeric and cardamom (He et al., 2005, 2006). Recent
studies have shown that alpinetin exerted multiple
pharmacological properties, such as antitumor, anti-
inflammatory, and antioxidative activities, and inhibi-
tion of platelet aggregation (Ramírez-Tortosa et al.,
1999; Tang et al., 2012). It was shown that alpinetin
(50–150 mg/ml) promoted cholesterol efflux and ele-
vated the expression of PPARg and LXRa in oxLDL-
stimulated THP-1 macrophages and HMDMs. It also
inhibited lipid accumulation by enhancing the expres-
sion of ABCA1 and ABCG1, suggesting that alpinetin
may inhibit foam cell formation by targeting the
PPARg/LXRa/ABCA1/ABCG1 pathway (Jiang et al.,
2015). Furthermore, it is also reported that alpinetin
(50–200 mg/ml) had an anti-inflammatory effect by
inhibiting the TNF-a, IL-6, and IL-1b expression in
LPS-stimulated humanmacrophages (Hu et al., 2013a).
While TNF-a reduced both ABCA1 and LXRa expres-
sion and suppressed the cholesterol efflux from mono-
cytes (Voloshyna et al., 2014), it is possible that
alpinetin may reverse the suppression of cholesterol
efflux proteins ABCA1/ABCG1 and abolish the forma-
tion of foam cells by suppressing TNF-a expression.

2. Anthocyanin. Anthocyanins (ACs) are a class of
water-soluble natural pigments widely present in dark-
colored fruits and foods, such as purple sweet potato,
grape, blueberry, black rice, and black soybean. In
general, ACs comprise six important types of pigments,
including geranium, cyanidin, delphinidin, peony,morning
glory, and mallow pigment. Both ACs and anthocyanidins
(the sugar-free counterparts of ACs), have shown various
biologic activities. For example, ACs regulate blood lipids
by decreasing the levels of TG, TC, and LDL-cholesterol
(LDL-C), suggesting that ACsmay have positive effects on
CVD (Wallace et al., 2016). Anthocyanin mixture also
inhibited the inflammatory response in hypercholesterol-
emic patients by decreasing the levels of serum high
sensitivity C-reactive protein (hs-CRP) (Zhu et al., 2013).

Two bioactive ACs, cyanidin-3-glucoside (10 mM) and
peonidin-3-glucoside (100 mM), significantly increased
the macrophage cholesterol efflux inMPMs through the
PPARg-LXRa-ABCA1 pathway (Xia et al., 2005). More-
over, in THP-1-derived macrophages, AC-rich fraction
extracted from the wild blueberry (Vaccinium angusti-
folium) powder reduced lipid accumulation (Del Bo’
et al., 2016). Another similar observation was recorded
in human kidney 2 cells, cyanidin-3-O-b-glucoside
chloride, or cyanidin chloride (50 mM) inhibited the
high-glucose-induced cholesterol accumulation and in-
flammation by activating LXRa pathway, and activated
the PPARa-LXRa-ABCA1-dependent cholesterol efflux
(Du et al., 2015).
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TABLE 1
Natural products targeting foam cell formation in atherosclerosis

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

Flavonoids Alpinetin Increased the
macrophage
cholesterol efflux by
regulating the
PPARg/LXRa/
ABCA1/ABCG1
pathway (Jiang et al.,
2015).

N.A.

Cyanidin (Anthocyanins) Cyanidin increased
the macrophage
cholesterol efflux from
mouse peritoneal
macrophages (MPMs)
through PPARg-
LXRa-ABCA1
pathway (Xia et al.,
2005), and activated
PPARa-LXRa-
ABCA1-dependent
cholesterol efflux in
human kidney 2 (HK-
2) cells (Du et al.,
2015).

The anthocyanin-rich
diet reduced the levels
of total cholesterol (TC)
and low-density
lipoprotein (LDL)-
cholesterol, while
upregulating high-
density lipoprotein
(HDL)-C in serum, and
reduced atherosclerotic
plaque formation in
rats and ApoE2/2 mice
(Xia et al., 2006).
Anthocyanin mixture
reduced the
inflammatory response
in hypercholesterolemic
patients by decreasing
the levels of serum high
sensitivity C-reactive
protein (hs-CRP) (Zhu
et al., 2013).

Baicalin Promoted the
cholesterol efflux
through the PPARg-
LXRa-ABCA1/
ABCG1/SR-BI
pathway in THP-1
macrophages (He
et al., 2016b; Yu et al.,
2016).

Decreased
atherosclerotic lesion
sizes and lipid
accumulation in the
carotid arteries of
atherosclerosis in vivo
(He et al., 2016b).
Baicalin reduced TC,
TG, LDL-C, and hs-
CRP in patients with
rheumatoid arthritis
that have an increased
risk of coronary artery
disease (Hang et al.,
2018).

Chrysin Increased the HDL-
mediated macrophage
cholesterol efflux by
the upregulation of
PPARg, LXRa,
ABCA1, and ABCG1
expression (Wang
et al., 2015b), and
prevented the
cholesterol uptake by
downregulating the
expression of SR-A1
and SR-A2 (Wang
et al., 2015b).

Decreased the mean
levels of serum TC,
triacylglycerol (TG),
LDL-C, and very low-
density lipoprotein
(VLDL)-C significantly
in a model of Wistar
rats fed with a high-fat
diet (HFD) (Anandhi
et al., 2014).

Cyanidin-3-O-b–glucoside Upregulated the
expression of ABCG1
and ABCA1 in a dose-
dependent manner
and promoted the
cholesterol efflux
(Wang et al., 2012c).

Decreased body weight,
visceral adiposity, TG,
TC, free fatty acids, and
atherosclerosis index in
a high-fat-induced
atherosclerosis rat
model (Um et al., 2013).
Decreased monocyte
infiltration and
atherosclerosis in
ApoE2/2 mice (Wang
et al., 2011). A double-
blind, randomized,
placebo-controlled trial
showed that

(continued )
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

anthocyanin
consumption increased
HDL-C, decreased
LDL-C, and promoted
cellular cholesterol
efflux in
hyperlipidemia
patients. Cyanidin 3-O-
b-glucosides revealed to
inhibit CETP (Qin
et al., 2009).

Daidzein Induced paraoxonase-
1 (PON-1) activity,
which may regulate
cholesterol efflux by
stimulating the
PPARg/LXRa/ABCA1
pathway (Gao et al.,
2008; Robb and
Stuart, 2014).

Decreased the serum
cholesterol, increased
triglyceride (TG) level
in the male middle-
aged rats with HFD
(Sosi�c-Jurjevi�c et al.,
2007), reduced plasma
VLDL, LDL-C, and TG
concentrations, while
increased the HDL-C
levels in a rheumatoid
arthritis rat model
(Ahmad et al., 2016).
Daidzein was reported
to be an inhibitor of
HMG-CoA reductase,
ACAT1, and ACAT2
(Borradaile et al., 2002;
Sung et al., 2004).

Ellagic acid Stimulated
cholesterol efflux by
promoting the
expression of ABCA1
and SR-BI and up-
regulating PPARg
and LXRa (Park et al.,
2011), inhibited
macrophage lipid
accumulation by
decreasing the
expression of CD36
(Aviram et al., 2008).

Decreased the level of
TC and TG and
upregulated the
expression of LXRa,
PPARa, PPARg, and
their downstream gene
ABCA1 in the high-fat-
fed hamster model
(Aviram et al., 2008).
Reduced atherosclerotic
lesions in ApoE2/2 mice
(Aviram et al., 2008).

Hesperetin Increased activities of
ABCA1 promoter and
LXR enhancer, the
expression of ABCA1,
and consequently
upregulated the
ApoA-1-mediated
cholesterol efflux (Iio
et al., 2012).

Reduced foam cell
formation in plaques by
enhancing the
expression of ABCA1
(Iio et al., 2012).
Reduced plasma TC
level, endothelial
dysfunction,
macrophage
infiltration, and
atherosclerotic lesion in
ApoE2/2 mice
(Sugasawa et al., 2019).

Icariin Inhibited cholesterol
intake and foam cell
formation by the
reduced expression of
CD36 and
upregulated SR-BI
expression through
p38 MAPK pathway
(Yang et al., 2015).

Decreased the
concentrations of TC,
TG, and LDL-C in
models of normal rats
(Hu et al., 2016b) and
ApoE2/2 mice with
HFD (Xiao et al., 2017).

(continued )
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

Iristectorigenin B Acted as a novel LXR
modulator that
increases ABCA1 and
ABCG1 expression in
RAW 264.7
macrophage (Jun
et al., 2012).

N.A.

Pratensein Upregulated the CLA-
1 expression, a human
homolog of SR-BI,
may play a potential
role in cholesterol
efflux to HDL in vitro
(Yang et al., 2007,
2009).

One clinical trial
showed that red clover
isoflavones
significantly reduced
the incidence of
arteriosclerosis
(Gordon, 2003).

Puerarin Promoted ABCA1-
mediated cholesterol
efflux through the
pathways involving
miRNA-7, STK11, and
the AMPK/PPARg/
LXRa/ABCA1 cascade
(Li et al., 2017a)
suppressed lipid
deposition by
downregulating the
expression of CD36
(Zhang et al., 2015).

Decreased the level of
blood sugar, TC, TG,
LDL-C, and increased
HDL-C level in diabetic
animal model (Smith
et al., 2006).

Quercetin Enhanced ApoA-1-
mediated cholesterol
efflux, induced
ABCA1 expression,
and increased the
expression of PPARg
in THP-1-derived
foam cells (Sun et al.,
2015) and LXRa
activity (Lee et al.,
2013).

Quercetin inhibits
atherosclerosis by
promoting ABCA1- and
ABCG1-dependent
reverse cholesterol
transport in ApoE2/2

mice (Cui et al., 2017).

Isosilybin A (Silymarin) Isosilybin A promoted
cholesterol efflux from
THP-1 macrophages
by activating PPARg
(Wang et al., 2015a).

Supplementation of
silybin in food
decreased serum level
of TC, TG, VLDL-C,
LDL-C and increased
HDL-C in model of
hypercholesterolemic
rats (Wang et al., 2005).
Furthermore, silybin
reduced the formation
of atherosclerotic
plaque
(Gobalakrishnan et al.,
2016).

Wogonin Enhanced cholesterol
efflux through
increasing the ABCA1
protein expression
(Chen et al., 2011) and
decreasing
phosphorylated level
of ABCA1 protein.

Wogonin ameliorated
hyperglycemia and
dyslipidemia in db/db
mice via PPARa
activation (Bak et al.,
2014).

Terpenoids Astaxanthin Downregulated the
expression of SR-A
and CD36, which is
relevant to uptake of
cholesterol in THP-1
macrophages
(Yoshida et al., 2010).
Promoted ABCA1/G1
expression, resulting
in increased ApoA-1/

A randomized, placebo-
controlled clinical study
in humans with mild
hyperlipidemia
displayed that
astaxanthin
administration
significantly increased
HDL-C (Yoshida et al.,
2010). Astaxanthin also

(continued )
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

HDL-mediated
cholesterol efflux from
RAW264.7 cells via an
LXR-independent
manner
(Ramírez-Tortosa
et al., 1999; Iizuka
et al., 2012).

decreases macrophage
infiltration, and plaque
vulnerability in
hyperlipidemic rabbits
(Li et al., 2004c).

Capsanthin N.A. An in vivo study
showed that male
Wistar rats fed with
capsanthin exhibited
an increase in plasma
HDL-C, an
upregulation of ApoA-5
and LCAT mRNA
expression (Aizawa and
Inakuma, 2009).

b-Carotene (b-carotene isomers all-trans-b-carotene (all-trans-bc), and
9-cis-b-carotene (9-cis-bc))

Suppressed cellular
cholesterol synthesis
by inhibiting cellular
HMG-CoA reductase
activity in J774
macrophages
(Fuhrman et al., 1997;
Relevy et al., 2015).

b-Carotene comprises
several isomers (all-
trans-bc and 9-cis-bc),
which increased plasma
HDL-C and attenuated
atherosclerosis in
LDLR–/– mice (Harari
et al., 2008), ApoE–/–

mice (Harari et al.,
2013), and even in
fibrate-treated patients
(Shaish et al., 2006),
which is related with
transcriptional
induction of ABCA1,
ABCG1, and ApoE
(Bechor et al., 2016).

9-cis retinoic acid (9-cis-RA, Retinoids) 9-cis-RA and ATRA
acted as inducers of
ABCA1, ABCG1, and
ApoE expression in
J774 macrophages
and THP-1
macrophages (Kiss
et al., 2005) and
RAW264.7
macrophages
(Schwartz et al.,
2000), as well as
inducers of cholesterol
efflux to ApoA-1 in
RAW264.7
macrophages
(Langmann et al.,
2005).

9-cis-RA inhibited foam
cell formation and
atherosclerosis by
activation of LXRa and
upregulation of ABCA1
and ABCG1 expression
in ApoE2/2 mice fed
with HFD (Zhou et al.,
2015).

Lycopene Decreased cholesterol
accumulation through
downregulation of SR-
A mRNA expression
and lipid synthesis in
human monocyte-
derived macrophages
(HMDMs) and THP-1
macrophages
(Napolitano et al.,
2007). Increased
cholesterol efflux
possibly through
HMG-CoA reductase/
RhoA/PPARg/LXRa/
ABCA1 and caveolin 1
pathway (Palozza
et al., 2011).

Clinical investigation
reported that dietary
supplementation of
lycopene reduced
plasma LDL-C level
(Fuhrman et al., 1997;
Sesso et al., 2005;
Palozza et al., 2012).
Lycopene displays
potent hypolipidemic
effects via inhibiting
PCSK9 and HMG-CoA
reductase, thus
increasing hepatic
LDLR (Sultan Alvi
et al., 2017).

(continued )
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

Ursolic acid Promoted ApoA-1-
mediated cholesterol
efflux from LDL-
loaded macrophages
through autophagy
(Leng et al., 2016).

Reduced atherosclerotic
lesion size, along with
an increase of
macrophage autophagy
in LDLR2/2 mice (Leng
et al., 2016). Ursolic
acid is
a pharmacological
inhibitor of ACAT1 and
ACAT2 (Lee et al.,
2006).

Betulinic acid Induced cholesterol
efflux through
blocking NF-kB/
miRNA-33s/ABCA1
signaling pathway in
LPS-treated
macrophages (Zhao
et al., 2013a) and
increased ABCA1/
ABCG1-mediated
cholesterol efflux in
both RAW264.7 and
THP-1 cells (Zhao
et al., 2013a).

Increased ABCA1
expression and
enhanced fecal
cholesterol excretion,
along with suppressed
macrophage positive
areas in the aorta of
ApoE2/2 mice (Gui
et al., 2016). Betulinic
acid is a potent
pharmacological
inhibitor of ACAT1 and
ACAT2 (Lee et al.,
2006).

Erythrodiol Increased ApoA-1-
mediated cholesterol
efflux by inhibiting
ABCA1 degradation
in THP-1
macrophages (Wang
et al., 2017f).

N.A.

Ginsenoside Rb1 (Ginsenosides) Ginsenoside Rb1
increased ABCA1
protein expression in
macrophage foam
cells (Liu et al., 2016c;
Qiao et al., 2017).
Ginsenoside Rd
inhibited SR-A
protein expression
and oxLDL uptake,
thus decreasing
intracellular
cholesterol content (Li
et al., 2011).

Ginsenoside Rb1
treatment reduced lipid
metabolism and
enhanced
atherosclerotic plaque
stability via enhancing
macrophage autophagy
and polarization (Liu
et al., 2016c; Qiao et al.,
2017). Ginsenoside Rd
treatment reduced the
oxLDL uptake and
atherosclerotic plaque
areas in ApoE–/– mice
(Li et al., 2011).

Saikosaponin A Suppressed
lipoprotein uptake by
diminishing LOX-1
and CD36 expression,
as well as stimulated
cholesterol efflux
through upregulating
of ABCA1 and PPARg
expression (He et al.,
2016a).

N.A.

(continued )
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

Tanshinone IIA Decreased oxLDL
uptake, as well as
CD36 expression in
mouse macrophages
(Tang et al., 2011),
increased ABCA1/G1-
mediated cholesterol
efflux via the ERK/
Nrf2/HO-1 loop in
THP-1-derived foam
cells (Liu et al.,
2014c).

Downregulated SR-A
expression and
ameliorated
atherosclerotic lesions
in aortas of ApoE2/2

mice (Liu et al., 2014c).
Tanshinone IIA
promoted ABCA1-
dependent cholesterol
efflux (Liu et al., 2014c)
and upregulated LDLR
in hyperlipidemic rats
(Jia et al., 2016). A
clinical trial has shown
that tanshinone IIA
reduced hs-CRP in
patients with coronary
artery disease (Li et al.,
2017b).

Tanshindiol C Inhibited oxLDL-
induced foam cell
formation via
activation of Prdx1/
ABCA1 signaling
pathway (Yang et al.,
2018b).

N.A.

Zerumbone Suppressed the SR-A
and CD36 expression
via regulating AP-1
and NK-kB
repression, leading to
a blockade of acLDL
uptake in THP-1
macrophages (Eguchi
et al., 2007). Reduced
cholesterol level via
upregulation of
ABCA1, coupled with
the enhanced
phosphorylation of
ERK1/2 in THP-1
macrophages (Zhu
and Liu, 2015).

Prevented the
development of
atherosclerotic lesions
in the cholesterol-fed
rabbit model by
reducing lipid level and
oxidative stress (Hemn
et al., 2013, 2015).

Phenols Gallotannin Induced cholesterol
efflux in oxLDL-
stimulated
macrophages by
increasing SR-BI/
ABCA1 expression
(Zhao et al., 2015).

N.A.

Curcumin Ameliorated lipid
accumulation in
macrophages by both
decreasing SR-A-
dependent oxLDL
uptake via ubiquitin/
proteasome pathway-
reduced SR-A
expression, and
increasing ABCA1-
dependent cholesterol
efflux via LXRa-
induced ABCA1
protein expression
(Kou et al., 2013; Min
et al., 2013; Lin et al.,

Protected against
atherosclerosis in
ApoE2/2 mice (Zhao
et al., 2012), and
LDLR2/2 mice (Hasan
et al., 2014). Curcumin
lowers LDL-C, and TG
in patients at risk for
CVD (Qin et al., 2017).
Curcumin functions as
an inhibitor of PCSK9
and upregulates
hepatic LDLR
expression (Tai et al.,
2014).
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

2015c; Soltani et al.,
2017). Activation of
AMPK/SIRT1/LXRa
pathway (Lin et al.,
2015c) and Nrf2/HO-1
pathway (Kou et al.,
2013), and as well as
inhibition of p38
MAPK pathway (Min
et al., 2013) may be
involved in its effects.

Danshensu Prevented cholesterol
accumulation in
mouse macrophages
by inhibiting CD36-
mediated lipid
uptake, while
enhancing ABCA1/
G1-mediated
cholesterol efflux
(Wang et al., 2010b;
Gao et al., 2016).

Attenuated high
methionine-rich diet-
induced accumulation
of foam cells in rat
aortic endothelium by
attenuating TNF-a and
ICAM1 expression
(Yang et al., 2010).
Danshensu improved
dyslipidemia by
decreasing LDL-C and
fatty acid by inhibiting
HMG-CoA reductase
and fatty acid synthase
expression (Yang et al.,
2011).

6-Dihydroparadol Promoted cholesterol
efflux from THP-1
macrophages by
increasing the
expression of ABCA1
and ABCG1 via
preventing the
proteasome-
dependent protein
degradation (Wang
et al., 2018a).

N.A.

Paeonol Promoted cholesterol
efflux via activating
LXRa/ABCA1
pathway in
macrophages (Zhao
et al., 2013b; Li et al.,
2015c), inhibited
cholesterol uptake
through CD36
inhibition (Li et al.,
2015c).

Reduced atherosclerotic
lesion formation and
attenuated systemic
inflammation as well as
increased ABCA1
expression in ApoE2/2

mice (Zhao et al.,
2013b). Paeonol
reduced the levels of
malondialdehyde and
oxidzed LDL in
hyperlipidemia rats
(Dai et al., 2000).

Polydatin Activation of PPARg-
dependent ABCA1
upregulation and
decrease of CD36
expression (Wu et al.,
2015b).

Reduced TC, FC, CE,
together with reduction
of secretion of TNF-a
and IL-1b in oxLDL-
stimulated ApoE2/2

mouse macrophages
(Wu et al., 2015b).
Polydatin improved
dyslipidemia via
suppressing PCSK9
and upregulation of
hepatic LDLR
expression (Li et al.,
2018a).

Protocatechuic acid Promoted cholesterol
efflux from
macrophages by
increasing ABCA1
and ABCG1
expression via
reduction of miRNA-
10b expression (Wang
et al., 2012a).

Reduced the
development of
atherosclerosis in
ApoE2/2 mice (Wang
et al., 2010a, 2011;
Stumpf et al., 2013).
Protocatechuic acid
could possibly regulate
lipid metabolism via
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

suppressing the
expression of HMG-
CoA reductase (Liu
et al., 2010b).

Salicylic acid Upregulated the
expression of ABCA1
and SR-BI by AMPK
activation or PPARa
pathway, thereby
stimulating
cholesterol efflux from
macrophages (Viñals
et al., 2005; Lu et al.,
2010).

Aspirin attenuated
atherosclerosis in
ApoE2/2 mice by
suppressing systemic
inflammation and
promoting
inflammation
resolution (Petri et al.,
2017).

Salvianolic acid B Acted as an effective
CD36 antagonist that
blocks oxLDL uptake
in mouse
macrophages (Wang
et al., 2010b) and
THP-1 macrophages
(Bao et al., 2012),
promoted cholesterol
efflux via a PPARg/
LXRa/ABCA1-depen-
dent pathway in THP-
1 macrophages (Bao
et al., 2012).

Exhibited
antiatherosclerotic
effects in neointimal
hyperplasia in rabbits
(Yang et al., 2011) and
in ApoE2/2 mice (Chen
et al., 2006; Lin et al.,
2007). Salvianolic acid
B ameliorated
hyperlipidemia via
AMPK activation (Cho
et al., 2008) and
inhibition of LDL
oxidation (Yang et al.,
2011).

Sesamol Decreased the
expression of CD36,
CD68, SR-A, and
LOX-1 (Narasimhulu
et al., 2018), and
increased the
expression/activity of
PPARg and LXRa in
macrophages via
a MAPK-dependent
mechanism (Wu et al.,
2015d).

Sesamol derivative
(INV-403) and sesame
oil prevent or regress
atherosclerosis in
LDLR2/2 mice
(Narasimhulu et al.,
2018) and
hyperlipidemic rabbits
fed with an atherogenic
diet by suppressing NF-
kB dependent vascular
inflammation (Ying
et al., 2011).

Resveratrol Reduced oxLDL
uptake (Voloshyna
et al., 2013), promoted
ApoA-1- and HDL-
mediated cholesterol
efflux in both mouse
and human
macrophages by
increasing the
expression of ABCA1
and ABCG1 via
PPARv/LXRa
(Berrougui et al.,
2009; Allen and
Graham, 2012) and
adenosine 2A receptor
pathway (Voloshyna
et al., 2013).

Exhibited
antiatherosclerotic
effects in several
animal models,
including ApoE2/2 mice
(Do et al., 2008; Chang
et al., 2015), APOE*3-
Leiden.CETP mice
(Berbée et al., 2013),
and ApoE2/2/LDLR2/2

mice (Fukao et al.,
2004). Resveratrol
lowered the level of TC
and TG in patients with
dyslipidemia
(Simental-Mendia and
Guerrero-Romero,
2019) and regulated
lipid metabolism via
inhibiting cholesterol-
ester-transport protein
and HMG-CoA
expression/level (Cho
et al., 2008).
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Targeting Foam Cells by Natural Products 627

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

Epigallocatechin gallate (EGCG) Reduced cholesterol
efflux from
macrophages by
increasing ABCA1
expression via
activating Nrf2-
dependent NF-kB
inhibitory effects
(Jiang et al., 2012)
and blocked oxLDL-
induced upregulation
of SR-A, thus reducing
oxLDL uptake (Chen
et al., 2017).

Displayed potential
antiatherosclerotic and
plaque-stabilizing
effects in rats, rabbits,
and ApoE2/2 mice
(Chyu et al., 2004; Xu
et al., 2014a; Wang
et al., 2018e,f). EGCG
prevented
hyperlipidemia by
increasing the
expression and activity
of LDLR (Lee et al.,
2008).

Phenylpropanoids (–)-Arctigenin Upregulated the
expression of ABCA1,
ABCG1, and ApoE,
resulting in promoting
cholesterol efflux in
oxLDL-loaded THP-1
macrophages (Xu
et al., 2013d).

Decreased cholesterol
levels in mice (Huang
et al., 2012a) and
suppressed lipid
accumulation and body
weight gain in HFD-
induced obese mice
(Han et al., 2016).

Leoligin Increased cholesterol
efflux from THP-1
macrophages by
upregulating the
expression of ABCA1
and ABCG1 (Wang
et al., 2016a).

Reduced LDL-C level
and postprandial serum
glucose peaks due to
the direct inhibition of
3-hydroxy-3-methyl-
glutaryl-CoA reductase
(HMGCR) and
moderate PPARg
agonistic activity;
however, no obvious
effect on atherosclerotic
plaque size was
observed (Scharinger
et al., 2016).

Sesamin Inhibited oxLDL-
induced cholesterol
accumulation and
enhanced cholesterol
efflux from RAW264.7
macrophages via up-
regulation of PPARg,
LXRa, and ABCG1
(Liu et al., 2014a).

Prevented fat storage,
decreased cholesterol
level in serum (Lee
et al., 2009c; Rogi et al.,
2011). Attenuated
atherosclerosis in
ApoE2/2 mice by
suppressing vascular
inflammation (Wu
et al., 2010). The lipid-
lowering effect of
sesamin was exerted
through promoting the
fecal excretion of sterols
and inhibiting HMG-
CoA reductase (Liang
et al., 2015).

Honokiol Activated the RXR/
LXR heterodimer in
RAW264.7 cells,
resulting in the
induction of ABCA1
expression and
enhancement of
cholesterol efflux from
MPMs (Kotani et al.,
2010), and increased
ABCG1 and ApoE
expression in THP-1
macrophages (Jung
et al., 2010).

N.A.
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

a-Asarone Promoted macrophage
cholesterol efflux
through the PPARg-
LXRa-ABC
transporters pathway
(Park et al., 2015).

Decreased level of
serum cholesterol in
hypercholesterolemic
rats by inhibition of
HMG-CoA reductase
(Rodriguez-Paez et al.,
2003).

Chlorogenic acid Enhanced HDL-
mediated cholesterol
efflux from
macrophages through
increasing the
expression of ABCG1
and SR-BI
(Uto-Kondo et al.,
2010) and
enhancement of
PPARa ligand binding
capacity in vitro (Kim
et al., 2014).

Chlorogenic acid
prevented
atherosclerosis in
ApoE2/2 mice by
inhibiting lipid
accumulation and
promoting cholesterol
efflux via PPARg/
LXRa/ABCA1(G1)
pathway (Wu et al.,
2014).

Caffeic acid Decreased oxLDL-
elicited neutral lipid
and cholesterol
accumulation in
RAW264.7
macrophages via
increasing the
transcription of
PPARg, LXRa,
ABCA1, and ABCG1
(Wu et al., 2014).

Reduced the percentage
and the total
atherosclerotic lesion
area as well as
promoted
vasodilatation in
cholesterol-rich diet-fed
ApoE2/2 mice, and
decreased levels of TC,
LDL-C and TG in the
serum (Wu et al., 2014).
Caffeic acid reversed
insulin resistance,
dyslipidemia,
hyperglycemia,
inflammation, and
oxidative stress in high-
fructose diet-induced
metabolic syndrome in
rats (Ibitoye and
Ajiboye, 2018).

Ferulic acid Increased the
expression of ABCA1
and ABCG1 in
macrophage form cells
and further promoted
cholesterol efflux
(Chen and Wang,
2015).

Ferulic acid suppressed
atherosclerosis in
ApoE2/2 mice by
inhibiting the activities
of hepatic ACAT and
HMG-CoA reductase
(Kwon et al., 2010).
Ferulic acid also
lowered TC, LDL-C,
oxLDL, TG, and
increased HDL-C in
patients with
dyslipidemia
(Bumrungpert et al.,
2018).

Alkaloids Arecoline Promoted cholesterol
efflux by increasing
ABCA1 expression
(Ouyang et al., 2012).

Arecoline suppressed
atherosclerosis in
ApoE2/2 mice by
inhibiting NF-kB
activation (Zhou et al.,
2014).

Berberine Inhibited macrophage
foam cell formation by
promoting LXRa/
ABCA1-dependent
cholesterol efflux (Lee
et al., 2010).
Prevented oxLDL-
induced upregulation
of LOX-1 and
downregulation of SR-

Suppressed
atherosclerosis
development in mice
(Feng et al., 2017; Shi
et al., 2018; Zhu et al.,
2018). One report
suggests that berberine
promoted
atherosclerosis in
mice by enhancing
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

BI in THP-1
macrophages (Guan
et al., 2010; Chi et al.,
2014a). It was
reported to increase
foam cell formation in
human and mouse
macrophages (Li
et al., 2009b).

SR-A-mediated oxLDL
uptake and foam cell
formation
(demonstrated in
human and mouse
macrophages) through
suppressing
phosphatase and tensin
homolog expression,
thus promoting the
activation of Akt (Li
et al., 2009b). In
patients with
dyslipidemia, berberine
reduced TC, LDL-C,
TG, and increased
HDL-C, partially
through inhibiting
PCSK9 and increasing
LDLR expression/
activity (Kong et al.,
2004; Cameron et al.,
2008; Ju et al., 2018).

Piperine Promoted ABCA1
protein expression in
THP-1-differentiated
macrophages by
increasing ABCA1
protein stability by
preventing calpain-
mediated ABCA1
protein degradation
(Wang et al., 2017d).

Regulated lipid
metabolism via
increasing hepatic
LDLR expression
through proteolytic
activation of SREBPs
(Ochiai et al., 2015).

Rutaecarpine Upregulated
expression of ABCA1
and SR-BI via LXRa
and LXRb, thereby
promoting cholesterol
efflux (Xu et al.,
2014b).

Reduced atherosclerotic
plaque development, as
well as macrophage and
lipid content in
atherosclerotic plaques
in ApoE2/2 mice (Xu
et al., 2014b). Lowered
the level of TC, TG, and
LDL-C, and hs-CRP in
hyperlipidemic and
hyperglycemic rats via
AMPK activation and
NF-kB inhibition (Nie
et al., 2016; Tian et al.,
2019b).

Evodiamine Increased cholesterol
efflux from THP-1-
derived macrophages
by directly binding to
ABCA1 and thereby
increasing ABCA1
stability (Wang et al.,
2018c).

Decreased the size of
atherosclerotic lesions
and alleviated the
hyperlipidemia, as well
as hepatic
macrovesicular
steatosis in ApoE2/2

mice, probably via
transient receptor
potential vanilloid type
1 (TRPV1) pathway (Su
et al., 2014).

Leonurine Promoted ApoA-1-
and HDL-mediated
cholesterol efflux via
the PPARg/LXRa/
ABCA1 and ABCG1
pathway (Jiang et al.,
2017a).

Reduced atherosclerotic
development in
ApoE2/2 mice fed with
atherogenic diet (Jiang
et al., 2017a).
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

Steroids Diosgenin Inhibited oxLDL
uptake by blocking
systemic
inflammation and
LOX-1/NF-kB
pathway (Wang et al.,
2017g). Promoted
cholesterol efflux by
increasing the ABCA1
expression
independent of LXRa
(Lv et al., 2015).

Inhibited
atherosclerosis in
ApoE2/2 mice by
reducing TC and CE via
promoting ABCA1-
dependent cholesterol
efflux (Lv et al., 2015).

Fucosterol Promoted cholesterol
efflux by increasing
the efflux
transporters ABCA1,
ABCG1, and ApoE
(Hoang et al., 2012).

Reduced LDL-C, and
increased HDL-C
(Hoang et al., 2012).

Ginsenoside Rd (Panax notoginseng saponins (PNS)) Decreased the
accumulation of
cholesterol esters via
increasing ABCA1
expression (Jia et al.,
2010).

Inhibited foam cell
formation in zymosan
A-induced
atherosclerosis in rats
(Yuan et al., 2011).
Prevented
atherosclerosis in
ApoE2/2 mice by
decreasing SR-A-
mediated oxLDL
uptake and cholesterol
accumulation (Li et al.,
2011).

Vitamin D3 (Vitamin D) Vitamin D inhibited
CD36 and SR-A-
mediated lipid
(oxLDL and ac-LDL)
uptake (Oh et al.,
2009; Yin et al., 2015).

Deficiency of vitamin D
receptor (VDR)
promoted modified
LDL-induced foam cell
formation of
macrophages from
diabetic patients (Oh
et al., 2015). Deficiency
of macrophage VDR
aggravated CD36 and
SR-A-mediated lipid
uptake (via JNK
activation) to increase
atherosclerosis in mice
(Oh et al., 2015).
Vitamin D
supplementation
improved glycemic
control, increased HDL-
C and decreased hs-
CRP levels in patients
with CVD
(Ostadmohammadi
et al., 2019).

Fatty acids Docosahexaenoic acid (DHA) Inhibited the uptake
of modified LDL in
human macrophages
partially through
reduction of the
expression of CD36
and SR-A (Pietsch
et al., 1995), as well as

Reduced
atherosclerosis in
ApoE2/2 mice by
reducing
proinflammatory
cytokine IL-1b (Alfaidi
et al., 2018). Lowered
TG in dyslipidemic
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TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

of macropinocytosis
and expression of
syndecan-4 (McLaren
et al., 2011b).

patients (Weintraub,
2013).

Eicosapentaenoic acid (EPA) Inhibited the uptake
of modified LDL in
human macrophages
partially through
reduction of the
expression of CD36
and SR-A (Pietsch
et al., 1995), as well as
of macropinocytosis
and expression of
syndecan-4 (McLaren
et al., 2011b).

Reduced and stabilized
atherosclerotic plaques
in ApoE2/2 and
LDLR2/2 mice through
its anti-inflammatory
effects (Ringseis et al.,
2006;
Laguna-Fernandez
et al., 2018). Lowered
TG in dyslipidemic
patients. EPA served as
a substrate for resolvin
E1 (RvE1), which
promotes inflammation
resolution i (Bäck and
Hansson, 2019).

13-Hydroxyoctadecadienoic acid (13-HODE) Promoted cholesterol
efflux by activating
PPAR/LXRa/ABCA1
and ABCG1 pathway
(Kämmerer et al.,
2011).

N.A.

Linoleic acid Functioned as an
endogenous activator
of PPARa, PPARg,
and PGC1a, thus
stimulating
cholesterol efflux
(Ringseis et al., 2008).

Induced the regression
of pre-established
atherosclerotic plaques
in ApoE2/2 mice by
promoting macrophage
polarization toward
a M2 anti-
inflammatory
phenotype (McCarthy
et al., 2013). Possibly
reduced TC via
increasing hepatic
LDLR expression and
activity (Ringseis et al.,
2006).

Amino acids L-(1)-citrulline Promoted cholesterol
efflux by increasing
ABCA1 and ABCG1
expression in
differentiated THP-1
macrophages (Tsuboi
et al., 2018).

Citrulline consumption
promoted HDL- and
ApoA-1-mediated
cholesterol efflux by
increasing the
expression of both
ABCA1 and ABCG1
(Uto-Kondo et al.,
2014).

S-allyl cysteine Increased ABCA1
expression, thus
promoting cholesterol
efflux in differentiated
THP-1 macrophages
(Malekpour-Dehkordi
et al., 2013).

N.A.

Carbohydrates Polysaccharide isolated from Phellinus linteus
N.A.

Promoted ApoA-1-
mediated cholesterol
efflux by activating
PPARg/ABCA1 and
ABCG1 pathway (Li
et al., 2015d).

N.A.

Astragalus polysaccharides Promoted ABCA1
expression in foam
cells, thus increasing
cholesterol efflux
(Wang et al., 2010d).

N.A.
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Further study indicated that the black rice AC-rich
extract (300 mg/kg body weight per day) inhibited the
production of oxLDL and reduced the levels of TC and
LDL-C, while upregulating the HDL-C level in serum
from rats and ApoE2/2 mice, and also narrowed the
area of atherosclerotic plaque and improved the stabil-
ity of plaque to prevent the occurrence of embolism (Xia
et al., 2006). Moreover, the ACs derived from pome-
granate reduced blood lipids and exhibited an anti-
inflammatory activity (Wang et al., 2018b). It was
reported that pomegranate peel extract containing
ACs (1 g/kg diet) has a slight effect on fatty streak
formation and lipid metabolism in hypercholesterol-
emic rabbits (Sharifiyan et al., 2016). These studies
indicated that the role of an AC-rich diet on the
reduction of the risk of developing CVD might possibly

be due to the ability of these compounds to inhibit lipid
accumulation.

3. Baicalin. Baicalin, a glucuronide of baicalein, is
a flavone glycoside that is present in the root of
Scutellaria baicalensis Georgi with content as high as
12.1% (Makino et al., 2008). The latter is a traditional
Chinesemedicine widely used to treat acute and chronic
hepatitis, nephritis, and allergic diseases due to its anti-
inflammatory and hypolipidemic effects. One study
indicated that baicalin (50 mM) significantly increased
HDL- but not ApoA1-mediated cholesterol efflux and
upregulated the expression of SR-BI in a dose- and time-
dependent manner (Yu et al., 2016). Another study
showed that baicalin (50 and 100mM) exerted potentially
antiatherosclerotic effects by inhibition of form cell
formation and lipid deposition via promoting cholesterol

TABLE 1—Continued

Chemical class Natural Compounds In Vitro Studies Animal Studies, Clinical
Studies, and Targets

Others Organosulfur compounds: Allicin Upregulated ABCA1-
dependent cholesterol
efflux via PPARg/
LXRa signaling
pathway in THP-1
macrophage-derived
foam cells (Lin et al.,
2017).

Decreased carotid
intima/media
thickness, decreased
homocysteine, TC, and
TG in CAD patients
with
hyperhomocysteinemia
(Liu et al., 2017a).

Pyranone derivatives: Asperlin Promoted cholesterol
efflux from mouse
macrophages (Zhou
et al., 2017).

Reduced the secretion
of proinflammatory
cytokines (IL-6, TNFa.
MCP-1) and
atherosclerosis in
ApoE2/2 mice (Zhou
et al., 2017).

Anthraquinone derivatives: Emodin Promoted ApoA-1-
mediated cholesterol
efflux from
macrophages via
PPARg/LXRa/ABCA1
and ABCG1 pathway
(Zhou et al., 2008; Fu
et al., 2014)

Reduced
atherosclerosis in
ApoE2/2 mice (Zhou
et al., 2008) and rabbits
(Hei et al., 2006).
Lowered blood glucose,
TC, TG, in diabetic and
hyperlipidemic rats
(Zhao et al., 2009) by
inhibiting SREBP-1
and SREBP-2 (Li et al.,
2016).

Polyacetylene derivatives: Falcarindiol Promoted ApoA-1-
mediated cholesterol
efflux in macrophages
not only by increasing
ABCA1 gene
expression, but also
via preventing
cathepsins-dependent
ABCA1 protein
degradation (Wang
et al., 2017e).

N.A.

Spiromastixones: Spiromastixone A Inhibited lipid uptake
by reducing the
expression of CD36.
Promoted cholesterol
efflux by upregulation
of PPARg/ABCA1 and
ABCG1 (Wu et al.,
2015a).

N.A.

N.A., not available.
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efflux through the PPARg-LXRa-ABCA1/ABCG1 path-
way in THP-1 macrophages (He et al., 2016b).
Baicalin also markedly decreased atherosclerotic

lesion size and lipid accumulation in the carotid arteries
in an atherosclerotic rabbit model (He et al., 2016b).
Furthermore, long-term treatment with baicalin
(80 mg/kg body weight) in rats with HFD markedly
reduced the rising level of TC, LDL-C, NEFA, insulin,
and TNF-a and also significantly ameliorated the
fasting serum glucose levels (Guo et al., 2009), which
suggests that baicalin may regulate the glucose/lipid
metabolic disorders. Baicalin reduces TC, TG, LDL-C,
and hs-CRP in patients with rheumatoid arthritis who
have an increased risk of CAD (Hang et al., 2018).
4. Chrysin. Chrysin, also called 5,7-dihydroxyfla-

vone, is a flavone present in blue passionflower (Passi-
flora caerulea), Pelargonium crispum, and Oroxylum
indicum. It is one of the main active ingredients of
propolis.
In a model of Wistar rats fed with HFD, chrysin

(200 mg/kg body weight per day) decreased the mean
levels of serum TC, TG, LDL-C, and VLDL-C (Anandhi
et al., 2014). A recent report revealed that chrysin
activated PPARg, the key regulator in lipidmetabolism,
to exert an anti-inflammatory effect (Feng et al., 2014).
This suggested that chrysin might have an antiathero-
sclerotic effect, possibly by decelerating the formation
of foam cells. Additional study displayed that HDL-
mediated RAW264.7 macrophages cholesterol efflux
was significantly increased after chrysin (10 mM) treat-
ment by the upregulation of PPARg, LXRa, ABCA1, and
ABCG1 expression (Wang et al., 2015b). Additionally,
chrysin also prevented the transcription of SR-A1 and
SR-A2 but had no effect on CD36, suggesting that it may
inhibit the cholesterol uptake by downregulating the
expression of SR-A1 and SR-A2 (Wang et al., 2015b).
5. Cyanidin-3-O-b-glucoside. As a member of blue-

berry AC family, cyanidin-3-O-b-glucoside (C3G) is the
most widely distributed AC in nature. C3G has anti-
inflammatory action, lowers the blood fat, as well as
protects cardiovascular health through various mecha-
nisms (Duchnowicz et al., 2012; Luo et al., 2012). It has
been reported that C3G (0.5, 5, and 50 mM) upregulated
the expression of ABCG1 andABCA1 in a dose-dependent
manner and promoted the cholesterol efflux in human
aortic endothelial cells (Wang et al., 2012c), suggesting
a novel mechanism by which C3G reduces oxidative
damage on endothelial cells.
The antiatherosclerotic effect of C3G was recently

evaluated in anHFD-induced atherosclerosis ratmodel.
The results showed that diet supplementation with
C3G (150 mg/kg) markedly decreased body weight,
visceral adiposity, TG, TC, free fatty acids, and athero-
sclerosis index (Um et al., 2013). In ApoE2/2 mice, C3G
(2 g/kg diet) prevented the hypercholesterolemia-
induced endothelial dysfunction and the development
of atherosclerosis by inhibiting cholesterol and 7-oxysterol

accumulation in the aorta (Wang et al., 2012b). Interest-
ingly, it was shown that protocatechuic acid, a gut micro-
biota metabolite of C3G in ApoE2/2 mice, displayed
a promising antiatherogenic effect at physiologically
reachable concentrations (0.25–1 mM), accelerating the
cholesterol efflux in acLDL-loaded MPMs or THP-1
macrophages by interfering with the regulation of
miRNA-10b-ABCA1/ABCG1 cascade (Wang et al.,
2012a). Therefore, the gut metabolites of AC could also
be explored as potential novel molecules for athero-
sclerotic prevention and treatment. Furthermore,
a double-blind, randomized, placebo-controlled trial
showed that consumption of anthocyanin increased
HDL-C, decreased LDL-C, and promoted cellular
cholesterol efflux in hyperlipidemia patients (Qin
et al., 2009).

6. Daidzein. Daidzein is a naturally occurring iso-
flavone found in soybeans and other legumes. Because it
is a nonsteroidal compound with estrogen-like biologic
activities, daidzein is also regarded as a phytoestrogen.
There are many clinical studies that investigated the
effects of daidzein on the treatment of hypertension and
menopausal syndrome, as well as alcoholism (Liu et al.,
2014d,e). Studies conducted over the last several deca-
des showed that it has antiosteoporosis, antioxidative,
hypolipidemic, and cardiovascular-protective effects
(Robb and Stuart, 2014). Daidzein (25 mM) induced
paraoxonase-1 (PON-1) activity and protected LDL
from oxidation in Huh7 cells, thereby displaying an
antiatherosclerotic potential (Schrader et al., 2012). It
was known that PON-1 may regulate cholesterol efflux
by stimulating the PPARg-LXRa-ABCA1 pathway
(Ikhlef et al., 2016), indicating that daidzein may
regulate macrophage cholesterol efflux. Additionally,
in another study utilizing cultured HepG2 cells, daid-
zein (EC50 5 3.21 mM) upregulated the activity of CD36
and lysosomal integralmembrane protein-II analogous-
1 (CLA-1), which is a homolog of SR-BI, suggesting that
daidzein may affect lipid uptake (Yang et al., 2009).
Daidzein was also reported to be an inhibitor of HMG-
CoA reductase, ACAT1, and ACAT2 (Borradaile et al.,
2002; Sung et al., 2004).

In addition, in male middle-aged rats with HFD used
to induce atherosclerosis, treatment with daidzein
(30 mg/kg body weight) decreased the serum cholesterol
and increased TG level (Sosi�c-Jurjevi�c et al., 2007). In
another study using rheumatoid arthritis rat model, it
was shown that intragastric administration of daidzein
(20 mg/kg body weight) and hesperidin (50 mg/kg body
weight) reduced plasma VLDL, LDL-C, and TG concen-
trations, while increasing HDL-C levels (Ahmad et al.,
2016).

7. Ellagic Acid. Ellagic acid, a dilactone of hexahy-
droxydiphenic acid, is an important antioxidant found
in numerous fruits, such as cranberries, raspberries,
grapes, pomegranates, as well as in walnuts. Ellagic
acid has a wide range of biologic activities, including
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antiproliferative and antioxidative properties (Larrosa
et al., 2010). One study utilizing J774A.1 murine
macrophages suggested that ellagic acid (1 and 5 mM)
stimulated cholesterol efflux by promoting the ABCA1
expression and upregulating PPARg and LXRa levels
(Park et al., 2011). This study also displayed that ellagic
acid could modulate the SR-BI expression by counter-
acting PPARg-responsive early signaling. Additionally,
it was demonstrated that pomegranate ellagic acid
(PEA) (10, 20, and 40 mg/ml) regulated the expression
of PPARg, ABCA1, and cholesterol 7a-hydroxylase
(CYP7A1) in the hepatic cell line L-02, thus regulating
cholesterol metabolism (Lv et al., 2016). Also, pomegran-
ate peel polyphenols, especially PEA (25 and 50 mg/ml),
inhibited macrophage lipid accumulation by decreasing
the expression of CD36 and promoted ApoA1-mediated
macrophage cholesterol efflux by upregulating ABCA1
and LXRa (Zhao et al., 2016).
In a hamster model with HFD, a high-dose of PEA

(177mg/kg bodyweight) decreased TC and TG in a dose-
dependent manner and upregulated the expression of
LXRa, PPARa, PPARg, and their downstream gene
ABCA1 (Liu et al., 2015). Moreover, using ApoE2/2

mice, it was shown that treatment of pomegranate
phenolic compounds (200 mg/mouse per day) for 3
months, mainly including gallic acid and ellagic acid,
reduced atherosclerotic lesions (Aviram et al., 2008).
8. Hesperetin. Hesperetin is an aglycone of hesper-

idin, a natural bioflavonoid that is present in Legumi-
nosae, Dimorphicaceae, Labiatae, and Rutaceae plants.
Hesperetin has many biologic and pharmacological
activities, such as antioxidative, anti-inflammatory,
and antiatherosclerotic effects (Yang et al., 2012; Ren
et al., 2016). It was shown that hesperetin (5, 10, and
15 mM) reduced THP-1-derived foam cell formation by
enhancing the expression of ABCA1 through increasing
the activities of ABCA1 promoter and LXR enhancer,
thus upregulating the ApoA1-mediated cholesterol ef-
flux (Iio et al., 2012). Hesperetin (25 mM) may act as an
antiatherogenic agent possibly by also inhibiting oxLDL-
triggered ROS in human umbilical vein endothelial cells
(HUVECs) (Choi et al., 2008), as well as the proliferation
andmigration of VSMCs (Wei et al., 2016). A recent study
showed that hesperetin reduced plasma TC level, endo-
thelial dysfunction, macrophage infiltration, and athero-
sclerotic lesion in ApoE2/2 mice (Sugasawa et al., 2019).
9. Icariin. Icariin (ICA) is present in the traditional

Chinese herbal medicine Epimedium brevicornum
Maxim. In recent years, ICA has been studied for its
effect on CVD. It was shown that ICA possessed
atheroprotective functions through various mecha-
nisms, including counteracting endothelial dysfunction,
suppressing the proliferation and migration of VSMCs,
as well as inhibiting foam cell formation and inflamma-
tory responses (Fang and Zhang, 2017). In models of
normal rats (Hu et al., 2016b) or ApoE2/2 mice with
HFD (Xiao et al., 2017), ICA (10–60 mg/kg body weight

per day) significantly decreased the concentrations of
TC, TG, and LDL-C. It was demonstrated that the
inhibitory effects of ICA (4 mM) on cholesterol intake
and foam cell formation were accompanied by a reduced
expression of CD36 and an upregulated SR-BI expres-
sion through p38 MAPK pathway in THP-1 cells (Yang
et al., 2015). Additionally, ICA (5 and 10 mM) lessened
RAW264.7 macrophage infiltration at atherosclerosis
lesion by blocking the CX3CR1-CX3CL1 interaction,
which is highly related to monocyte adhesion and
migration (Wang et al., 2016c).

10. Iris Isoflavones. Iris isoflavones (tectorigenin,
irstectorigenins, and iristectorins) present in rhizomes
of Iris germanica L. have many biologic activities, such
as antioxidative, anti-inflammatory, and antiangio-
genic effects (Jung et al., 2003). Some of these nature
products could also regulate the metabolism of blood
sugar and cholesterol (Lee et al., 2000a; Jung et al.,
2002). It was reported that iristectorigenin B (5 and
10 mM) acted as a novel LXR modulator by regulating
the transcriptional activity of LXRa/b in RAW264.7
cells. It also induced the activation of ABCA1 and
ABCG1, thus increasing the macrophage cholesterol
efflux (Jun et al., 2012).

11. Pratensein. Pratensein is an isoflavone, which is
present in Trifolium pretense L. (red clover). It was
reported that pratensein (10 mM) upregulated ABCA1
protein expression to increase the HDL levels in HepG2
cells (Gao et al., 2008). In the same line, another study
indicated that pratensein (EC50 5 1.08 mM) upregu-
lated the CLA-1 expression, which is a human homolog
of SR-BI, suggesting that it can play a potential role
in the process of cholesterol efflux in vitro (Yang et al.,
2007, 2009).

12. Puerarin. Puerarin is present in the roots of
Pueraria (Radix puerariae). Due to positive action on
dilating coronary artery, protecting ischemic myocar-
dium, resisting myocardial ischemia and re-injury, and
preventing atherosclerosis (Bao et al., 2015), puerarin
has been extensively studied for the treatment of CVD.
It is demonstrated that puerarin (25, 50, and 100 mg/ml)
decreased the cellular lipid accumulation in THP-1
macrophages by promoting ABCA1-mediated choles-
terol efflux through pathways involving miRNA-7,
serine/threonine kinase 11 (STK11), and the AMP-
activated protein kinase (AMPK)-PPARg-LXRa-ABCA1
cascade (Li et al., 2017a). In the same model, puerarin
(50 and 100 mg/ml) suppressed lipid deposition and foam
cell formation by downregulating the expression of CD36
(She et al., 2014). It (10, 50, and 100 mg/ml) also
suppressed oxLDL-induced macrophage activation and
release of TNF-a and IL1-b by inhibiting the TLR4/NF-
kBpathway. Furthermore, treatmentwith puerarin (140
and 200 mg/kg body weight per day) decreased the level
of blood glucose, TC, TG, LDL-C, and increased theHDL-
C level in the streptozotocin-induced diabetic rat model
(Smith et al., 2006).
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13. Quercetin. Quercetin, a polyhydroxy flavonoid,
is one of the most abundant natural polyphenols in
different foods, such as onions, apples, broccoli, and
ginkgo. It has broad biologic activities, including anti-
inflammatory, immunomodulatory, and cardiovascular-
protective effects (Rauf et al., 2018). Some studies
indicated that quercetin could interfere with foam cell
formation (Lara-Guzman et al., 2012). Quercetin
(50, 100, and 200 mM) enhanced ApoA1-mediated
cholesterol efflux, as well as induced ABCA1 expression
and the expression of PPARg through activating the
PPARg signaling in THP-1-derived foam cells (Sun
et al., 2015). Another study indicated that quercetin-
increased ABCA1 expression possibly due to the p38-
dependent pathway (Chang et al., 2012). It was also
shown that quercetin-drivenABCA1upregulation could
be mediated by enhancing LXRa activity (Lee et al.,
2013). Interestingly, a quercetin metabolite, quercetin-
3-glucuronide, inhibited the formation of foam cells at
20 mM by suppressing the expression of SR-A1 and
CD36 in RAW264.7 cells (Kawai et al., 2008). Moreover,
quercetin was reported to inhibit atherosclerosis by
promotingABCA1- andABCG1-dependentRCT inApoE2/2

mice (Cui et al., 2017).
14. Silymarin. Silymarin, a mixture of flavonoli-

gnans from the medicinal plant Silybum marianum,
includes silybin (synonymous with silibinin), isosilybin,
silydianin, silychristin, and little amounts of other
phenolic compounds. Within the last decade, several
studies have suggested that, in addition to its use in
the treatment of liver diseases, silymarin also has
a protective effect on CVD. It was shown that four
compounds from silymarin (isosilybin A, silybin B,
silychristin, and isosilychristin) induced the expression
of ABCA1 protein in THP-1 cells. Especially isosilybin A
(10 and 30 mM) promoted cholesterol efflux from THP-1
macrophages due to its PPARg-activating properties
(Wang et al., 2015a). It is also reported that silymarin
not only reduced the LDL and cholesterol levels, but
also protected endothelial cells (Skottova and Krecman,
1998).
Furthermore, in the hypercholesterolemic rat model,

supplementation of silybin (300 and 600 mg/kg body
weight per day) in food significantly decreased serum
levels of TC, TG, VLDL-C, LDL-C, and increasedHDL-C,
as well as reduced the formation of atherosclerotic
plaques (Gobalakrishnan et al., 2016).
15. Wogonin. Wogonin, an O-methylated flavone, is

present in the roots of Scutellaria baicalensis Georgi
and the rhizomes of Scutellaria barbata L. It was shown
that wogonin is effective in the treatment of inflamma-
tion, cancer, and anxiety (Tai et al., 2005; Li-Weber,
2009). Wogonin (40 mM) attenuated oxLDL-induced
cholesterol accumulation in murine J774.A1 macro-
phages by enhancing cholesterol efflux through increas-
ing the ABCA1 protein expression (Chen et al., 2011).
In addition, this flavonoid decreased phosphorylated

levels of ABCA1 protein. Another beneficial effect of
wogonin in the context of prevention and therapy of
atherosclerosis is to protect physiologic function in
vascular endothelial cells and VSMCs (Oche et al.,
2016). An in vivo study suggests that wogonin amelio-
rated hyperglycemia and dyslipidemia in db/dbmice via
PPARa activation (Bak et al., 2014).

B. Terpenoids

Terpenoids, also known as isoprenoids, constitute
one of the largest families of natural products, which,
in contrast to terpenes, contain additional functional
groups, mostly oxygen containing. Several bioactive
terpenoids have been shown to be promising for thera-
peutic purposes (Goto et al., 2010). In this section, we
focus on the inhibitory effects of terpenoids on foam cell
formation and the associated molecular mechanisms
of action.

1. Carotenoids. Carotenoids, also called tetraterpe-
noids, are a complex group of organic pigments with
a basic tetraterpene skeleton and a variety of biochemical
functions. A number of carotenoids have been reported to
be associated with a wide range of bioactivities and
potential health benefits (Rao and Rao, 2007; Fiedor
and Burda, 2014). Epidemiologic studies, such as re-
search regarding the association between b-carotene
and CVD and case-control trails testing the concentra-
tion of b-carotene of patients with different CVD events,
have demonstrated that the consumption of carotenoids
can reduce the risk of CVD (Kohlmeier and Hastings,
1995; Riccioni et al., 2012). Here, the published studies
regarding the effect of several main carotenoids,
i.e., astaxanthin, b-carotene, capsanthin, retinoids,
and lycopene, on cholesterol efflux and foam cells
formation are discussed.

a. Astaxanthin. Astaxanthin is a major naturally
occurring keto-carotenoid, mainly found in various
microorganisms and marine animals and responsible
for their pink-red pigmentation. Recently, there is
a rapidly growing interest for its application in counter-
acting foam cell formation and stabilization and/or
regression of atherosclerosis. It was shown that THP-1
macrophages incubated in the presence of astaxanthin
(5–10 mM) downregulated the SR-A and CD36 mRNA
expression (48% and 58%, respectively), which is rele-
vant to cholesterol uptake (Kishimoto et al., 2010).
Further studies showed that astaxanthin promotes
the ABCA1/G1 expression (up to 2.0- and 3.2-fold in
protein level), resulting in increasing the ApoA-1/HDL-
mediated cholesterol efflux (116% and 25%, respec-
tively) from RAW264.7 cells via an LXR-independent
manner, but only at high concentrations (50 and
100 mM) (Ramírez-Tortosa et al., 1999; Iizuka et al.,
2012). In agreement with the in vitro observation,
a randomized, placebo-controlled clinical study was
conducted in humans (aged 25–60 years) with mild
hyperlipidemia (levels of 120–200 mg/dl) for 12-week
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astaxanthin administration (at doses of 0, 6, 12, and
18 mg/day). The results showed that 6 and 12 mg/day
doses of astaxanthin significantly increased HDL-C in
correlation with increased serum adiponectin (Yoshida
et al., 2010).
b. Capsanthin. Capsanthin is the main carotenoid

in paprika and it does not possess provitamin A activity.
There is some scientific evidence supporting the view
that capsanthin has the potential to increase cholesterol
efflux. An in vivo study showed that male Wistar rats
fed with capsanthin (the low dose: 0.16 g/kg, the high
dose: 0.32 g/kg) for 2 weeks exhibited an increase in
plasma HDL-C and an upregulation of ApoA-5 and
LCAT mRNA expression, without significantly influ-
encingmRNA levels of other genes related to cholesterol
metabolism (such as ABCA1, ApoA-1, and SR-BI)
(Aizawa and Inakuma, 2009). In the same line, it
was shown that supplementation of paprika signifi-
cantly decreased the TC, HDL-C, atherogenic index
values in rats fed with a high-cholesterol diet (Park
et al., 2010).
c. b-Carotene. b-Carotene is a carotenoid with a hy-

drocarbon skeleton and high pro-vitamin A activity
(Olson, 1989). Several studies provide insights into the
effects of b-carotene on the cholesterol metabolism
(Fuhrman et al., 1997; Relevy et al., 2015). An in vitro
study indicated that treatment with b-carotene
(0–10 mM) results in a dose-dependent suppression of
cholesterol synthesis by inhibiting the cellular HMG-
CoA reductase activity in J774 macrophages. On the
other hand, a study demonstrated that b-carotene
(5 mM) could not significantly upregulate the ABCA1,
ABCG1, and ApoE mRNA levels in human monocytes
compared with retinoic acid (Langmann et al., 2005).
Natural b-carotene comprises several isomers, in-

cluding all-trans-b-carotene (all-trans-bc) and 9-cis-
b-carotene (9-cis-bc). There is a lot of evidence from
cellular, animal, and clinical studies supporting the
association between the b-carotene isomers and the
cholesterol levels. For example, a recent study con-
ducted in RAW264.7 macrophages revealed that all-
trans-bc and 9-cis-bc-regulated cholesterol efflux to
HDL was related to transcriptional induction of
ABCA1, ABCG1, and ApoE (Bechor et al., 2016). In
addition, previous study showed that the alga Duna-
liella bardawil (containing high levels of all-trans-bc
and 9-cis-bc) increased plasma HDL-C and attenuated
atherosclerosis in both ApoE–/– (Harari et al., 2013) and
LDLR–/– mice (Harari et al., 2008). A clinical study
indicated that 9-cis-bc-rich powder of the alga Duna-
liella bardawil increased plasm HDL-C in fibrate-
treated patients (Shaish et al., 2006). It was also
reported that 9-cis-bc can be cleaved by endogenous
b-carotene 15,159-monooxygenase 1 to form 9-cis reti-
noic acid or other retinoids, subsequently activating the
RXR and finally inhibiting foam cell formation and
atherosclerosis progress (Zolberg Relevy et al., 2015).

d. Retinoids. Plentiful evidence suggests that reti-
nol (also known as vitamin A1) and its natural deriva-
tives 9-cis retinoic acid (9-cis-RA) and all-trans retinoic
acid (ATRA) can increase macrophage cholesterol
efflux and, therefore, are promising therapeutic agents
for the prevention of atherosclerosis progression. It was
reported that 9-cis-RA and ATRA (5 mM) are potent
inducers of ABCA1, ABCG1, and ApoE expression in
THP-1 macrophages, as well as exhibited a very strong
induction of cholesterol efflux to ApoA-1 in RAW264.7
macrophages (Langmann et al., 2005). Another study
revealed that retinoids are able to induce the CYP27
expression, which is likely to act as a modulator of the
LXR activation, subsequently mediating cholesterol
efflux from macrophages (Szanto et al., 2004). This
notion is further underscored by the observation that
the cholesterol efflux induced by retinoids involves the
activation of steroidogenic acute regulatory protein
expression and the upregulation of LXR-targeted genes
(SREBP-1c andABCA1) inmousemacrophages (Manna
et al., 2015).

Furthermore, 9-cis-RA has been reported to increase
ABCA1-mediated cholesterol efflux from J774 macro-
phages, THP-1-derived macrophages (Kiss et al., 2005),
and RAW264.7 macrophages (Schwartz et al., 2000). To
further characterize the underlying molecular mecha-
nisms of 9-cis-RA on cholesterol efflux, a study using
J774A.1 cells and primary peritoneal macrophages
showed that 9-cis-RA-mediated inhibition of foam
cell formation and amelioration of atherosclerosis
were regulated by the activation of LXRa and the
upregulation of ABCA1 and ABCG1 expression (Zhou
et al., 2015). Interestingly, treatment with 9-cis-RA
(2mg/kg) can ameliorate the atherosclerosis in ApoE2/2

mice fed with HFD (Zhou et al., 2015).
Another study indicated that ATRA-induced upregu-

lation of CD36 mRNA and protein expression were
related to the retinoic acid receptor-dependent signal-
ing in THP-1 cells, whichmay contribute to the foam cell
formation and the progress of atherosclerosis (Wuttge
et al., 2001). Further work also studied regulatory
action of retinoids in this context; ATRA could increase
the cholesterol efflux to ApoA-1 and enhance the ABCA1
expression, both at themRNAand protein level inMPMs
and HMDMs, in a dose-dependent manner (0.5–10 mM).
Furthermore, ATRA treatment also increased the
ABCG1 and SREBP-1c mRNA expression (Costet et al.,
2003). Moreover, ATRA-increased levels of ABCA1 pro-
tein and mRNA may partly depend on the induction of
LXR in THP-1 cells (Wågsäter et al., 2003).

e. Lycopene. Lycopene is the most abundant carot-
enoid pigment in tomato and contributes to the red color
of tomatoes. It does not have pro-vitamin A activity but
has many other biologic effects. Recently, this caroten-
oid has received marked attention for its potential in
preventing CVD and interference with foam cell forma-
tion (Mozos et al., 2018). It was shown that lycopene
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(10 mM) decreased cholesterol accumulation through
downregulation of the SR-AmRNA expression and lipid
synthesis, along with increase in the secretion of IL-10
in HMDMs and THP-1 macrophages (Napolitano et al.,
2007). These data are in agreement with another study
in THP-1 cells, which showed that lycopene (10 mM)
suppressed the cholesterol synthesis and efflux (Palozza
et al., 2011). Furthermore, the potential role of lycopene
(0.5–2 mM) in attenuating foam cell formation through
a cascade mechanismmay involve HMG-CoA reductase
inhibition, RhoA inactivation, subsequent increase in
PPARg and LXRa activation, and enhancement of
ABCA1 and caveolin 1 expression ultimately (Palozza
et al., 2011). In this line, there is a known association
between the PPARg activation and cholesterol efflux
from peritoneal macrophages in inflammation (He
et al., 2014).
In agreement with these in vitro observations, the

studies conducted on animal models (rabbits, rats, and
mice) showed that lycopene reduced the serum LDL-C
and increased the serum HDL-C levels (Palozza et al.,
2012). Mechanistically, lycopene displays potent hypo-
lipidemic effects via inhibiting PCSK9 and HMG-CoA
reductase, thus increasing hepatic LDLR (Sultan Alvi
et al., 2017). A human intervention trial also suggested
that diet with dietary supplementation of lycopene
(60 mg/day) in healthy men resulted in a significant
decrease (14%) in the LDL-C concentration (Fuhrman
et al., 1997). However, another clinical investigation
reported that dietary supplementation of lycopene is
not associated with a reduced risk of CVD in middle-
aged and older men (Sesso et al., 2005).
2. Ursolic Acid. Ursolic acid (UA), a natural ursane-

type pentacyclic triterpenoid, is abundantly distributed
in the plant kingdom. Recently, one study showed that
UA (10 mM) promoted cholesterol flux from LDL-loaded
macrophages to ApoA-1 (not HDL) through autophagy,
without altering mRNA or protein levels of ABCA1 and
ABCG1 in MPMs (Leng et al., 2016). Furthermore, UA
(50 mg/kg) treatment in LDLR2/2 mice significantly
reduced atherosclerotic lesion size, along with increase
of macrophage autophagy (Leng et al., 2016). Taken
together, these results provided evidence that UA may
have potential to be further studied as an antiathero-
genic agent.
3. Betulinic Acid. Betulinic acid, which is derived

from the bark of yellow and white birch trees, is
a pentacyclic triterpenoid with a wide range of phar-
macological properties. One study indicated that betu-
linic acid may induce cholesterol efflux through
blocking the NF-kB-miRNA-33s-ABCA1 signal path-
way in LPS-treated macrophages (Zhao et al., 2013a).
Consistently, in both RAW264.7 and THP-1 cells,
betulin (a betulinic acid derivative) significantly in-
creased ABCA1/ABCG1-mediated cholesterol efflux via
suppressing the expression of SREBPs, which bind to
E-box motifs in the ABCA1 promoter (Gui et al., 2016).

Betulinic acid was reported to be a potent pharmaco-
logical inhibitor of ACAT1 and ACAT2 (Lee et al., 2006),
suggesting its potential utility in reduced CE accumu-
lation. Moreover, an in vivo study was done using
ApoE–/– mice in which increased ABCA1 expression
and enhanced fecal cholesterol excretion were observed
upon long-term administration of betulin (40 mg/kg),
along with suppressed macrophage-positive areas in
the aortic sinuses (Gui et al., 2016). Another study
confirmed that betulinic acid (50 mg/kg) reduced ath-
erosclerotic lesions and reduced TG, TC, and LDL-C
levels in ApoE2/2 mice (Zhao et al., 2013a).

4. Erythrodiol. Erythrodiol is a pentacyclic triterpe-
noid present in olive oil. Recently, a study was con-
ducted in THP-1 macrophages to screen the effect of
various components of olive oil on foam cell formation.
The results showed that among several compounds,
only erythrodiol (10mM) has a positive effect on ApoA-1-
mediated cholesterol efflux by inhibiting ABCA1 deg-
radation (Wang et al., 2017f). Therefore, erythrodiol
may serve as a good candidate for further studies
related to the prevention of atherosclerosis progression.

5. Ginsenosides. Ginseng, the original sources of
which are the roots of the plant species Panax ginseng,
is therapeutically used throughout the world for its
possible curative and health-restorative properties.
Most of the pharmacological actions of ginseng are
attributed to its major constituents, ginsenosides.
There are several types of ginsenosides, including
Rb1, Rg1, Rg3, Rh1, Re, and Rd. Numerous studies
focused on the potential benefits of the ginseng extract
and its purified ginsenoside monomers in the area of
CVD (Lee and Kim, 2014). Among these various ginse-
nosides, ginsenosides Rb1 and Rg1 are regarded as the
most abundant active components from ginseng. A
study showed that ginsenoside Rb1 (10 mM) signifi-
cantly increased cholesterol efflux from foam cells to
ApoA-1 by about 21% (Wang et al., 2007b). Similarly,
a recent publication indicated that Rb1 (10–80 mM)
treatment showed a significant increase in ABCA1
protein expression in macrophage foam cells, which
provided the indirect evidence for a possible effect on
the cholesterol efflux. Rb1 treatment also reduced the
lipid metabolism and enhanced atherosclerotic plaque
stability via enhancing macrophage autophagy in pri-
mary peritoneal macrophages isolated from C57BL/6
mice and ApoE–/– mice (Qiao et al., 2017).

Ginsenoside Rd is another important constituent of
ginseng. Data obtained from a RAW264.7 cell model
revealed that Rd (20 mM) inhibited SR-A protein
expression, followed by the decrease of oxLDL uptake
and decreased intracellular cholesterol content, which
is probably mediated by the inhibition of Ca21 influx
throughCa21 channels (Li et al., 2011). Consistently, an
in vivo study indicated that Rd treatment (20 mg/kg per
day) reduced the oxLDL uptake and atherosclerotic
plaque areas in ApoE–/– mice.
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6. Saikosaponin A. Saikosaponin A, a triterpenoid
glycoside (saponin), is the major bioactive constituent
from the Chinese herb Radix bupleuri. Saikosaponin A
(at concentrations of 0–50 mM) ameliorated oxLDL-
induced foam cell formation and suppressed lipoprotein
uptake by diminishing LOX-1 and CD36 expression, as
well as stimulated cholesterol efflux through upregulat-
ing the ABCA1 and PPARg expression (He et al.,
2016a). Saikosaponin A also regulated the immune
inflammatory reaction via PI3K/Akt/NF-kB/NLRP3
signaling pathway and decreased the diffusion of proin-
flammatory cytokines (IL-1b, IL-18, IL-6, TNF-a, and
MCP-1), revealing new insight on the potential of
saikosaponin A in the context of atherosclerosis (He
et al., 2016a).
7. Tanshinone IIA. Danshen, the rhizome of Salvia

miltiorrhiza Bunge, has been widely used to treat
various diseases for centuries (Gao et al., 2012). The
chemical constituents and biologic activities of Danshen
have been extensively studied. Among its constituents,
tanshinone IIA is the major bioactive lipophilic com-
pound (Xu and Liu, 2013; Fang et al., 2018). An in vitro
study demonstrated that tanshinone IIA (at concentra-
tions of 0.1–10 mM) decreased cellular cholesterol level,
oxLDL uptake, as well as CD36 expression at both the
mRNA and protein levels in oxLDL-treated MPMs
(Tang et al., 2011). Furthermore, tanshinone IIA
(1–10 mM) induced the reduction of CD36, which might
be related to a PPARg antagonism (Tang et al., 2011).
Tanshinone IIA also increased the ABCA1- and
ABCG1-mediated cholesterol efflux through the ERK/
Nrf2/HO-1 loop and decreased the SR-A-mediated
oxLDL uptake by inhibition of AP-1, resulting in de-
creasing cholesterol accumulation in cells (Liu et al.,
2014c).
In vivo, tanshinone IIA (at doses of 10–90 mg/kg) also

downregulated the SR-A mRNA expression and ame-
liorated the atherosclerotic lesions in the aortas of
ApoE2/2 mice (Tang et al., 2011). Consistently, another
study also showed that tanshinone IIA (30 mg/kg per
day) lessened atherosclerotic plaques in ApoE2/2 mice
(Liu et al., 2014c). Recently, another study conducted in
macrophages from the peritoneal cavity of rats and
THP-1-derived macrophages showed that ABCA1
mRNA and protein expression were significantly in-
creased, while CD36 was significantly reduced upon
tanshinone IIA treatment, thereby demonstrating si-
multaneous effects on cholesterol intake and efflux (Jia
et al., 2016). In addition, tanshinone IIA was also
reported to upregulate LDLR in hyperlipidemic rats
(Jia et al., 2016). Furthermore, a clinical trial has shown
that tanshinone IIA reduces hs-CRP in patients with
CAD (Li et al., 2017b).
8. Tanshindiol C. Tanshindiol C is another bio-

active compound isolated from Danshen. A recent re-
port showed that tanshindiol C (1, 3, and 10 mM)
concentration dependently inhibits oxLDL-induced

foam cell formation via activation of Prdx1/ABCA1
signaling pathway. Also, tanshindiol C treatment-
induced Prdx1 transcription was coregulated by Nrf2
and Sirt1 expression (Yang et al., 2018b). Furthermore,
tanshindiol C also significantly inhibited the secretion
of TNF-a, IL-1b, and IL-8 (Yang et al., 2018b). These
data indicated that the potential therapeutic effects of
tanshindiol C on atherosclerosis could be due to the
modulation of both foam cell formation and inflamma-
tion. However, more conclusive evidence is needed to
confirm the significance of tanshindiol C in the context
of atherosclerosis in animal models and clinical trials.

9. Zerumbone. Zingiber zerumbet is a wild ginger
commonly found in Asia. It has been used as a tradi-
tional herbal medicine to treat various diseases for
a long time. A major bioactive component isolated from
Zingiber zerumbet is zerumbone, which is a natural
cyclic sesquiterpene known to possess numerous bi-
ologic activities. Zerumbone was reported to have
therapeutic potential in the context of atherosclerosis.
In vitro experiments showed that zerumbone (5 and
10 mM) suppressed the SR-A and CD36 mRNA expres-
sion via regulating AP-1 and NF-kB repression, leading
to a blockade of acLDL uptake in THP-1 macrophages
(Eguchi et al., 2007). Furthermore, THP-1macrophages
treated with zerumbone (10–100 mM) showed a signifi-
cant reduction in the cholesterol levels via upregulation
of mRNA and protein levels of ABCA1, but not ABCG1,
coupled with the enhanced phosphorylation of ERK1/2
(Zhu and Liu, 2015). The consensus regarding the
beneficial effects of zerumbone is strongly supported
by experiments conducting in a cholesterol-fed rabbit
model, which displayed that zerumbone (8–20 mg/kg)
could prevent the development of atherosclerotic lesions
(Hemn et al., 2013, 2015).

C. Phenolic Compounds

1. Gallotannin. 1,2,3,4,6-Penta-O-galloyl-b-d-glu-
cose (PGG) is a prodrug of gallotannin, which is present
in diverse medicinal herbs. Zhao et al. (2015) found that
PGG (2.5 and 5 mM) induced cholesterol efflux in
oxLDL-stimulated J774A.1 and THP-1 macrophages
by increasing SR-BI/ABCA1 expression, indicating that
PGG has the potential to be further studied for pro-
moting RCT and conferring atheroprotective effects.

2. Curcumin. Curcumin is a potent antioxidant
present in Curcuma longa (turmeric or Jiang Huang)
that has been demonstrated to confer protection against
atherosclerosis in ApoE2/2 (Zhao et al., 2012) and
LDLR2/2 mice (Hasan et al., 2014). It has been shown
that curcumin and other bioactive phenolic compounds
from turmeric have powerful bioactivities, including
antioxidation associated with preventing lipid perox-
idation (Ramirez Bosca et al., 1997). Curcumin was also
used as a tool compound for inhibiting histone methyl-
transferase p300, c-Jun N-terminal kinases (JNK), and
transcriptional factor AP-1 (Li et al., 2004b; Lee et al.,
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2009b; Huwait et al., 2011). By modifying AP-1, curcu-
min inhibited the resistin-induced dysregulation of
SR-A, CD36, and ABCA1 (Lee et al., 2009b). In 2012,
Zhao et al. (2012) systematically analyzed the effects of
curcumin on macrophage-derived foam cell formation.
The authors observed that curcumin (20 and 40 mM)
significantly ameliorated lipid accumulation in J774.A1
macrophages induced by oxLDL by both decreasing the
SR-A-dependent oxLDL uptake and increasing the
ABCA1-dependent cholesterol efflux, without signifi-
cant effect on other cholesterol transporters. Mechanis-
tic experiments indicate that curcumin reduces SR-A
expression via a ubiquitin/proteasome pathway. Fur-
thermore, curcumin upregulated ABCA1 expression via
LXRa-dependent transcriptional regulation (Zhao et al.,
2012). Additional mechanisms, such as an activation of
the AMPK/Sirt1/LXRa (Lin et al., 2015c) and the Nrf2/
HO-1 pathway (Kou et al., 2013) and inhibition of the
p38MAPK pathway (Min et al., 2013) were also involved
in its effects. These concerted mechanisms together
contribute to the inhibitory effect on foam cell formation
mediated by curcumin. Recently, several curcumin deriv-
atives, such as demethoxycurcumin (50 mM) (Kou et al.,
2013) and nicotinate-curcumin (10 mM) (Gu et al., 2016),
have also been shown to inhibit THP-1 macrophage-
derived foam cell formation. In addition, curcumin func-
tions as an inhibitor of PCSK9 and upregulates hepatic
LDLR expression (Tai et al., 2014).
More importantly, curcumin (500–1000 mg/kg diet)

attenuated the atherosclerosis development in ApoE2/2

mice by reducing the SR-A expression and increasing
the ABCA1 expression in vivo (Hasan et al., 2014). The
inhibitory activity against foam cell formation and the
antiatherosclerotic effects of curcumin were also con-
firmed by several other studies (Kou et al., 2013; Min
et al., 2013; Lin et al., 2015c; Soltani et al., 2017).
Interestingly, curcumin lowered the level of LDL-C and
TG in patients at risk for CVD (Qin et al., 2017).
Therapeutic efficacy and molecular targets of curcumin
in cardiovascular diseases have been reviewed else-
where (Li et al., 2019).
3. Danshensu. Danshensu is an active component

isolated from an eminent Chinese medicinal herb
Salvia miltiorrhiza (Danshen), which is known for
improving blood microcirculation. Danshen is widely
used in China and other countries for treating various
cardiovascular disorders, including atherosclerosis, an-
gina pectoris, and myocardial infarction, due to potent
anti-inflammatory, antioxidative, and lipid-lowering
effects (Xu and Liu, 2013). It was shown that danshensu
suppressed the LPS- and oxLDL-induced lipid accumu-
lation in RAW 264.7 macrophages at the concentrations
of 5–20 mM by activating LXR and inhibiting NF-kB, as
well as the LPS-induced expression of fatty acid binding
protein 4 and perilipin-2 (Xie et al., 2011; Wang et al.,
2017c). Further studies also showed that danshensu
(1–10 mM) prevented cholesterol accumulation and foam

cell formation in RAW264.7 mouse macrophages by
inhibiting CD36-mediated lipid uptake, while enhanc-
ing ABCA1 (G1)-mediated cholesterol efflux (Wang
et al., 2010b; Gao et al., 2016). In addition, danshensu
could improve dyslipidemia by decreasing the levels of
LDL-C and fatty acid by inhibitingHMG-CoA reductase
and fatty acid synthase expression (Yang et al., 2011).

An earlier in vivo study has revealed that danshensu
(67.5 mg/kg body weight per day) attenuated high
methionine-rich diet-induced accumulation of foam cells
in rat aortic endothelium by suppressing the expression
of TNF-a and intercellular adhesionmolecule 1 (ICAM1)
(Yang et al., 2010). Furthermore, Danshensu Bingpian
Zhi (20 and 40 mg/kg body weight), which has the main
bioactive constituent Danshensu, attenuated atheroscle-
rosis in ApoE2/2 mice.

4. 6-Dihydroparadol. Ginger (Zingiber officinale) is
a common food-derived health supplement, used world-
wide due to its potential preventive effects in multiple
diseases, including atherosclerosis and other inflam-
matory disorders (Aktan et al., 2006). Gingerols are the
main bioactive compounds from ginger with potent anti-
inflammatoryproperties in cultured cells. 6-Dihydroparadol,
a bioactive metabolite of gingerols, displayed potent anti-
inflammatory effects by blocking the NF-kB/inducible NO
synthase/NO pathway in LPS-stimulated macrophages
(Aktan et al., 2006). 6-Dihydroparadol (30 mM) was
recently shown to promote cholesterol efflux from
human THP-1 macrophages by increasing the expres-
sion of ABCA1 and ABCG1 via preventing the
proteasome-dependent protein degradation, underscor-
ing its therapeutic potential in preventing foam cell
formation and possibly atherosclerosis (Wang et al.,
2018a).

5. Paeonol. Paeonol is a bioactive phenolic com-
pound isolated from traditional Chinese medicine
Paeonia suffruticosa (Cortex Moutan), which is com-
monly used to treat inflammatory disorders including
atherosclerosis (Zhao et al., 2013b). The antiathero-
sclerotic effects of paeonol have been well documented
in several experimental animal models of atherosclero-
sis, including rabbits (Shi et al., 1988; Li et al., 2009a),
quails (Dai et al., 1999), and ApoE2/2 mice (Zhao et al.,
2013b; Li et al., 2015c). Four major antiatherosclerotic
mechanisms of paeonol include 1) endothelial protection
(reducing monocyte adhesion to inflamed endothelium,
endothelial apoptosis, and senescence) (Nizamutdinova
et al., 2007; Pan and Dai, 2009; Wang et al., 2012d; Bao
et al., 2013; Chen et al., 2013; Jamal et al., 2014; Liu
et al., 2014b; Yuan et al., 2016); 2) inhibiting the
proliferation and migration of VSMC (Chen et al.,
2014; Hu et al., 2016a); 3) antiplatelet activation (Shi
et al., 1988); and 4) anti-foam cell formation (Zhao et al.,
2013b; Li et al., 2015c).

Studies performed in isolated macrophages from
ApoE2/2 mice treated with paeonol (50 and 100 mg/ml)
showed that it significantly reduced the oxLDL-induced
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lipid accumulation, probably by promoting cholesterol
efflux via activating the LXRa/ABCA1 pathway, which
was suggested by study in J774.A1 macrophages (Zhao
et al., 2013b). Silencing ABCA1 or LXRa abolished the
paeonol-induced effects on cholesterol efflux and lipid
accumulation, supporting the indispensable effect of
LXRa and ABCA1 in mediating the protective effects.
The inhibition of foam cell formation and antiathero-
sclerotic effects of paeonol were reproduced by another
independent group, who confirmed the ABCA1-
activating effects of this compound (5, 10 and 50 mM)
in RAW264.7 macrophages and suggested that the anti-
foam cell formation effects of paeonol also depended on
CD36 inhibition and activation ofHO-1 (Li et al., 2015c).
More importantly, paeonol treatment led to reduced

atherosclerotic lesions formation and attenuated sys-
temic inflammation, as well as increased ABCA1 expres-
sion in ApoE2/2 mice (Zhao et al., 2013b). In addition to
effects mentioned above, paeonol also reduced the levels
of malondialdehyde and oxidized LDL in hyperlipidemia
rats (Dai et al., 2000).
6. Polydatin. Polydatin represents one of the major

bioactive ingredients from Rhizoma Polygoni Cuspidati
(Da Huang), an eminent Chinese medicinal herb, which
dispels dampness, alleviates jaundice, reduces fever,
subsides toxins, and removes stasis (Du et al., 2009;
Deng et al., 2011; Liu et al., 2012b; Ma et al., 2016;
Gugliandolo et al., 2017). Pharmacological studies in
the past decade have shown that polydatin exhibits
a broad range of bioactivities with cardiovascular
relevance, including antioxidation, anti-inflammation,
cardioprotection, blood vessel dilation, lipid-lowering
effect, as well as inhibitory effects on platelet aggrega-
tion, monocyte adhesion to activated endothelium,
thrombus formation, and atherosclerosis development
(Du et al., 2009; Deng et al., 2011; Liu et al., 2012b; Ma
et al., 2016; Gugliandolo et al., 2017). The preventive
effects of polydatin on foam cell formationwere reported
recently (Wu et al., 2015b). Polydatin treatment of
48 hours reduced the level of TC, FC, and CE, together
with reducing the secretion of TNF-a and IL-1b in
oxLDL-stimulated ApoE2/2 mouse macrophages. The
mechanism of these effects is linked to the activation of
PPARg-dependent ABCA1 upregulation and the de-
crease of CD36 expression (Wu et al., 2015b). Polydatin
also improved dyslipidemia via suppressing PCSK9
and upregulating hepatic LDLR expression (Li et al.,
2018a).
7. Protocatechuic Acid. Protocatechuic acid (PCA) is

a bioactive compound present in some medicinal herbs
such as Danshen (Li et al., 2018d)). It is a major
metabolite of fruit/vegetable-derived anthocyanins
(such as C3G) generated by gut microflora (Hidalgo et al.,
2012;Wanget al., 2012a;Lin et al., 2015b).Consumption of
thePCA-rich vegetable chicory (5 g/kg diet) reduced theTC
and CE accumulation in isolated macrophages via upre-
gulation of the ABCA1/ABCG1-mediated cholesterol efflux

(Lin et al., 2015b). Because of the fact that PCA is the
major component of chicory, a later study found that
PCA, rather than its parent drug C3G, promoted the
ABCA1 (G1)-dependent cholesterol efflux from macro-
phages. miRNA microarray assay elucidated that PCA
reduced the miRNA-10b expression, thereby upregulat-
ing the expression of ABCA1 (G1) inMPMs (Wang et al.,
2012a). Protocatechuic acid could also regulate lipid
metabolism via suppressing the expression of HMG-
CoA reductase (Liu et al., 2010b). In in vivo study, C3G
(50 mg/kg body weight) induced RCT in the ApoE2/2

mice model and the atheroregression could be inhibited
by antibiotic treatment, suggesting that the atheropro-
tective effect of C3G is gut microbiota dependent (Wang
et al., 2012a).

In addition to influence of cholesterol metabolism,
PCA (10, 20, and 40 mg/ml) was also shown to inhibit
ICAM1 and vascular cell adhesion molecule 1 (VCAM-
1)-dependent monocyte adhesion to activated HUVECs,
as well as CCL2-mediated monocyte transmigration,
thereby reducing the development of atherosclerosis in
ApoE2/2 mice at the dose of 0.03 g/kg (Wang et al.,
2010a, 2011; Stumpf et al., 2013). PCA (150 mg/ml) also
exhibited inhibitory effects on VSMC proliferation in
A7r5 smooth muscle cell line (induced by oleic acid) by
activating AMPKand arresting cell cycle at G0/G1 phase
(Lin et al., 2015a). Also, PCA increased the endothelium-
dependent vasorelaxation as well as tetrahydrobiopterin
levels and combated eNOSuncoupling (Liu et al., 2016b).

8. Salicylic Acid. Aspirin (acetyl salicylic acid) is an
anti-inflammatory drug used as a cardiovascular ther-
apeutic. It (600 and 1200 mM) upregulated the expres-
sion of ABCA1 and SR-BI, thereby stimulating the
HDL-mediated cholesterol efflux in THP-1 macro-
phages (Viñals et al., 2005; Lu et al., 2010). In light of
the key role of AMPK in regulating lipid and energy
metabolism, Fullerton et al. (2015) explored whether
AMPK was involved in the induction of ABCA1 and
ABCG1 expression by aspirin. The authors observed
that AMPK b1 deletion significantly impaired choles-
terol efflux, without affecting lipid uptake in macro-
phages. Moreover, the AMPK activation by salicylate
(salts and esters of salicylic acid) prevented foam cell
formation via promoting HDL and ApoA-1-mediated
cholesterol efflux by increasing the ABCA1 and ABCG1
expression in BMDMs. However, the preventive effect
of salicylate was reduced in AMPK b1-deficient
BMDMs, indicating that the effect of salicylate on
cholesterol efflux and foam cell formation is dependent
on AMPK (Fullerton et al., 2015). Another study
confirmed this result and observed that a low-dose of
aspirin (,0.5 mM) also upregulates the ABCA1-
dependent cholesterol efflux via activating the PPARa
pathway, which provides additional insights to explain
the cardiovascular actions of aspirin (Wang et al.,
2010e). In addition, aspirin attenuated atherosclero-
sis in ApoE2/2 mice partly by suppressing systemic
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inflammation and promoting inflammation resolution
(Petri et al., 2017).
9. Salvianolic Acid B. Salvianolic acid B is a major

hydrophilic constituent from Danshen, which has been
demonstrated to exhibit antiatherosclerotic effects in
a model of neointimal hyperplasia in rabbits (Yang
et al., 2011) and in ApoE2/2 mice (Chen et al., 2006; Lin
et al., 2007). Salvianolic acid B has shown to inhibit lipid
peroxidation (LDL oxidation) (Yang et al., 2011) and
activate AMPK (Cho et al., 2008). A high-throughput
screening assay identified salvianolic acid B (15 and
30 mM) as an effective CD36 antagonist that blocks the
oxLDL uptake in RAW264.7 macrophages (Wang et al.,
2010b). Further follow up studies showed that salvia-
nolic acid B directly bound to CD36 (Kd 5 3.74 mM) and
inhibited the CD36 expression. By doing so, salvianolic
acid B (1, 10, and 100 mM) reduced the CD36-dependent
lipid uptake and foam cell formation in mouse macro-
phages, as well as in PMA-stimulated THP-1 human
macrophages (Bao et al., 2012). Salvianolic acid B
has been reported to promote the HDL- and ApoA-1-
mediated cholesterol efflux in differentiated THP-1
macrophages via inducing the expression of ABCA1
(Yue et al., 2015). Further mechanistic studies showed
that the upregulation of ABCA1, promoted by salvia-
nolic acid B (1 and 10 mM), was reversed by PPARg and
LXRa inhibitors. This evidence indicates that salvia-
nolic acid B reduces lipid accumulation by promoting
cholesterol efflux via a PPARg/LXRa/ABCA1-depen-
dent pathway in THP-1 macrophages (Yue et al., 2015).
10. Sesamol. Sesamol is an essential bioactive com-

pound of sesame oil (Sesamum indicum), which is
a cardiovascular protective dietary supplement. Pre-
vious studies have shown that a sesame oil aqueous
extract (0.75 mg/mouse per day) prevented or regressed
atherosclerosis in LDLR2/2 mice (Narasimhulu et al.,
2018) and sesamol derivative (INV-403) (20 mg/kg per
day) played a positive role in hyperlipidemic rabbits fed
with an atherogenic diet (Ying et al., 2011). Mechanistic
studies showed that both sesame oil and sesame oil
aqueous extract slightly increased the ABCA1 expres-
sion, while decreasing the mRNA expression of CD36,
CD68, SR-A, and LOX-1 in the aortic arch segments of
LDLR2/2 mice model (Narasimhulu et al., 2018).
Furthermore, it is possible that sesamol is mainly

responsible for the observed atheroprotective effects of
sesame oil. A recent study identified that both sesamol
(25–100 mM) and sesame oil (1–10 mg/ml) increase the
expression/activity of PPARg and LXRa in Chinese
hamster ovary cells via an MAPK-dependent mecha-
nism. Most importantly, sesamol and sesame oil
boosted cholesterol efflux from MPM (Majdalawieh
and Ro, 2015). This evidence, together with a previous
report showing that sesamol (10, 30, and 100 mM)
suppressed inflammatory response in LPS-stimulated
RAW264.7 mouse macrophages (via AMPK-dependent
NF-kB suppression) (Wu et al., 2015d), collectively

indicates that sesamol has the potential to reduce foam
cell formation and atherogenesis (Majdalawieh and Ro,
2015).

11. Resveratrol. Resveratrol is a major stilbenoid
compound isolated from red wine. Resveratrol displays
reproducible antiatherosclerotic effects in several ani-
mal models, including ApoE2/2 mice (Do et al., 2008;
Chang et al., 2015), ApoE*3-Leiden CETPmice (Berbée
et al., 2013), and ApoE2/2/LDLR2/2 mice (Fukao et al.,
2004). The atheroprotective mechanisms of resveratrol
include inhibition of LDL oxidation (Berrougui et al.,
2009), enhancement of endothelial protection, decrease
of TMAO via gut microbiota (Chen et al., 2016), in-
hibition of the proliferation and migration of VSMCs,
monocyte/macrophage differentiation, and platelet ac-
tivation (Vasamsetti et al., 2016). It was reported that
resveratrol (2.5 mM) reduced the LPS-induced RAW264.7
foam cell formation via attenuating theNADPH oxidase 1
(Nox1)-dependent ROS production and MCP1 expression
via Akt/Foxo3a and AMPK/Sirt1 pathways (Park et al.,
2009a; Dong et al., 2014). Follow up studies in human
macrophages identified that resveratrol at the concen-
trations of 10 or 100 mM reduced oxLDL uptake in
THP-1 macrophages (Voloshyna et al., 2013). Resvera-
trol promoted ApoA1- and HDL-mediated cholesterol
efflux in both mouse (RAW264.7, J774.A1, MPMs) and
human macrophages (THP-1) by increasing the expres-
sion of ABCA1 (Berrougui et al., 2009; Allen and
Graham, 2012) and ABCG1 via PPARv/LXRa and
adenosine 2A receptor pathway (Voloshyna et al.,
2013). In addition to the therapeutic effects in foam cell
formation induced by oxLDL, resveratrol (10 mM) also
ameliorated foam cell formation in J774.A1 macro-
phages caused by Chlamydia pneumonia infection by
inhibiting the synthesis of IL-17A (Di Pietro et al.,
2013). Clinical studies have shown that resveratrol
lowers the level of TC and TG in patients with
dyslipidemia (Simental-Mendia and Guerrero-Romero,
2019). Resveratrol also regulated lipid metabolism
via inhibiting cholesterol-ester-transport protein and
HMG-CoA expression/level (Cho et al., 2008).

12. Epigallocatechin Gallate. EGCG is the most
studied polyphenol (catechin), derived from tea and
possessing antiatherosclerotic and plaque-stabilizing
effects in rats, rabbits, and ApoE2/2 mice (Chyu et al.,
2004; Xu et al., 2014a; Wang et al., 2018e,f). Previous
studies have shown that EGCG (25 mM) attenuated the
oxLDL-induced apoptosis of HUVECs by blocking JNK
activation (Choi et al., 2008). Furthermore, EGCG
(40 and 80 mg/ml) reversed the TNF-a-induced ABCA1
downregulation and reduced the cholesterol efflux from
THP-1 macrophages by activating the Nrf2-dependent
NF-kB inhibitory effects (Jiang et al., 2012). In the same
cell line, EGCG (10 mM) also blocked the oxLDL-induced
upregulation of SR-A, thus blocking the oxLDL uptake
and foam cell formation (Chen et al., 2017). Mechanistic
studies also showed that EGCG is having a preventing
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action on hyperlipidemia by increasing the expression
and activity of LDLR (Lee et al., 2008).

D. Phenylpropanoids

Phenylpropanoids are diverse natural aromatic prod-
ucts comprising a hydroxy- and/or alkoxy-substituted
aromatic phenyl moiety and a three-carbon propene
tail of coumaric acid, and the key intermediate in
the biosynthesis of phenylpropanoid-derived plant com-
pounds (Barros et al., 2016). These compounds have
a wide variety of biologic activities, including antimi-
crobial, antitumor, anti-inflammatory activities, and
a cholesterol-lowering effect (Okonkwo et al., 2016).
1. Lignans. Lignans represent a class of natural

polyphenols, which are dimers derived from two mole-
cules of a phenylpropanoid derivative (a C6-C3 mono-
mer). They are present in flaxseed, sesame, soybeans,
and some fruits. By acting as phytoestrogens, dietary
lignans exhibit potent antiviral, antioxidative, antitu-
mor, and antiatherosclerotic activities (Peterson et al.,
2010).
a. Arctigenin. Arctigenin, a phenylpropanoid diben-

zylbutyrolactone lignin, has many beneficial biologic
effects, such as immune modulation and regulation of
metabolic disorders (Huang et al., 2012a; He et al.,
2018). In oxLDL-loaded THP-1 macrophages, the ex-
pression of ApoE, ABCA1, and ABCG1 were increased
by arctigenin (50 and 100 mM), resulting in promoting
cholesterol efflux (Xu et al., 2013d). Arctigenin has no
obvious effects on the expression of SRs, such as SR-BI,
SR-A1, and CD36 (Xu et al., 2013d). Further studies
indicated that arctigenin (200 mg/kg body weight per
day) decreased the cholesterol levels without altering
serum TG and adiponectin levels in mice (Huang et al.,
2012a), and suppressed the lipid accumulation and
body weight gain in HFD-induced obese mice (Han
et al., 2016).
b. Leoligin. Leoligin, the major lignan of the alpine

flower Edelweiss (Leontopodium alpinum Cass.), has
shown obvious antihyperplastic effects and regulatory
activity of lipoprotein metabolism through interference
with CETP (Reisinger et al., 2009; Duwensee et al.,
2011). Recently, it was reported that leoligin reduced
LDL-C levels and postprandial serum glucose peaks
due to the direct inhibition of 3-hydroxy-3-methyl-
glutaryl-CoA reductase and moderated PPARg agonis-
tic activity in ApoE2/2 mice (Scharinger et al., 2016).
Additionally, it (3–20 mM) increased cholesterol efflux
from THP-1 macrophages by upregulating both protein
and mRNA levels of the ABCA1 and ABCG1 (Wang
et al., 2016a). These novel activities suggest that leoligin
may be of promise to be further studied as a therapeutic
agent for preventing the formation of foam cells.
c. Sesamin. Sesamin is a phytochemical that pos-

sesses diverse bioactivities, such as prevention of
fat storage, decrease of cholesterol in serum, anti-
inflammatory, and antioxidative activities (Lee et al.,

2009c; Rogi et al., 2011). It was shown that sesamin
(0.1, 1, and 10 mM) inhibited the oxLDL-induced
cholesterol accumulation and enhanced cholesterol
efflux from RAW264.7 macrophages, possibly via an
upregulation of PPARg, LXRa, and ABCG1 (Liu et al.,
2014a). This study also indicated that PPARg played an
essential role in sesamin-mediated cholesterol efflux,
since a PPARg antagonist (GW9662) could abolish the
cholesterol efflux-promoting effect of sesamin. Further-
more, sesamin increased the PPARg and LXRa transcrip-
tional activity in a concentration- and time-dependent
manner viaMAPK signaling (Majdalawieh andRo, 2014).
In vivo studies showed that sesamin attenuated athero-
sclerosis in ApoE2/2 mice by suppressing vascular in-
flammation (Wu et al., 2010). The lipid-lowering effect of
sesamin was exerted through promoting the fecal excre-
tion of sterols and inhibiting HMG-CoA reductase (Liang
et al., 2015).

d. Honokiol. Honokiol is a biphenolic natural prod-
uct, which is present in the traditional Chinese herbal
medicine Magnolia bark. During the last decades,
Magnolia bark has been used as an analgesic to treat
anxiety and mood disorders (Lee et al., 2011; Sarris
et al., 2013). With more and more biologic activities
being discovered, this neolignan is also being exten-
sively studied for its therapeutic potential in athero-
sclerosis. It was found that honokiol (30 mM) was
capable of activating the RXR/LXR heterodimer in
RAW264.7 cells, resulting in the induction of ABCA1
expression and enhancement of cholesterol efflux from
MPMs (Kotani et al., 2010). Consistent with these data,
another study showed that honokiol increased ABCA1
expression by binding to RXRb. It also increased the
ABCG1 and ApoE expression in THP-1 macrophages
(Jung et al., 2010). Honokiol and the structurally
related neolignan magnolol have also been character-
ized as dual ligands for the transcriptional activity
of the RXR/PPARg dimer (Fakhrudin et al., 2010;
Atanasov et al., 2013; Wang et al., 2014b). It has been
also shown that hepatic PPARg and its target genes
could be upregulated by this neolignan at 10 mM (Zhong
and Liu, 2018).

2. a-Asarone. As a major active constituent of
Acorus tatarinowii Schott, a-asarone exhibits a wide
range of bioactivities. It was observed that purple
perilla extract with a-asarone increased the expression
of ABCA1 and ABCG1 and accelerated the cholesterol
efflux from lipid-loaded J774A.1 macrophages. It also
enhanced the expression of LXRa and PPARg in vitro
(Park et al., 2015). These data indicated that a-asarone
promoted the macrophage cholesterol efflux through
the PPARg-LXRa-ABC transporters pathway.

In terms of lipid metabolism, a previous study has
shown that there is an association between the intake of
a-asarone (80 mg/kg body weight per day) and the de-
creased level of serum cholesterol in hypercholesterolemic
rats by inhibition of HMG-CoA reductase (Rodríguez-Páez
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et al., 2003). Another animal study revealed that 2,4,5-
trimethoxycinnamic acid, the major and nontoxic
metabolite of a-asarone, had most of the pharmacolog-
ical properties of a-asarone. Both compounds lowered
TC, LDL-C, and HDL-C in hypercholesterolemic rats
(Antunez-Solis et al., 2009).
3. Chlorogenic Acid. Chlorogenic acid, a naturally

occurring phenolic acid present in coffee, as well as in
the leaves and fruits of diverse dicotyledonous plants,
acts as an important intermediate of lignin biosynthe-
sis. Chlorogenic acid exhibited various effects, like
antioxidative activity and modulation of blood glucose
and cholesterol metabolism (Rodriguez de Sotillo and
Hadley, 2002; To�sovi�c et al., 2017). In vivo, it reduced (at
200 and 400 mg/kg body weight per day) the percentage
and the total atherosclerotic lesion area and aortic
dilatation in cholesterol-rich diet-fed ApoE2/2 mice, as
well as decreased levels of TC, LDL-C, and TG in serum
(Wu et al., 2014).
Recent reports suggested that chlorogenic acid also

displays a modulatory effect on foam cell formation.
Chlorogenic acid (1 and 10 mM) inhibited foam cell
formation and decreased the oxLDL-elicited neutral
lipid and cholesterol accumulation in RAW264.7 macro-
phages via increasing the transcription of PPARg,
LXRa, ABCA1, and ABCG1 (Wu et al., 2014). Interest-
ingly, the serum containing chlorogenic acid metabo-
lites inhibited the oxLDL-induced lipid accumulation
and increased the cholesterol efflux in RAW264.7
cells. Furthermore, five serum metabolites of chloro-
genic acid were tested and the results showed that
caffeic, ferulic, and gallic acids significantly in-
creased the HDL-mediated cholesterol efflux from
RAW264.7 cells (Wu et al., 2014). These data suggest
that these metabolites might be potential bioactive
compound, accounting for the in vivo effect of chloro-
genic acid. In addition, it is likely that other mecha-
nisms are involved in the lipid regulation by this
natural product. In this line, it was reported that
chlorogenic acid (30 mM) promoted the efflux of TC
and triacylglycerol and increased mRNA expression
of ABCA1, CYP7A1, and AMPKa2 in HepG2 cells
(Hao et al., 2016).
4. Caffeic and Ferulic Acid. Caffeic acid is a well-

known phenolic phytochemical present in coffee and
diverse other plants, since it represents a key interme-
diate in the biosynthesis of lignin. The closely related
ferulic acid is a hydroxycinnamic acid formed by the
conversion of caffeic acid and it is also present in the cell
walls of diverse plants. Both caffeic acid and ferulic acid
exhibit anticancer, antioxidative, and diverse other
biologic activities (Sato et al., 2011; Rosendahl et al.,
2015). Both compounds are being extensively studied
for their potential benefits in various disorders, such as
inflammation, neurodegenerative diseases, cancer,
CVDs, and atherosclerosis (Zhao and Moghadasian,
2008).

It was reported that caffeic and ferulic acid, the major
phenolic acids of coffee, enhanced HDL-mediated cho-
lesterol efflux, but not the ApoA-1-mediated efflux in
THP-1 macrophages. Both compounds (1 mM) increased
the expression of ABCG1 and SR-BI, but not ABCA1
(Uto-Kondo et al., 2010). Further experiments showed
that caffeic acid was identified as a PPARa agonist
in vitro (Kim et al., 2014). As ametabolite of chlorogenic
acid, ferulic acid (0.25, 0.5, and 1 mM) has also been
shown to have an enhancement effect onHDL-mediated
cholesterol efflux frommacrophages through increasing
the expression of ABCG1 and SR-BI (Uto-Kondo et al.,
2010). Furthermore, it was demonstrated that ferulic
acid (1 mM) displays antiatherosclerotic potential by
increasing the ABCA1 and ABCG1 expression in mac-
rophage form cells and further promoting cholesterol
efflux (Chen and Wang, 2015). In this light, counterac-
tion of foam cell formation can be also considered in
relation to the potential antiatherogenic properties
of phenylpropanoids, in addition to their antioxida-
tive/anti-inflammatory functions.

E. Alkaloids

1. Arecoline. Arecoline is a nicotinic acid-based bio-
active alkaloid isolated from areca nut, which has
a medicinal potential in the treatment of neurodegener-
ative diseases (Ghelardini et al., 2001). Cardiovascular
benefits of arecoline are largely unknown. In oxLDL-
stimulated macrophages, arecoline reduced the choles-
terol accumulation in a dose-dependent manner by
reducing TC, FC, and CE. In addition, arecoline also
promoted the cholesterol efflux by inducing ABCA1
expression. Further studies were warranted to evaluate
the effects of arecoline on lipid uptake in RAW264.7
macrophage and its therapeutic effect on atherosclero-
sis in vivo (Ouyang et al., 2012). In vivo study showed
that arecoline suppressed atherosclerosis in ApoE2/2

mice by inhibiting NF-kB activation (Zhou et al., 2014).
2. Berberine. Berberine is a bioactive alkaloid iso-

lated from several medicinal plants, including Berberis
(Huang Lian). Berberine-containing plants have been
used in China for a long time to treat various disorders,
including CVD (Feng et al., 2019). Berberine protects
against atherosclerosis in various animal models due to
its lipid-modulating effects. Two well-elucidated molec-
ular targets of berberine in modulating lipid levels are
LDLR (Kong et al., 2004) and proprotein convertase
subtilisin/kexin type 9 (PCSK9) (Dong et al., 2015). In
2010, Lee et al. (2010) observed that berberine (5, 10,
and 20 mM) inhibited THP-1 macrophage foam cell
formation by promoting LXRa/ABCA1-dependent cho-
lesterol efflux. However, berberine did not affect
ABCG1, SR-BI, CD36, and SR-A. Further studies in-
dicate that berberine (5 and 10 mg/l) also prevented the
oxLDL-induced upregulation of LOX-1 and downregu-
lation of SR-BI in THP-1 macrophages, without affect-
ing the SR-A and ABCA1 expression (Guan et al., 2010;
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Chi et al., 2014a). In addition, several derivatives of
berberine, such as 13-hexylberberine (Li et al., 2010),
were shown to act as potential CD36 inhibitors. Possible
inhibition of foam cell formation and antiatherosclerotic
potential of these derivatives needs to be further
evaluated in vitro and in vivo. Othermechanisms linked
to the effect of berberine on foam cell formation include
activation of AMPK/Sirt1 (Chi et al., 2014b), autophagy
induction (Kou et al., 2017), as well as inhibition of
adipocyte enhancer-binding protein 1 (Huang et al.,
2012b).
However, a contradictory study reported that berber-

ine (5 mg/kg per day) unexpectedly promoted athero-
sclerosis in mice by enhancing the SR-A-mediated
oxLDL uptake and foam cell formation in human and
mouse macrophages (Li et al., 2009b). Mechanistic
studies revealed that berberine-mediated SR-A upre-
gulation was exerted through suppressing the phospha-
tase and tensin homolog expression, thus promoting
the activation of Akt in RAW264.7 macrophages (Li
et al., 2009b). The discrepancy of the atherosclerosis-
modulating effects of berberine may be due to different
animal models and doses, which were used in these
studies. Despite most of the literature indicating that
berberine has beneficial effects in cardiovascular and
metabolic diseases, the precise effects and mechanisms
of berberine action in the modulation of foam cell
formation need to be further evaluated. In patients
with dyslipidemia, berberine reduces TC, LDL-C, TG
and increases HDL-C, partially through inhibiting
PCSK9 and increasing LDLR expression/activity
(Kong et al., 2004; Cameron et al., 2008; Ju et al., 2018).
3. Piperine. Piperine is a biologically active ingredi-

ent isolated from the fruits of black pepper (Piper
nigrum). It has been shown that piperine (100 mg/ml)
decreases cholesterol uptake dose dependently in Caco-
2 cells by reducing the levels of the membrane localized
cholesterol transporter protein-Niemann-Pick disease,
type C1 (NPC1) like intracellular cholesterol trans-
porter 1 (NPC1L1) and SR-BI (Duangjai et al., 2013).
More recently, piperine (25, 50, and 100 mM) was also
found to promote the ABCA1 protein expression in
THP-1-differentiated human macrophages, without af-
fecting the ABCG1 and SR-BI expression (Wang et al.,
2017d). Further studies revealed that piperine did not
affect the gene expression of ABCA1, but increased the
ABCA1 protein stability by preventing calpain-mediated
ABCA1 protein degradation (Wang et al., 2017d). In
addition, piperine regulated lipid metabolism via in-
creasing hepatic LDLR expression via proteolytic acti-
vation of SREBPs in HepG2 cells (Ochiai et al., 2015).
These pharmacological effects placed piperine as a prom-
ising food-derived bioactive compound with potential
therapeutic implications in atherosclerosis.
4. Rutaecarpine. Rutaecarpine (or rutecarpine) is

a nonbasic alkaloid isolated from the unripe fruits of the
medicinal herb Evodia rutaecarpa (Wu Zhu Yu), which

has been used in treating cardiovascular and cerebro-
vascular diseases (Tian et al., 2019b). A high-throughput
screening assay for ABCA1 upregulators identified
rutaecarpine as a potential active compound that in-
creased the ABCA1 promotor activity in HepG2 cells
(EC50 5 0.27 mM) (Xu et al., 2014b). Further studies
showed that rutaecarpine upregulated the expression of
ABCA1 and SR-BI (without affecting ABCG1 and CD36)
via LXRa and LXRb, thereby reducing the lipid accumu-
lation and foam cell formation via promoting cholesterol
efflux in vitro (RAW264.7macrophages andHepG2 cells)
and in vivo (ApoE2/2 mouse). By this mechanism,
rutaecarpine (20 mg/kg body weight per day) reduced
atherosclerotic plaque development in ApoE2/2 mice.
The atheroprotective effects of rutacarpine are accompa-
nied by reduced macrophage and lipid content in ath-
erosclerotic plaques (Xu et al., 2014b). Rutaecarpine
lowered the level of TC, TG, LDL-C, and hs-CRP in
hyperlipidemic and hyperglycemic rats via AMPK
activation and NF-kB inhibition (Nie et al., 2016;
Tian et al., 2019b). Several derivatives of rutaecarpine
also exhibited antiatherosclerotic potential by enhanc-
ing cholesterol efflux from RAW264.7 macrophages to
HDL and thus inhibiting foam cell formation (Li et al.,
2014).

5. Evodiamine. Evodiamine, an indoloquinazoline
alkaloid, is present in the traditional Chinese medicine
Fructus Evodiae (Chinese name:Wuzhuyu) (Shoji et al.,
1986; Wagner et al., 2011). Evodiamine (3–20 mM)
increased cholesterol efflux from THP-1-derived human
macrophages significantly by directly binding to
ABCA1 and thereby increasing ABCA1 stability and
protein level (Wang et al., 2018c). Moreover, treatment
of evodiamine (10 mg/kg body weight) for 4 weeks
decreased the size of atherosclerotic lesions and allevi-
ated the hyperlipidemia, as well as hepatic macro-
vesicular steatosis in ApoE2/2 mice, probably through
transient receptor potential vanilloid type 1 (TRPV1)
pathway (Su et al., 2014).

6. Leonurine. Leonurine is an anti-inflammatory,
antioxidative, and antiatherosclerotic pseudoalkaloid
isolated from Herba leonuri (Jiang et al., 2017a). Re-
cently, Jiang et al. (2017a) have demonstrated that
leonurine (5–80 mM) dose dependently inhibited the
lipid accumulation (TC, FC, and CE) and foam cell
formation in oxLDL-stimulated THP-1 macrophages.
Mechanistic investigations indicated that leonurine
inhibited foam cell formation by promoting ApoA-1-
and HDL-mediated cholesterol efflux via the PPARg/
LXRa/ABCA1 (G1) pathway (Jiang et al., 2017a). In this
line, leonurine also increased the expression of key
proteins in cholesterol efflux, including PPARg, LXRa,
ABCA1 (G1), and reduced atherosclerotic development
in ApoE2/2 mice fed with an atherogenic diet (10 mg/kg
body weight per day). More studies are warranted to
study potential effects of leonurine on suppressing lipid
uptake and the related mechanisms.

Targeting Foam Cells by Natural Products 645

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


F. Steroids

1. Diosgenin. Diosgenin and its glycoside form dio-
scin are pharmacologically active steroidal sapogenins
present in Dioscorea plant species. Both diosgenin and
dioscin have been shown to exhibit antioxidative,
hypolipidemic, antithrombotic, and endothelial-protective
effects (Son et al., 2007; Gong et al., 2011; Liu et al., 2012a;
Lv et al., 2015;Wu et al., 2015c;Wang et al., 2017g). Due to
their structural similarity to cholesterol, diosgenin and
dioscin were used in industrial production of steroidal
drugs and are known to be increasing cholesterol secretion
as well as inhibiting cholesterol absorption (Son et al.,
2007). Diosgenin displayed antiapoptotic effects against
H2O2-induced apoptosis (Gong et al., 2010), as well as anti-
inflammatory effects in VSMCs by inhibiting the MAPK/
Akt/NF-kB pathway (Choi et al., 2010). Diosgenin (14mM)
also blocked atherosclerosis by inhibiting the nuclear
translocation of notch intracellular domain in THP-1 cells
(Binesh et al., 2018). It also inhibited the TNF-a-induced
leukocyte adhesion to activated endothelial cells by inhib-
iting the upregulation of ICAM1, VCAM1, and endothelial
lipase (Wu et al., 2015c). In addition, dioscin (1–4 mM)
inhibited oxLDL uptake by blocking systemic inflamma-
tion and the LOX-1/NF-kB pathway in MPMs from
atherosclerotic rats (Wang et al., 2017g). Also, diosgenin
promoted cholesterol efflux by increasing the ABCA1
expression, independent of LXRa (Lv et al., 2015). The
potential mechanism of diosgenin (10–80 mM) in reducing
foam cell formation in THP-1 macrophages as well as
in atherogenesis is proposed to be through inhibiting of
miRNA-19b (Lv et al., 2015).
2. Fucosterol. Fucosterol is a sterol that is present in

marine algae. It has beneficial effects in hypercholes-
terolemia, due to its activity to reduce LDL-C and
increase HDL-C (Hoang et al., 2012). A recent study
(Hoang et al., 2012) has shown that fucosterol is a dual
LXRa/b agonist that promotes cholesterol efflux from
THP-1 macrophages at 100 and 200 mM, by increasing
the expression of efflux transporters-ABCA1, ABCG1,
as well as ApoE; meanwhile, it also reduces the in-
testinal NPC1L1-mediated cholesterol absorption. This
is a beneficial effect, as it can avoid the side effects
associated with the LXR activation, probably due to
upregulating Insig-2a, which is a negative regulator of
the lipogenic transcription factor SREBP-1c (Hoang
et al., 2012).
3. Panax Notoginseng Saponins. PNS are the major

bioactive ingredients of the medicinal herb P. notogin-
seng (Duan et al., 2017). PNS have extensive cardiovas-
cular protective effects, including preventing endothelial
dysfunction and increasing blood flow, antioxidation,
anti-inflammation, antithrombosis, inhibition of foam
cell formation, and regulation of cardiac function (Jia
et al., 2010; Yuan et al., 2011). PNS (40 and 80 mg/l)
decreased the accumulation of cholesterol esters via
increasing the ABCA1 expression in macrophages (Jia

et al., 2010). In vivo study shows thatPNS inhibited foam
cell formation in zymosan A-induced atherosclerosis rats
at the dose of 100 mg/kg per day (Yuan et al., 2011).
Recently, ginsengoside Rd, a purified constituent from
PNS, also demonstrated antiatherosclerotic effects in
ApoE2/2 fed with atherogenic diet by attenuating foam
cell formation (Li et al., 2011). Mechanistic studies
indicated that ginsengoside Rd (20 mM) blocked SR-A-
mediated oxLDL uptake via blocking voltage-independent
Ca21 channels in RAW264.7 cells (Li et al., 2011). It
remains to be elucidated whether other saponins from
PNS have protective effects against foam cell formation
and may contribute to the atheroprotective effects of PNS.

4. Vitamin D. Vitamin D deficiency is associated
with an increased risk of CVDs, such as hypertension
and atherosclerosis (Weng et al., 2013). A landmark
study in 2009 showed that deficiency of vitamin D
promoted the modified LDL-induced foam cell forma-
tion of macrophages from patients with diabetes (Oh
et al., 2009). Similarly, deficiency of macrophage vita-
min D aggravated CD36 and SR-A-mediated lipid
uptake (via JNKactivation), as well as promoted insulin
resistance to increase atherosclerosis in mice (Oh et al.,
2015). Vitamin D deficiency-induced hypertension and
atherosclerosis in LDLR2/2 mice were reversed by
JNK2 deficiency (Oh et al., 2018). A recent study has
shown that vitamin D deficiency decreased the HDL
level and LXR/ABCA1(G1) expression, thus augment-
ing cholesterol accumulation and atherosclerosis in
hypercholesterolemic microswine (Yin et al., 2015). On
the other side, vitamin D supplementation inhibited the
CD36 and SR-A-mediated lipid (oxLDL and ac-LDL)
uptake and promoted the nascent HDL generation in
HepG2 cells via ABCA1-dependent cholesterol efflux.
The final outcome of these effects is to reduce foam cell
formation in vitaminD-treated cells (Oh et al., 2009; Yin
et al., 2015). Vitamin D supplementation improves
glycemic control, increases HDL-C, and decreases hs-
CRP levels in patients with CVD (Ostadmohammadi
et al., 2019).

G. Fatty Acids

1. Docosahexaenoic Acid and Eicosapentaenoic Acid.
Increasing evidence has shown that the consumption of
fish oil and its main bioactive components EPA and
DHA leads to a reduced risk of CVD. One major
mechanism of the cardiovascular effects of fish oil is
modulation of lipid homeostasis and foam cell formation
(McLaren et al., 2011b). Studies observed that free
polyunsaturated fatty acids buffer including DHA and
EPA at 5 mM significantly reduced the CD36 expression
in human U937 monocytes (Pietsch et al., 1995).
Furthermore, DHA and EPA (25, 50, and 100 mM)
inhibited acLDL uptake in human THP-1 macrophages
partially through reduction of mRNA and protein
expression of CD36 and SR-A. Other SR-independent
mechanisms include reduction of macropinocytosis and
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expression of syndecan-4, which is involved in the
uptake of other forms of modified LDL (McLaren
et al., 2011b). Moreover, an earlier study in 1992
showed that EPA (100, 300 mg/kg body weight per
day) inhibits the CE accumulation in macrophages by
decreasing the expression of receptors of acLDL in
Wistar rats (Saito et al., 1992). These studies under-
score the preventive and therapeutic potential of EPA
and DHA in atherosclerosis.
2. 13-Hydroxyoctadecadienoic Acid.

13-Hydroxyoctadecadienoic acid (also known as 13-
HODE, 13-hydroxy linoleic acid) is a major oxidized
lipid component of oxLDL and a natural and endoge-
nous PPAR agonist (Nagy et al., 1998; Kämmerer et al.,
2011). Treatment with 13-hydroxyoctadecadienoic acid
(1 and 2.5 mM), but not with linoleic acid, increased the
transactivation activity of PPAR, and downstream
targets of PPAR/LXRa pathway, including ABCA1
(G1) and SR-BI. By doing so, 13-HODE (2.5 mM) pro-
moted ApoA-1-mediated cholesterol efflux in RAW264.7
macrophages, thus decreasing cellular cholesterol level
and foam cell formation (Kämmerer et al., 2011).
3. Linoleic Acid. Dietary supplementation of iso-

mers of conjugated linoleic acids has been known for
a long time to promote the regression of pre-established
atherosclerotic plaques (Mooney et al., 2012; Song et al.,
2013). These compounds conferred atheroprotection
mainly by functioning as endogenous activators of
PPARa, PPARg, and PPARG coactivator 1 alpha
(PGC1a) (Ringseis et al., 2008). Conjugated linoleic
acids isomers, such as c9t11-CLA (50 mM) and t10c12-CLA
(50 mM), were shown to stimulate the ApoA-1-mediated
cholesterol efflux, thus reducing lipid accumulation by
increasing the expression of NPC-1, NPC-2, ABCA1,
and LXRa (Ringseis et al., 2008; Reza et al., 2009). In
addition, 1% conjugated linoleic acid blend (80:20 cis-
9,trans-11-CLA:trans-10,cis-12-CLA) also induced the
regression of pre-established atherosclerotic plaques in
ApoE2/2 mice by promoting macrophage polarization
toward a M2 anti-inflammatory phenotype (McCarthy
et al., 2013). Published literature suggests that linoleic
acid could possibly reduce TC via increasing the hepatic
LDLR expression and activity (Ringseis et al., 2006).

H. Amino Acids

1. L-(1)-Citrulline. In the NO cycle, L-(1)-citrulline
is a side product of the eNOS-mediated NO production
which uses L-arginine as a substrate. L-(1)-Citrulline
reduces endothelial senescence, VSMC proliferation,
and atherosclerosis in several animal models, partially
through increasing the NO bioavailability (Ruiz et al.,
1999; Hayashi et al., 2005, 2006; Morita et al., 2014;
Tsuboi et al., 2018). Citrulline (1mM) also increased the
ABCA1 and ABCG1 expression in differentiated THP-1
macrophages, thereby promoting HDL- and ApoA-1-
mediated cholesterol efflux (Uto-Kondo et al., 2014). Of
clinical relevance, citrulline consumption (3.2 g/day for

1 week) increased the level of citrulline and arginine
post citrulline sera and promoted theHDL- andApoA-1-
mediated cholesterol efflux by increasing the expression
of both ABCA1 and ABCG1 in BMDM (Uto-Kondo et al.,
2014). This finding provides additional support for
citrulline consumption conferring antiatherogenic
effects by regulating cholesterol homeostasis (Uto-
Kondo et al., 2014).

2. S-Allyl Cysteine. S-allyl cysteine is the most
abundant bioactive compound from aged garlic extract.
S-allyl cysteine exhibits potent antioxidative and anti-
inflammatory effects by inhibiting LDL oxidation and
NF-kB activation and by counteracting atherogenic
events, including foam cell formation (Ho et al., 2001).
Furthermore, S-allyl cysteine (10, 20, and 40 mM) can
increase the ABCA1 expression in differentiated THP-1
macrophages, indicating a potential to reduce lipid accu-
mulation by promoting cholesterol efflux (Malekpour-
Dehkordi et al., 2013).

I. Carbohydrates

1. Phellinus Linteus Polysaccharides. Phellinus lin-
teus polysaccharide extracts (PLPEs) have immuno-
modulatory effects. In lipid-laden THP-1 macrophages,
low concentration of PLPEs (from 5 to 20 mg/ml)
promoted ApoA-1-mediated cholesterol efflux by upre-
gulating PPARg/ABCA1(G1) in dose-dependent man-
ner. However, high concentration of PLPEs (up to
100 mg/ml) inhibited ApoA-1-mediated cholesterol ef-
flux, increased the NADPH oxidase-dependent ROS
production, and decreased the mitochondrial mem-
brane potential and ATP release (Li et al., 2015d).
Thus, the dose is an important consideration for future
studies with experimental animals or human patients.

2. Astragalus Polysaccharides. Astragalus polysac-
charides (APS) represent the polysaccharide fraction of
the medicinal herb Astragalus membranaceus. APS
(from 25 to 100 mg/ml) has been shown to promote the
ABCA1 expression in foam cells exposed to TNF-a. As
a consequence, APS promoted the cholesterol efflux and
affected lipid accumulation (Wang et al., 2010d). Fur-
ther studies indicate that APS (100 mg/ml) reversed
TNF-a-induced NF-kB activation in THP-1-derived
foam cells. The antiatherosclerotic properties of APS
and their molecular mechanisms of action remain to be
further elucidated (Wang et al., 2010d).

J. Others

1. Organosulfur Compounds: Allicin. Allicin is a sul-
fur-containing compound present in garlic, which has
been shown to inhibit cholesterol synthesis in modified
liver homogenates (Sendl et al., 1992). It also has
inhibitory effects on inducible NO synthase expression
in LPS-stimulated mouse macrophages (Dirsch et al.,
1998). Moreover, allicin inhibited the LDL oxidation.
The lipid-lowering, anti-inflammatory, and antioxi-
dative properties are underlying its atheroprotective
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effects observed in hyperlipidemic mice and rabbits
(Abramovitz et al., 1999; Gonen et al., 2005; Yokoyama
et al., 2012). Importantly, allicin (40mg 3 times daily for
12 weeks) also decreased the carotid intima/media
thickness in CAD patients with hyperhomocysteinemia
(Liu et al., 2017a). A recent study (Lin et al., 2017) also
showed that allicin reduced the TC, FC, andCE levels in
THP-1 macrophage-derived foam cells by upregulating
the ABCA1-dependent cholesterol efflux via PPARg/
LXRa signaling pathway.
2. Pyranone Derivatives: Asperlin. Asperlin is a natu-

ral compound from the marine fungus Aspergillus versi-
color LZD4403, which has potent anti-inflammatory
activity (Zhou et al., 2017). A recent study showed that
asperlin (1–10 mM) has specific protective effects against
LPS-induced foam cell formation by promoting cholesterol
efflux from RAW264.7 mouse macrophages (Zhou et al.,
2017).
3. Anthraquinone Derivatives: Emodin. Emodin is

a pharmacologically active compound isolated from the
roots of Rheum palmatum (Da Huang). A recent study
showed that emodin (5 and 10 mM) promoted ApoA-1-
mediated cholesterol efflux from THP-1 macrophages
via PPARg/LXRa/ABCA1 (G1) signaling pathway (Zhou
et al., 2008; Fu et al., 2014) and thereby ameliorated
diet-induced atherosclerosis in rabbits at the dose of
10 mg/kg body weight (Hei et al., 2006). Emodin was
also reported to reduce atherosclerosis in ApoE2/2 mice
(Zhou et al., 2008) and rabbits (Hei et al., 2006). In
addition, emodin lowered blood glucose, TC, and TG in
diabetic and hyperlipidemic rats (Zhao et al., 2009) by
inhibiting SREBP-1 and SREBP-2 (Li et al., 2016).
4. Polyacetylene Derivatives: Falcarindiol.

Falcarindiol is a common bioactive compound found in
some vegetables and medicinal herbs. Falcarindiol
(10 mM) has been reported to promote ApoA-1-mediated
cholesterol efflux in differentiated macrophages by in-
creasing the mRNA and protein expression of ABCA1
via PPARg (Wang et al., 2017e). One uniquemechanism
of falcarindiol is that it not only increased ABCA1 gene
expression but also prevented cathepsin-dependent
ABCA1 protein degradation (Wang et al., 2017e).
5. Marine Natural Products. In addition to the

compounds mentioned above, several marine natural
products have also demonstrated an antiatherosclerotic
potential by inhibiting foam cell formation. For exam-
ple, spiromastixones 6 and 14 (10 mM) (Wu et al., 2015a)
significantly inhibited oxLDL-induced RAW264.7 foam
cell formation in mouse macrophages by inhibiting lipid
uptake, as well as promoting cholesterol efflux medi-
ated by HDL and ApoA-1. Mechanistic studies reveal
that both compounds significantly reduced the expres-
sion of CD36, while upregulating PPARg/ABCA1 (G1)
(Wu et al., 2015a), indicating that both compounds
could serve as promising leads with an antiatherogenic
potential.

V. Clinically Used Drugs that Influence Foam
Cell Formation

Macrophage foam cells play a critical role in the
development of atherosclerosis (Sharma et al., 2010).
The inhibition of foam cell formation is emerging as an
attractive strategy for therapeutic intervention of ath-
erosclerosis in clinics.

A. Approved Drugs

1. Statins. Statins, used as cholesterol-lowering
drugs, effectively reduce CVD and mortality in patients
with high risk of CVD (Robson, 2008). Themechanism of
their action is related to decrease in cholesterol bio-
synthesis mediated through competitive inhibition of
HMG-CoA reductase and their cholesterol-independent
pleiotropic effects. Statins are highly efficacious (in
lowering atherogenic LDL), safe, and generally well
tolerated in patients with CVD. Statins are reported to
reduce the risk for developing nonfatal myocardial
infarction, ischemic stroke, cardiovascular, and all-
cause mortality. Statins have also been reported to
promote the stabilization and regression of pre-
established atherosclerotic plaques (Toth and Banach,
2019). Clinically used statins can be grouped in two
categories, the lipophilic statins (such as simvastatin
and atorvastatin) and hydrophilic statins (such as
fluvastatin, pravastatin, and rosuvastatin). Although
statins share a common mechanism of action by inhib-
iting HMG-CoA reductase, they differ in terms of
chemical structures/water solubility, pharmacokinetic
properties (absorption, distribution, metabolism, and
excretion), and efficacy of modulating lipids (Schachter,
2005). The lipophilicity/hydrophilicity of statins may
have differential effects and mechanisms in suppress-
ing endothelial dysfunction, foam cell formation, and
CVD development. For example, a systematic meta-
analysis showed that hydrophilic statins, but not hy-
drophobic statins, significantly reduced the level of
asymmetric dimethylarginine (which inhibits NO for-
mation and promotes endothelial dysfunction) (Serban
et al., 2015). Another meta-analysis showed that both
the hydrophilic and the lipophilic statins showed sim-
ilar risk reduction for major adverse cardiac events,
cardiovascular death, all-cause mortality, and statin-
associated muscle symptoms. However, the authors
observed that hospitalization caused by CVDs was
lower and elevation of alanine aminotransferase was
higher in lipophilic statin- than in hydrophilic statin-
treated patients (Bytyçi et al., 2017). In a separate
study, Kim et al. (2011) observed that treatment of
patients with myocardial infarction with lipophilic
statins lead to a better short-term cardiovascular out-
come; however, both lipophilic and hydrophilic statins
lead to a similar reduction of lipids and 1-year cardio-
vascular outcomes. Therefore, wemight expect different
clinical outcomes in different patient populations after
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treatment with lipophilic or hydrophilic statins for
different periods.
In cultured macrophages, both lipophilic and hydro-

philic statins can ameliorate foam cell formation. For
example, rosuvastatin reduces oxLDL-induced foam
cell formation in macrophages by reducing CD36 ex-
pression, without affecting SR-A expression (Yu et al.,
2018). Another study demonstrated that preincubation
of THP-1 macrophages with atorvastatin enhanced
cholesterol efflux to ApoA-1 and HDL3 dose depen-
dently (Argmann et al., 2005). Atorvastatin also in-
creased PPARg activity, enhanced LXR activation,
and increased ABCA1 expression (Argmann et al.,
2005). A recent study showed that reduced pro-
tein expression of calpain-1 is accountable for
simvastatin-mediated protective effects against foam
cell formation (Yang et al., 2016). However, there are
several other studies that indicated that simvastatin
decreased the ABCA1 protein levels in THP-1 via
miRNA-33 (Horie et al., 2010; Niesor et al., 2015).
Therefore, overall the effects of statins on macro-
phage foam cell formation are still controversial. A
genome-wide comparison of the differentially expressed
genes in macrophage foam cells treated with hydrophilic
or lipophilic statins will provide a clear picture of the
cardiovascular protective transcriptome of different
statins.
2. Nicotinic Acid. Nicotinic acid (NA) has been used

for decades as a drug to reduce the progression of
atherosclerosis by decreasing LDL-C and increasing
HDL-C levels in plasma (Meyers et al., 2004; Carlson,
2005). However, one recent trial suggests that there
were no additional clinical effects upon adding niacin to
statin therapy during a 36-month follow up period,
though HDL-C and TG levels were significantly in-
creased in the patients with atherosclerotic CVDs
(Boden et al., 2011). In macrophages from wild-type
mice, NA enhanced ABCG1 expression and promoted
cholesterol efflux (Lukasova et al., 2011). It is reported
that NA increased the production rate of ApoA-1 in both
liver and intestinal cells (Rubic et al., 2004; Lamon-
Fava et al., 2008), probably through an activation of
MAPK and PPAR pathways (Lamon-Fava and Micher-
one, 2004; Pandey et al., 2008). On the contrary, other
studies reported that there are no effects of NA on
ApoA-1 production rate (Jin et al., 1997). Furthermore,
NA did not exhibit effects on either cholesterol efflux or
key RCT gene transcription in THP-1-derived foam cells
(Chai et al., 2013).
3. Ezetimibe. Ezetimibe, a selective inhibitor of

intestinal cholesterol absorption, has been shown to
reduce plasma cholesterol levels and exhibit an anti-
atherosclerotic effect (Al-Shaer et al., 2004). One study
showed that ezetimibe inhibited foam cell formation via
the caveolin-1/MAPK signaling pathway, which might
be another mechanism of its anti-atherosclerotic effect
(Qin et al., 2016).

4. Proprotein Convertase Subtilisin/Kexin Type
9Antibodies. PCSK9 is an enzyme encoded by the
PCSK9 gene on chromosome 1 in human beings
(Seidah et al., 2003). PCSK9 reduced the amount of
LDLRs in hepatocytes by promoting their degradation
(Denis et al., 2012). Blocking PCSK9 expression/activity
can increase the LDLR amount on the cellular sur-
face and decrease blood LDL-particle concentrations
(Weinreich and Frishman, 2014; Joseph and Robinson,
2015). Monoclonal PCSK9 antibodies have been de-
veloped as a very effective approach to inhibit PCSK9
and reduce LDL levels (Chaudhary et al., 2017). Several
monoclonal antibodies have been or are being tested in
clinical studies. Among them, Alirocumab and Evolocu-
mab were recently approved by the Food and Drug
Administration for adult patients with heterozygous
familial hypercholesterolemia or with clinically signif-
icant atherosclerotic CVD requiring additional LDL
lowering (Chaudhary et al., 2017). One study displayed
that PCSK9 directly decreased cholesterol efflux by the
downregulation of ABCA1 expression (Adorni et al.,
2017), which might be another mechanism of the anti-
CVD effect conferred by inhibition of PCSK9.

B. Drugs in Clinical Trials

1. Glucagon-like Peptide-1 Receptor Agonists.
GLP-1 is a gut hormone that activates a G protein-
coupled receptor (GLP-1R) in a glucose-dependent
manner to stimulate pancreatic b cells and secretion
of insulin postprandially (Campbell andDrucker, 2013).
GLP-1R agonists (e.g., liraglutide, lixisenatide, albiglu-
tide) or incretin mimetics are used as medicines for the
treatment of type 2 diabetes. Recent evidence has
suggested that the augmentation of GLP-1R signaling
by administration of GLP-1R agonists has beneficial
effects on the cardiovascular system in patients with
diabetes (Ussher and Drucker, 2012). Further study
indicated that GLP-1R signaling induced autophagy,
thereby suppressing foam cell formation in nonobese
subjects. In obese patients, stimulation of GLP-1R
promoted formation of foam cell and production of
TNF-a, IL-1b, and IL-6 (Tanaka et al., 2016).

2. High-density Lipoprotein/Apolipoprotein A-1-rais-
ing Agents. Current treatment of atherosclerotic CVD
is dominated by lowering LDL-C, while increased
plasma levels of cholesterol efflux acceptors HDL-C
and ApoA-1 expression have been viewed as an alter-
native therapeutic strategy against CVD for more than
three decades (Bailey et al., 2010). The idea to treat
CVD by raising HDL comes from a concept relying on
the inverse correlation of CVD and human plasma
HDL-C (Brewer, 2004), which retrieves excess choles-
terol from peripheral cells, including vessel wall macro-
phages, to the liver for excretion into the bile (Duffy and
Rader, 2006). Although there are some animal studies
and human trials demonstrating that infusion of HDL
or ApoA-1 limit the progression of atherosclerosis (Tall,
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1990; Nissen et al., 2003), a randomized, double-blind
study involving 15,067 patients at high cardiovascular
risk indicated that the CETP inhibitor torcetrapib
raised the levels of HDL particles but failed to counter-
act atherosclerosis (Barter et al., 2007). Two trials have
also compared niacin with placebo, added to simvasta-
tin, and although niacin raised HDL-C by ;15%, there
was no clinical benefit to atherosclerosis (Boden et al.,
2011; HPS2-THRIVE Collaborative, 2013). These stud-
ies indicate the complexity of HDL biology and suggest
that not only HDL-C levels but also size, composition,
and functionality of the HDL particles may be impor-
tant. The focus of drug development should shift from
raising HDL-C levels to enhancing HDL function.
Current knowledge on the role of HDL in preventing
various diseases is threefold: 1) HDL itself is not
a reliable biomarker/predictor of CVD and/or cancer;
2) the quality/functionality (such as cholesterol efflux
assay in patients derivedmacrophages), rather than the
quantity of HDL, ismore important for atheroprotection
and CVD prevention; and 3) the functionality of HDL
plays an important role not only in CVD (such as
atherosclerosis), but also in cancer diagnosis/monitor-
ing (Otocka-Kmiecik et al., 2012; Toth et al., 2014;
Ganjali et al., 2019; Penson et al., 2019).
RVX-208 (apabetalone) is a selective antagonist of

bromodomain and extra terminal (BET) bromodomains
(McLure et al., 2013; Picaud et al., 2013). It interferes
with the BET protein bromodomain 4 (BRD4), resulting
in an increased expression of ApoA-1 in cells, mice,
monkeys, and humans (Bailey et al., 2010; Jahagirdar
et al., 2014). RVX-208 is being developed as an orally
active small molecule for the treatment of CVD
(Nicholls et al., 2011). A clinical study showed that
RVX-208 increased ApoA-1, pre-b-HDL, and HDL
functionality and increased cholesterol efflux in vitro
(Bailey et al., 2010). In two Phase II clinical trials, RVX-
208 increased the HDL-C and ApoA-1 levels, exhibiting
the ability to treat atherosclerosis in patients with
established CVD (Johansson et al., 2014). An interna-
tional, multicenter Phase III trial for treatment of
atherosclerosis commenced in October 2015. In 2018,
Resverlogix Corp. announced that it has successfully
surpassed the planned enrollment target of over 2400
patients in the ongoing Phase III trial (BETonMACE).
The scientific community is looking forward to the
results of the Phase III trial. The findings discussed
here indicate that the regulation of ApoA-1 expression
would be a very promising approach for treating
atherosclerosis.
One potential therapeutic strategy related to ApoA-1

is the application of small peptides that mimic the
ApoA-1 function. ApoA-1 comprises a total of 243 amino
acids and involves 10 amphipathic a-helices, which are
very important for its interaction with lipids. Peptides
that mimic the amphipathic helices in ApoA-1 (ApoA-1
mimetic peptides) are lately used as therapeutic agents

(such as 4F, 6F, FX-5A,ATI-5261,ETC-642) (Stoekenbroek
et al., 2015). At present, these peptides are being tested in
preclinical models, which show that they increase macro-
phage cholesterol efflux and exhibit antiatherosclerosis
action (Stoekenbroek et al., 2015). A small pilot study
(ApoA-1 Milano clinical trial) indicated that a complex of
recombinant ApoA-1 Milano with phospholipid carriers
(ETC-216) significantly reduced percentage and total
atheroma volume and plaque thickness in patients
(Nissen et al., 2003). Pfizer purchased the producer of
ETC-216, Esperion Therapeutics in 2003, in the hope of
developing a more effective treatment than ETC-216.
However, Pfizer did announce a progress with the de-
velopment of such product. Currently, no drugs based on
ApoA-1 Milano are commercially available.

CSL-111, an rHDL, is composed of human ApoA-1
and soybean phosphatidylcholine, which mimics native
HDL (Stoekenbroek et al., 2015). In the “Effect of rHDL
on Atherosclerosis-Safety and Efficacy” (ERASE) trial,
although CSL-111 remarkably decreased atheroma
volume compared with baseline, it induced a high
incidence of liver function abnormalities (Tardif et al.,
2007). Therefore, further clinical study on CSL-111
was not continued. CSL-112, a second-generation of
CSL-111 with no liver toxicity, increased the ApoA-1,
pre-b HDL levels, and ABCA1-mediated cholesterol
efflux in two Phase I studies (Krause and Remaley,
2013; Easton et al., 2014). In the Phase II trial, infusion
of CSL112 for 4 weeks was well tolerated and did not
induce any significant side effects in liver or kidney
function. CSL112 significantly enhanced cholesterol
efflux (Michael Gibson et al., 2016). In 2018, CSL Behring
has started the “ApoA-1 Event reducinG in Ischemic
Syndromes II” (AEGIS-II) Phase III clinical trial of
CSL112, which is a multicenter, double-blind, random-
ized, placebo-controlled, parallel-group study. The scien-
tific community is looking forward to the results of the
Phase III trial of CSL112.

CER-001, a pre-b HDL mimetic, comprises recombi-
nant ApoA-1, diphosphatidylglycerol, and sphingomye-
lin (Stoekenbroek et al., 2015). In a Phase I trial,
infusion of CER-001 was well tolerated and did not
show any side effects at any doses (Keyserling et al.,
2011). The Phase II trials indicated that CER-001
increased RCT and might significantly decrease aortic
atheroma volume. CER-001 has already reached Phase
III for the treatment of patients with genetic HDL
deficiencies. However, CER-001 has failed in Phase II
trial for the treatment of patients with coronary athero-
sclerosis following acute coronary syndromes (Nicholls
et al., 2018). The results show that CER-001 did not
produce plaque regression in statin-treated patients fol-
lowing acute coronary syndrome (Nicholls et al., 2018).

3. Bempedoic Acid (ETC-1002). Bempedoic acid
(ETC-1002), a small-molecule inhibitor of ATP citrate
lyase, has been shown to reduce the level of low-density
lipoprotein (LDL) cholesterol and the development of
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atherosclerosis in hypercholesterolemic ApoE2/2 mice
(Pinkosky et al., 2016), LDLR2/2 mice (Samsoondar et al.,
2017), LDLR-deficient miniature pigs (Samsoondar et al.,
2017), and statin-intolerant hypercholesterolemic patients
(Ballantyne et al., 2018; Laufs et al., 2019). Bempedoic
acid, as a prodrug, is converted to the active agent in
liver, but not in skeletal muscle; therefore, bempedoic
acid may avoid myotoxicity associated with statin
therapy (Penson et al., 2017; Ruscica et al., 2019). A
recent Phase III clinical trial has shown that treatment
with bempedoic acid for 52-weeks added to the maxi-
mally tolerated statin therapy significantly lower
LDL-C levels without causing higher incidence of over-
all adverse events (Ray et al., 2019). To date, no
information is available whether bempedoic acid can
affect foam cell formation. Based on the promising LDL-
lowering effects of bempedoic acid, it is plausible that
bempedoic acid could also affect lipid uptake and
cholesterol efflux.

VI. The Role of Inhibition of Foam Cell
Formation in Antiatherosclerosis Therapy

Atherosclerotic lesions in the early stages of athero-
sclerosis are characterized by the subendothelial accu-
mulation of lipid-laden macrophages (foam cells) in the
large arteries (Lusis, 2000). With time, the foam cells
eventual demise within the atherosclerotic lesion con-
tributes to their lipid-filled contents in the necrotic core
of the advanced lesion, as shown in animal models
(Cookson, 1971; Tamminen et al., 1999). In humans,
such fatty streak lesions were also found in the aorta,
the coronary arteries, and the cerebral arteries (Lusis,
2000), suggesting that foam cell formation also play
a critical role in atherosclerotic development in humans.
Thus, foam cell formation could be a promising thera-
peutic target for atherosclerosis.
As we discussed in section II above, disruption of

macrophage cholesterol uptake, prevention of CE for-
mation, and enhancement of macrophage cholesterol
efflux in animals generally reduced foam cell formation
and atherosclerotic plaque area. Although animal mod-
els are widely used to study the molecular mechanisms
that connect altered cholesterol metabolism to the
atherosclerotic plaque progression, the possible differ-
ences in atherosclerosis development between animal
models and humans must be taken into consideration
(Maguire et al., 2019). Therefore, it is very important to
ascertain whether inhibition of foam cell formation also
contributes to atherosclerosis regression in humans.
As we discussed in section V.A, current clinically used

drugs (e.g., statins, NA, ezetimibe, Alirocumab, and
Evolocumab) to treat CVDs also exhibit inhibitory
effects on macrophage foam cells in vitro and in animal
models (Ference et al., 2017). However, it remains to
be verified how much their therapeutic effects are
attributed to their inhibition on foam cell formation in

humans. One clinical study showed that pravastatin
has the capacity to reduce lipid content and foam cell
accumulation in carotid atherosclerotic lesions (Crisby
et al., 2001), which indicates that inhibition of foam cell
formation might contribute to its therapeutic effects.
NA was demonstrated to significantly increase HDL-C
in patients (Lee et al., 2009a), which is an acceptor to
mediate cholesterol efflux from macrophages, suggest-
ing that NA might possibly also exhibit its effects by
influencing foam cell formation. Intriguingly, treatment
with PCSK9 monoclonal antibodies in patients with
familial hypercholesterolemia reduced intracellular
lipid accumulation in circulating monocytes (Bernelot
Moens et al., 2017). Furthermore, this study indicated
that LDL-C lowering by inhibition of PCSK9 was
paralleled by decreased intracellular lipid accumula-
tion, indicating that LDL-C lowering itself is associated
with inhibited foam cell formation (Bernelot Moens
et al., 2017). It also suggests that inhibition of PCSK9
reduces monocyte levels of intracellular lipids, and
might thereby prevent progression and enhance re-
gression of atherosclerosis (Wu and Ballantyne, 2017).
Although these drugs exhibit inhibitory effects on foam
cell formation in humans, it is unclear how much the
inhibition of foam cell formation contributes to their
efficacy on CVDs, since their effect on CVDs is mainly
due to pleiotropic activities, such as decrease of choles-
terol and LDL-C, antioxidant activity and others.

Also, as we discussed in section V.B, enhancement of
HDL-C and ApoA-1 levels has been viewed as alterna-
tive therapeutic strategies against CVD. AlthoughHDL
mediates a number of atheroprotective processes, such
as antioxidative, anti-inflammatory, vasodilatory activ-
ities, protection against endothelial cell activation and
apoptosis and others; very importantly it is also the
critical acceptor to mediate cholesterol efflux from foam
cells to inhibit foam cell formation (Linton et al., 2000).
Recent clinical reports indicated that HDL cholesterol
efflux capacity from macrophages has a strong inverse
association with both the likelihood of angiographic
CAD and carotid intima-media thickness, independent
on the HDL-C levels (Khera et al., 2011). HDL choles-
terol efflux capacity was also inversely related with
the incidence of cardiovascular events in a large and
multiethnic population cohort (Rohatgi et al., 2014) and
with incident coronary heart disease events (Saleheen
et al., 2015). These clinical studies indicated that
enhancement of cholesterol efflux might decrease
CVDs, providing compelling evidence that the inhibi-
tion of foam cell formation is antiatherogenic in
humans. Moreover, RVX-208 increased the expression
of cholesterol efflux acceptor ApoA-1 in humans, re-
ducing major adverse cardiovascular events in treated
patients in several Phase II trials as discussed above
(section V.B), suggesting targeting foam cell formation
might be a promising target to treat CVDs. Unfortu-
nately, these clinical studies were not able to test the
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foam cell formation and accumulation. Therefore, there
is no direct and clear evidence to verify how much the
inhibition of foam cell formation contributes to the
respective therapeutic effects on CVDs. At present,
the examined endpoints in these clinical studies include
death from CAD, ischemic stroke, nonfatal myocardial
infarction, carotid intima-media wall thickness (Cheng
et al., 2016), hospitalization for an acute coronary
syndrome, symptom-driven coronary or cerebral revas-
cularization (Boden et al., 2011), lipid parameters (e.g.,
ApoA-1, LDL, HDL) (Rohatgi et al., 2014), none of which
can directly and unambiguously represent the form cell
formation. In this context, we suggest that future
clinical trials may use foam cell formation as a further
clinical endpoint to confirm whether inhibition of foam
cell formation can directly contribute to anti-CVDs
therapy.

VII. Concluding Remarks and
Future Perspectives

Atherosclerosis is traditionally considered as a lipid
disorder, in which multiple pathologic factors, such as
immunity disorders (Hansson and Hermansson, 2011),
unresolved inflammation (Kasikara et al., 2018), and
epigenetics (Xu et al., 2018), add to the complexity of the
disease. Targeting diverse mechanisms of atherosclero-
sis could facilitate the therapeutic interventions to
combat atherosclerosis (Maguire et al., 2019).
Based on the lipid and inflammation hypothesis of

atherosclerosis, lipid-modulating strategies (i.e., by sta-
tins, fibrates, and PCSK9 inhibitors) and anti-
inflammatory therapies (i.e., by IL-1b monoclonal anti-
body injection) remain the mainstream therapy for
atherosclerosis. Macrophages are one main cell type
that handles inflammatory response, immunity, and
lipid metabolism in the atherosclerotic lesions. Our
understanding of how macrophages govern the inflam-
matory response, lipid transport, and storage within
lesions has significantly progressed over the last
10 years. In humans, atherosclerotic lesions (fatty
streaks), characterized by the subendothelial accumu-
lation of lipid-laden macrophages (foam cells), were
found in the aorta, the coronary arteries, and the
cerebral arteries (Lusis, 2000), which were also con-
firmed in animal models (Cookson, 1971; Tamminen
et al., 1999). It was assumed that foam cell formation
plays a critical role in atherosclerotic development in
humans, and inhibition of foam cell formation would be
a promising target to treat atherosclerosis. The forma-
tion of foam cell is a multistep cellular process, which
involves lipid uptake, cholesterol ester accumulation,
and cholesterol efflux. These three processes seem to be
independent of each other, but indeed constitute an
interrelated gene regulation network. The SR-mediated
uptake is the major pathway of cholesterol uptake.
CD36, SR-A, and LOX-1 are the major SRs responsible

for the binding and following uptake of modified LDL by
macrophages (Kunjathoor et al., 2002), whose regula-
tion and functions are addressed in the review. Choles-
terol esterification and CE hydrolysis involved in foam
cell formation could also be alternative targets for the
treatment of atherosclerosis. ACAT1 and ACAT2 in-
volving in cholesterol esterification, as well as NCEH1,
LIPA, and lipase E involving in CE hydrolysis are also
concluded here. In addition, current understanding of
the function and regulation of the cholesterol trans-
porters (ABCA1 and ABCG1), SR-BI, and the acceptors
(ApoA-1, HDL and ApoE), which are related to choles-
terol efflux from macrophages, are reviewed. Inhibition
of LDL uptake, prevention of cholesterol esterification,
and promotion of CE hydrolysis, as well as increase of
cholesterol efflux in macrophages could represent novel
therapeutic modalities of atherosclerosis. A multifac-
eted approach, which blocks lipid uptake and CE
accumulation while promoting cholesterol efflux, could
be the most effective way to reduce foam cell formation
with reduced side effects (such as FC accumulation)
(Maguire et al., 2019).

There are a variety of models to study the process of
foam cell formation and to screen the promising com-
pounds targeting foam cell formation. We reviewed the
cellular models for studying cholesterol uptake, choles-
terol efflux, and animalmodels for study onmacrophage
RCT and foam cell formation. All thesemodels provide a
good platform to evaluate the effect of natural products
on foam cell formation in vitro and in vivo and to further
identify promising drug candidates for treatment of
atherosclerosis (Getz and Reardon, 2012; Hilgendorf
and Swirski, 2012). However, it should be pointed out
that studies in animal models have limited suitability
because of significant species differences comparedwith
humans (Lusis, 2000). For example, contradictory
results related to the pathologic roles of CD36, SR-A,
and ACAT1 in atherosclerosis have indicated the trans-
lation of the findings from mice to human as a big
challenge for cardiovascular biology and drug discovery.
Thus, it is critical to select a unique animal model(s)
that mimic human atherosclerosis pathophysiology and
to minimize the variables arising from different sexes,
study duration, and type of atherogenic diet. Differ-
ences in lipid profile, topography of arterial lesions, and
the susceptibility to plaque rupture are key factors that
must be taken into consideration when choosing the
suitable animal model (Emini Veseli et al., 2017).

Natural products remain a promising source for new
lead structures. Their great structural diversity and
biodiversity makes them an attractive pool in the quest
for new therapeutics. In this review, natural products
regulating foam cell formation in different models are
outlined, including flavonoids, terpenoids, phenolic
compounds, phenylpropanoids, alkaloids, steroids, fatty
acids, amino acids, carbohydrates, and others. Among them,
cyanidin-3-glucoside, ICA, iristectorigeninB, pratensein,
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isosilybin A, b-carotene, lycopene, erythrodiol, ginseno-
side Rb1, tanshindiol C, PGG, berberine, 13-HODE, and
spiromastixones appeared to be very active in cellular
models. Thus, in vivo corroboration of their activity
appears worthwhile. For some of the natural com-
pounds, like anthocyanins, baicalin, chrysin, cyanidin-
3-O-b–glucoside, daidzein, ellagic acid, hesperetin,
quercetin, isosilybin A, ATRA, 9-cis-bc, 9-cis-RA, UA,
ginsenoside Rd, zerumbone, curcumin, danshensu,
paeonol, protocatechuic acid, salvianolic acid, sesamol
derivative (INV-403), resveratrol, EGCG, sesamin,
chlorogenic acid, caffeic acid, ferulic acid, rutaecarpine,
leonurine, diosgenin, DHA, linoleic acid, allicin, asperlin,
and emodin, in vivo studies in models for atherosclerosis
already exist, which makes these compounds evenmore
promising. The therapeutic effects of these compounds
on foam cell formation and atherosclerosis remain to
be investigated in clinical studies. Some natural
compounds, like pratensein, astaxanthin, betulinic acid,
tanshinone IIA, vitamin D, have even been investigated
in clinical trials. Large and multiethnic population
cohorts are required to further confirm their therapeutic
effect on atherosclerosis.
We also reviewed the effect of clinically used drugs on

foam cell formation, including statins, NA, ezetimibe,
and PCSK9 antibodies, as well as drugs in clinical trials,
such as GLP-1 receptor agonists and HDL/ApoA-1-
raising agents. Although these drugs exhibit positive
effects on foam cell formation in humans, there is no
direct evidence to verify how much the inhibition of
foam cell formation contributes to the therapeutic
effects of these drugs on CVDs.
Future directions in studying the mechanisms of

foam cell formation and the discovery of foam cell-
targeted therapies include:

• Further understanding the regulatory mecha-
nisms of foam cell formation by new biotechnol-
ogies (such as RNA-sequencing, lncRNA arrays,
RNA interference (RNAi), or CRISPR/Cas9 li-
brary screening). Although significant progress
has been made recently in characterizing regula-
tory mechanisms controlling the formation of
foam cells, targeting some of these known
regulatory mechanisms has yielded negative or
controversial results, such as pathologic roles of
CD36, SR-A, ACAT1, ABCA1, and rHDL in
atherosclerosis. Therefore, it is important to
further understand the regulatory mechanisms
of foam cell formation by new biotechnologies.
The widespread use of RNA-sequencing and
lncRNA arrays (Xu, 2017) has empowered the
discovery of new epigenetic regulators (such as
lncRNAs) that are associated with or regulate
foam cell formation, atherosclerosis, and related
vascular diseases. Further elucidation of the role
of these new regulators will provide us a clear

picture of how foam cell formation is regulated
and can be therapeutically targeted. Methods of
systems biology, such as RNAi or CRISPR/Cas9
library screening are very useful high-throughput
methods to elucidate novel regulators of foam cell
formation at the genome-wide scale (Domschke
et al., 2018). The establishment of new screening
systems based on RNAi or CRISPR/Cas9 library
screening will significantly accelerate under-
standing the regulatory mechanisms of foam cell
formation.

• High-throughput screening of natural products
targeting foam cell formation. Natural products
are a well-established source for the development
of new drugs in general (Atanasov et al., 2015;
Waltenberger et al., 2016). They display a great
structural diversity and also cover a large range
of biologic activity compared with combinatorial
and synthetic compounds (Hiebl et al., 2018). A
huge number of natural products were found to
regulate ABCA1 expression. Nevertheless, many
natural products have never been investigated
concerning a potential regulation of foam cell
formation. To identify potential drug leads with
capability of suppressing foam cell formation
from such large pool, high-throughput drug
screening platforms are important. For example,
a recent study has used a high-throughput
screening platform to identify novel candidate
genes involved in lipid uptake by human macro-
phages (Domschke et al., 2018). This platform can
similarly be used to identify natural products
that have inhibitory effects on lipid uptake.

• Validation of anti-foam cell formation and anti-
atherosclerotic effect of bioactive natural prod-
ucts in vitro, in vivo, and in clinical studies. Most
of studies evaluating the anti-foam cell formation
capabilities of natural products were performed
using RAW264.7 macrophages and differentiated
THP-1 macrophages, two common cell lines used
in macrophage biology research. To further
evaluate the potential of promising natural
products, pharmacological activities need to be
validated in primarily cultured HMDMs and,
most importantly, in animal models of athero-
sclerosis. However, we have to bear in mind that
the mechanisms of actions of these natural
products with potential anti-foam cell formation
effects are very wide, ranging from reduction of
proinflammatory factors/biomarkers (such as
CRP), inhibition of oxidative stress, and direct
inhibition of lipid synthesis (by inhibiting the
activity of HMG-CoA reductase, PCSK9, or
SREBPs). Those natural products may be work-
ing in a similar ways to some nutraceuticals (such
as polyunsaturated fatty acids) or current lipid-
modulating therapies (Sahebkar et al., 2016a,b;
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Serban et al., 2016; Cicero et al., 2017; Momtazi
et al., 2017; Ursoniu et al., 2017; Banach et al.,
2018; Patti et al., 2018). Another important
consideration in future research is to verify
whether the anti-foam cell formation effects of
natural products directly contribute to their
antiatherosclerotic effects, since the progression
of atherosclerosis is a complex process. In the
light of recent observations that impaired
ABCA1-dependent cholesterol efflux associates
with markers of inflammasome activation in
mouse and human patients with loss-of-function
mutations in ABCA1 (Tangier disease)
(Westerterp et al., 2018), it is possible that the
vicious cycle of “foam cell formation-inflammation/
inflammasome-foam cell formation-atherosclerosis”
could perpetuate the pathogenesis of atherosclero-
sis. Some of the natural compounds exhibit very
strong inhibitory effects on foam cell formation
in vitro, in vivo, and in small clinical trials. It is
very valuable to conduct large and multi-ethnic
population cohorts to confirm their therapeutic
effect on atherosclerosis.

• Improvement of druggability of promising natu-
ral products. Some of the natural products with
cardiovascular potential have the disadvantage of
low oral bioavailability and low efficacy and have
systemic and complex pharmacological effects
in vivo. Further structural modification of these
promising compounds can lead to antiatheroscler-
otic drug candidates with higher efficacy and less
toxicity/nonspecific effects. In addition, the use of
nanotechnology, for example, nanoencapsulation
can significantly enhance the stability and anti-
atherogenic efficacy of natural products, as shown
for EGCG in macrophages (Zhang et al., 2013,
2016a; Hong et al., 2014). In the future, it is
feasible to design nanomedicines by coupling
natural products with macrophage specific
marker proteins to achieve targeted delivery of
drugs to foam cells in atherosclerotic plaques
in vivo.
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